Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111,1211 (2010)	12-Apr-2010						

 $Q(\beta^{-}) = -1211 5$; S(n) = 8408 4; S(p) = 5486.11 5; $Q(\alpha) = 729.4 13 2012$ Wa38

Note: Current evaluation has used the following Q record -1210 5 8408 3 5486.11 5 730.2 13 2009AuZZ,2003Au03. Additional information 1.

Other reactions:

1978HuZP: ²⁷Al(¹³⁶Xe,x) E=700 MeV. Measured $\langle T_{1/2} \rangle$ of the γ -ray continuum and deduced Q₀, B(E2)(W.u.), and β_2 .

1984Ut01: ¹⁵⁹Tb(⁷Li,t) E=77 MeV. Studied ⁷Li breakup. Serber model.

1980Wi10: ¹⁵⁹Tb(¹⁴N,¹⁰B) E=140 MeV. Measured particle- γ coin and σ .

1996De17: ¹⁶²Dy(⁵⁸Ni,⁵⁷Co) E=240-273 MeV. Measured transfer probability.

1976Go21, 1969Ke05, 1969Be59: ¹⁶⁵Ho(γ ,2n) E \leq 30 MeV. Measured σ in a study of giant resonances. 1984Wo04 analyzed the role of neutron multiplicity sorting on the results.

Structure calculations: 1992Bo45, 1977Sc22, 1973Wi02, 1972So12, 1972Ke09.

¹⁶³Ho Levels

Bands: see 1976Sc19 and 1972Fu09 for values of the parameters derived using least-squares adjustment procedures and including Coriolis and pairing effects.

Cross Reference (XREF) Flags

A	163 Dy[+66] β^- decay (48 d)	E	¹⁶² Dy(p,p) IAR	I	164 Er(pol t, α)
B	163 Ho IT decay (1.09 s)	F	¹⁶² Dy(³ He,d)	J	165 Ho(p,t)
C D	163 Er ε decay (75.0 min) 160 Gd(11 B, α 4n γ)	G H	$^{162}\text{Dy}(\alpha,t)$ $^{163}\text{Dy}(d,2n\gamma),(p,n\gamma)$		

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	XREF	Comments
0.0&	7/2-	4570 y 25	ABCD FGHIJ	%ε=100 μ=4.22 4 (1989Al27,2005St24) Q=3.6 6 (1989Al27,2005St24) T _{1/2} : ¹⁶³ Ho ⁶⁶⁺ ion is stable (1997Kl06,1992Ju01). Δ <r<sup>2>(¹⁶³Ho⁻¹⁶⁵Ho)=-0.117 fm² 6 (1989Al27). From an evaluation of nuclear rms charge radii, 2004An14 report <r<sup>2>^{1/2}=5.19 fm 3. E(level): population is uncertain in (³He,d). J^π,μ,Q: resonance ionization spectroscopy (1989Al27). Spin also from hyperfine collinear laser spectroscopy (1988NeZZ). Parity: L(p,t)=0 from 7/2⁻ target. T_{1/2}: from 1983Ba32 (uncertainty=50 y at 95% confidence level; isotope-dilution mass spectrometry; four points; 0.35-0.6 y). Others: 4569 y 30 (1988Ka20, isotope-dilution mass spectrometry); 7000 y 200 (1982An19, based on a partial T_{1/2}=4.0×10⁴ y 12 for M-capture Auger electrons and M x ray) and Q(ε)=2.3 10 (from ¹⁶³Dy(d,t), ¹⁶²Dy(³He,d)); 33 y 23 (1065Ho17)</r<sup></r<sup>
100.03 [@] 6	9/2-		CD FGHIJ	E(level): population is uncertain in (³ He,d). J ^{π} : L=5 and Ay(θ) in (pol t, α).
222.22 ^{&} 7 297.88 ^a 7	11/2 ⁻ 1/2 ⁺	1.09 s <i>3</i>	D FGHIJ BCD FGHi	J^{π} : L=5 and Ay(θ) in (pol t, α). %IT=100 J^{π} : L(³ He,d)=0. T _{1/2} : from γ (t) (1967Ge09). Others: 1966Bo02, 1957Ha12.

Continued on next page (footnotes at end of table)

¹⁶³Ho Levels (continued)

E(level)	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
307.64 ^a 8	$3/2^{+}$		C FGHi	J^{π} : L(³ He,d)=2 and Ay(θ) in (pol t, α).
360.36 ^b 9	$3/2^{+}$		C FGHI	J^{π} : L=2 and Ay(θ) in (pol t, α).
366.65 [@] 9	$13/2^{-}$		D H J	J^{π} : $\Delta J=(2)$, E2 γ to 9/2 ⁻ ; γ to 11/2 ⁻ .
392.07 ^{<i>a</i>} 10 419?	5/2+		C FGHI F	J^{π} : L=2 and Ay(θ) in (pol t, α).
431.18 ^{<i>a</i>} 6	7/2+	0.37 ns 15	CD fgH	J^{π} : $\Delta J=(0)$, E1 γ to 7/2 ⁻ ; $\Delta J=1 \gamma$ to 9/2 ⁻ ; $\Delta J=(2) \gamma$ to 3/2 ⁺ .
439.94 [°] 7	7/2+	0.35 ns 15	C fgHi	J^{π} : E1 γ to 7/2 ⁻ ; γ to 9/2 ⁻ ; L=2+4 and Ay(θ) in (pol t, α) for a 440 doublet.
440.51 ^b 8	$5/2^{+}$		fgHi	J^{π} : L=2+4 and Ay(θ) in (pol t, α).
471.25 ^d 10	$(1/2)^{-}$	≤0.2 ns	FGH	J^{π} : L(³ He,d)=1, probable bandhead.
500.38 ^d 13	$5/2^{-}$		CD FGHI	Uncertain in ε decay.
,				J^{π} : L(³ He,d)=3 and $\Delta J=(1) \gamma$ to $3/2^+$.
528.24 ^b 9	7/2+		FGHi	J^{π} : L=4 and Ay(θ) in (pol t, α).
531.79 ^{&} 10	$(15/2^{-})$		D HiJ	J^{π} : $\Delta J=(2)$, (E2) γ to $11/2^{-}$; γ to $13/2^{-}$.
552.050 8	(9/2+)		C FGH	J^{π} : γ' s to $7/2^{-}$ and $9/2^{-}$; probable band assignment. Uncertain in ε decay.
560 ^k 3	$(3/2)^{-}$		J	J^{π} : L(p,t)=2 from 7/2 ⁻ , probable bandhead.
578.23 ^d 13	$(3/2)^{-}$		FGHI	XREF: I(587).
				J^{π} : L(³ He,d)=1; γ to 1/2 ⁺ .
587.56 ^{<i>a</i>} 7 594?	(9/2+)		FGH F	J^{π} : probable band member.
612.80 ^d 10	$9/2^{-}$	≤0.3 ns	D FGHI	J^{π} : L(³ He,d)=5; $\Delta J=1 \gamma$ to 7/2 ⁺ .
614.29 ^k 9	(5/2)-		C H J	J^{π} : L(p,t)=2 from 7/2 ⁻ ; log <i>ft</i> =8.6 from 5/2 ⁻ ; γ to 3/2 ⁺ . Level uncertain in (d.2n γ), (p.n γ).
652.06 ^a 8	$(11/2^+)$		D H	J^{π} : $\Delta J=(2) \gamma$ to $7/2^+$; γ to $9/2^-$.
664.01 ^b 9	$(9/2^+)$		Н	J^{π} : $\Delta J=1 \gamma$ to 7/2 ⁺ ; $\Delta J=(2) \gamma$ to 5/2 ⁺ .
688.08 ^c 22	$(11/2^+)$		Н	J^{π} : $\Delta J=1 \gamma$ to 9/2 ⁻ , $\Delta J=(0) \gamma$ to 11/2 ⁻ .
695 ^k 3	$(7/2^{-})$		J	
710 2	5/2+		FG I	J^{π} : L=2 and Ay(θ) in (pol t, α). configuration= $\pi 5/2[402]$.
719.56 [@] 11	$(17/2^{-})$		DHJ	J^{π} : ΔJ=(2) γ to 13/2 ⁻ , γ to (15/2 ⁻).
746 ^d 2	$(7/2)^{-}$		FG	J^{π} : L(³ He,d)=3, band member.
795.44 ^b 13	$(11/2^+)$		НJ	J^{π} : ΔJ=(2) γ to 7/2 ⁺ , ΔJ=1 γ to (9/2 ⁺).
807 ^k 3	(9/2 ⁻)		GJ	
810.33 ^d 10	$(13/2^{-})$		D H	J^{π} : ΔJ=1 γ to (11/2 ⁺); γ to 9/2 ⁻ .
844.69 [°] 23	$(13/2^+)$		Н	J^{π} : $\Delta J=1 \gamma$ to $11/2^{-}$; γ to $13/2^{-}$.
876.00 ^e 9	5/2+		C FGHI	Level uncertain in $(d,2n\gamma)$, $(p,n\gamma)$. J^{π} : L=2 and Ay (θ) in (pol t, α).
881.92? ^{<i>u</i>} 13	$(13/2^+)$		Н	J^{π} : γ to (9/2 ⁺).
924.43 [°] 12	$(19/2^{-})$		D H	J^{π} : $\Delta J=(2)$ E2 γ to (15/2 ⁻); γ to 17/2 ⁻ .
$926^{\kappa} 3$	$(11/2^{-})$		J	I^{π} AT (0) (11/0 ⁺) AT 1 (12/0 ⁻)
964.76 ^a 11 971 ^e 4	$(15/2^+)$ $7/2^+$		D H G I	$J^{*:}$ $\Delta J=(2) \gamma$ to $(11/2^{*})$; $\Delta J=1 \gamma$ to $(13/2^{*})$. J^{π} : L=4 and Ay(θ) in (pol t, α).
978.96 ⁰ 13	$(13/2^+)$		Н	J^{π} : ΔJ=(2) γ to (9/2 ⁺); γ to (11/2 ⁺).
990 5	(1 F (5 ±)		FG	J^{π} : L=(4) from $\sigma({}^{3}\text{He,d})/\sigma(\alpha,t)$ suggests (7/2 ⁺ ,9/2 ⁺).
1025.6° 4 1060 3	$(15/2^+)$		H G J	J^{n} : γ to $13/2^{-}$.
1075 ^k 3	$(13/2^{-})$		J	
1089 ^e 4	9/2+		I	J^{n} : L=4 and Ay(θ) in (pol t, α).

Continued on next page (footnotes at end of table)

¹⁶³Ho Levels (continued)

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	XRE	7	Comments
1092.80^{d} 14	$(17/2^{-})$		D	н	J^{π} : $\Lambda J=(2) \gamma$ to $(13/2^{-})$.
1113.57^{h} 22	5/2-		c	Ii	J^{π} : L=3 and Av(θ) in (pol t. α).
1114 2	$(3/2)^+$		FG	-) ; j	J ^{π} : L(³ He,d)=2. Possible K-2 γ -vibration built on π 7/2[404], from syst of odd-A Ho.
1154.00 [@] 13	$(21/2^{-})$		D	Нj	J^{π} : γ' s to (17/2 ⁻) and (19/2 ⁻).
1154.65? <mark>b</mark> 22	$(15/2^+)$			Нj	J^{π} : possible γ' s to (11/2 ⁺) and (13/2 ⁺).
1192 ^h 3	7/2-			IJ	J^{π} : L=3 and Ay(θ) in (pol t, α).
1220.1? ^C 3	$(17/2^+)$			H	J^{π} : possible γ to $(15/2^{-})$.
1230 4			FG	IJ	J ^{π} : L=(2,3) from σ (³ He,d)/ σ (α ,t) suggests (3/2 ⁺ ,5/2,7/2 ⁻).
1259 ^k 5	$(15/2^{-})$			J	
1266.3? ^{<i>u</i>} 4	$(17/2^+)$			Н	J^{n} : possible γ to $(13/2^{+})$.
1293 ^{<i>n</i>} 4	9/2 ⁻		G	IJ	J^{π} : L=5 and Ay(θ) in (pol t, α).
1328 2	1/2+		FG	r	J^{*} : L(³ He,d)=0.
1363 8 ^a 4	$(19/2^{+})$		Л	н	Possible K-2 γ -vibration built on $\pi 3/2[402]$. $I^{\pi} \cdot \gamma$ to $(15/2^+)$
1372 5	$7/2^{-}$		F		J^{π} : L(p,t)=0.
1394.2 ^{&} <i>13</i>	$(23/2^{-})$		D	н	J^{π} : possible γ' s to (19/2 ⁻) and (21/2 ⁻).
1400 ^h 4	$11/2^{-}$		G	I	XREF: G(1393).
					J^{π} : L=5 and Ay(θ) in (pol t, α).
1439 ^{<i>i</i>} 4	$11/2^{-}$		FG	IJ	J^{π} : L=5 and Ay(θ) in (pol t, α).
1457.7 ^d 4	$(21/2^{-})$		D	Н	J^{π} : γ to $(17/2^{-})$.
1505.2 ^{<i>f</i>}	(17/2 ⁺)	≥15 ns	D		$T_{1/2}$: see the comment in the heavy-ion data set. J ^{π} : value deduced from the configuration assignment by 2004Ho19 (in 160 Gd(11 B, α 4n γ)), assuming that this situation is similar to that in the isotone, 165 Tm.
1516 5			F	J	
1554 5	(10/2+)		FG		
1027.8°	$(19/2^{+})$		D FC		$\mathbf{I}_{\mathbf{A}}^{\mathbf{T}} \mathbf{I}_{\mathbf{A}}(0) := (\mathbf{n}_{\mathbf{A}} \mathbf{I} \mathbf{I}_{\mathbf{A}})$
$1055^{\circ} 4$	(1/2)		D L	1 1	$J : L=(0) $ III (poi t, α).
1666.5	(23/2)		FG		
1685 5			F		
1709 5			F		
1733 ^j 4	5/2+,(3/2+)		F	I	XREF: F(1743). E(level): from (pol t, α). Possible doublet. J ^{π} : L=2 and Ay(θ) in (pol t, α).
1767.8 ^f	$(21/2^+)$		D		
1837.4 ^{<i>a</i>}	$(23/2^+)$		D		
1900.8 ^{<i>a</i>}	$(25/2^{-})$		D		
1924.98	$(23/2^{+})$		D		
$1932.3^{\circ\circ}$	(21/2)		D		
2098.9 ⁷	$(25/2^{+})$		ע		
2238.1 ° 2289.28	(29/2) $(27/2^+)$		ע ח		
2377.9 ^a	$(27/2^+)$		D		
2416.3 ^d	$(29/2^{-})$		D		
2496.0 <i>f</i>	$(29/2^+)$		D		
2528.4 <mark>&</mark>	$(31/2^{-})$		D		
2718.4 <mark>8</mark>	$(31/2^+)$		D		

¹⁶³Ho Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	XREF	Comments
2858.9 [@]	$(33/2^{-})$		D	
2956.1 <i>5</i>	$(33/2^+)$		D	
2963.9 ^a	$(31/2^+)$		D	
2998.7 <mark>d</mark>	$(33/2^{-})$		D	
3138.9 <mark>&</mark>	$(35/2^{-})$		D	
3209.3 ⁸	$(35/2^+)$		D	
3475.1? <mark>J</mark>	$(37/2^+)$		D	
3642.1 ^d	$(37/2^{-})$		D	
4342.9 ^d	$(41/2^{-})$		D	
10373	(1/2 ⁻) [#]	<130 keV	E	$\Gamma_{\rm p} < 6 \text{ keV}$ E(parent)=350.
10460	$(3/2^{-})^{\#}$	87 keV 60	E	$\Gamma_{p}=2.2 \text{ keV } 12$ E(parent)=437.
10540	(7/2) ^{-#}	<250 keV	E	$\Gamma_p < 2 \text{ keV}$ E(parent)=517.
10579	(7/2 ⁻) [#]	116 keV	E	$\Gamma_{\rm p}$ <1.8 keV E(parent)=556.
10824	(7/2) ^{-#}	115 keV 53	E	$\Gamma_{\rm p}$ =2.7 keV 10 E(parent)=801.
10840	(3/2) ^{-#}	138 keV 78	E	$\Gamma_{\rm p}$ =3.5 keV 14 E(parent)=817 30.
10972	(7/2 ⁻) [#]	115 keV	E	$\Gamma_p < 1.7 \text{ keV}$ E(parent)=949.
11222	$(1/2)^{-\#}$	111 keV 46	E	$\Gamma_p = 4.1 \text{ keV } 12$ E(parent)=1199.

[†] In addition to the arguments given with individual levels, the following are also used: γ -deexcitation pattern, membership in a band, and systematics of odd-A Ho isotopes.

- [‡] From $\gamma\gamma(t)$ in (p,n γ), except as noted.
- [#] From L-transfer and excitation function in (p,p).
- [@] Band(A): $\pi 7/2[523]$ band, $\alpha = +1/2$. A=11.12, B=-0.313 eV.
- & Band(a): $\pi 7/2[523]$ band, $\alpha = -1/2$. See the comment on the $\alpha = +1/2$ branch of this band.
- ^{*a*} Band(B): $\pi 1/2[411]$ band. The rotational-band formula does not provide a good description of this band. (One fit gives A=9.14 keV, B=117 eV, a=-0.70.) This situation is likely due to strong Coriolis coupling with other nearby N=4 orbitals.
- ^b Band(C): $\pi 3/2[411]$ band. The rotational-band formula does not provide a good description of this band. (One fit gives A=18.4 keV, B=-291 eV.) This situation is likely due to strong Coriolis coupling with other nearby N=4 orbitals.
- ^{*c*} Band(D): $\pi 7/2[404]$ band (?). A=12.53, B=-4.52 eV.
- ^d Band(E): $\pi 1/2[541]$ band. A=9.99, B=90 eV, a=+2.57.
- ^e Band(F): π5/2[413] band. A=13.2, B=3.0 eV.
- ^{*f*} Band(G): $\pi 7/2[523] \otimes v 5/2[642] \otimes v 5/2[523]$, $K^{\pi} = 17/2^+$. $\alpha = +1/2$.
- ^{*g*} Band(g): $\pi 7/2[523] \otimes v 5/2[642] \otimes v 5/2[523]$, $K^{\pi} = 17/2^+$, $\alpha = -1/2$.
- ^{*h*} Band(H): $\pi 5/2[532]$ band. A=11.2, A₅=-0.00248.
- ^{*i*} Band(I): $\pi 9/2[514]$ band (?).
- ^{*j*} Band(J): $\pi 1/2[420]$ band (?).
- ^{*k*} Band(K): K-2 γ vibrational band. built on the π 7/2[523] g.s. (?).

$\gamma(^{163}\text{Ho})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	α #	Comments
100.03 222.22	9/2 ⁻ 11/2 ⁻	100.04 <i>10</i> 122.14 <i>10</i>	100 100	0.0 100.03	7/2 ⁻ 9/2 ⁻			
297.88	1/2+	222.27 10 297.88 10	15 100	$\begin{array}{c} 0.0\\ 0.0\end{array}$	7/2 ⁻ 7/2 ⁻	E3	0.287	B(E3)(W.u.)=0.00264 8 E_{γ} : From ¹⁶³ Dy(d,2n γ).
307.64	3/2+	(9.8)		297.88	1/2+	[M1]	98.3	Mult.: from $\alpha(K)$ exp in IT decay. Transition expected from systematics of $1/2[411]$ band.
360.36	3/2+	52.74 <i>10</i> 62 48 <i>10</i>	≈125 100-29	307.64 297.88	$3/2^+$ $1/2^+$			
366.65	13/2-	144.41 10	100 5	222.22 100.03	$\frac{1}{1}/2^{-}$ $\frac{9}{2}^{-}$	E2	0.0961	Mult: from $\alpha(\mathbf{K})$ exp in $(d, 2n\gamma)$
392.07	$5/2^{+}$	84.45 10	100	307.64	$3/2^+$	22	0.0901	
431.18	$7/2^+$	123.52 10	13.0 20	307.64	3/2+	[E2]	1.298	B(E2)(W.u.)=9.E+1 4
		331.12 10	15.0 23	100.03	9/2-	[E1]	0.01401	$B(E1)(W.u.)=1.7\times10^{-6}$ 9
		431.16 10	100 5	0.0	7/2-	E1	0.00749	B(E1)(W.u.)= $5.2 \times 10^{-6} 22$ Mult.: from α (K)exp in (d,2n γ). Δ K=3 forbidden transition is due to band mixing.
439.94	7/2+	339.95 10	12.1 4	100.03	9/2-	[E1]	0.01314	B(E1)(W.u.)= $1.8 \times 10^{-6} 8$ I _v : from ε decay.
		439.94 10	100 2	0.0	7/2-	E1	0.00715	\dot{B} (E1)(W.u.)=7.E-6 3 Mult.: α (K)exp in (d,2n γ).
440.51	5/2+	80.16 <i>10</i> 142.62 <i>10</i>	100 <i>30</i> 27 8	360.36	$3/2^+$ $1/2^+$			
471.25	$(1/2)^{-}$	163.61 10	100 30	307.64	$3/2^+$	[E1]	0.0854	B(E1)(W.u.)>0.00015
		173.38 10	58 17	297.88	$1/2^{+}$	[E1]	0.0732	$B(E1)(W.u.) > 7.4 \times 10^{-5}$
500.38	$5/2^{-}$	192.74 10	100	307.64	$3/2^{+}$			
528.24	7/2+	87.71 10	97 30	440.51	5/2+			
		97.03 10	100 30	431.18	$7/2^+$			
521 70	$(15/2^{-})$	136.1/10	/5 23	392.07	$5/2^{+}$			
331.79	(13/2)	309 58 10	59.3	200.05	13/2 $11/2^{-}$	$(\mathbf{F2})$	0.0607	Mult : $\gamma(\theta)$ in (d 2n γ) and adopted ΛI^{π}
552.05	$(9/2^+)$	452.00 10	100 15	100.03	$9/2^{-}$	(112)	0.0007	
	(-1-)	$552.07^{@}10$	$80^{@} 24$	0.0	7/2-			
578.23	$(3/2)^{-}$	280.35 10	100	297.88	$1/2^+$			
587.56	$(9/2^+)$	59.25 <mark>&</mark> 10	71 21	528.24	7/2+			
		195.53 ^{&} 10	100 30	392.07	5/2+			
612.80	9/2-	112.4 ^{&} 3 181.59 <i>10</i>	≤1.4 100 <i>15</i>	500.38 431.18	5/2 ⁻ 7/2 ⁺	[E2] [E1]	1.83 <i>4</i> 0.0648	B(E2)(W.u.)>13 B(E1)(W.u.)>0.00012
614.29	(5/2)-	$253.9^{\ddagger} 2$	11 [‡] 2	360.36	3/2+			
652.06	(11/2 ⁺)	614.3* 1 220.85 10 552.07 [@] 10	100 + 4 100 5 $20^{@} 6$	431.18 100.03	7/2 ⁺ 9/2 ⁻			E_{γ} : γ not reported by 2004Ho19 in the
664.01	$(9/2^+)$	135.72 10	48 14	528.24	7/2+			heavy-ion study.
		223.54 10	100 15	440.51	5/2+			
(00.00	(11/2+)	232.86 10	40 12	431.18	$7/2^+$			
688.08	$(11/2^+)$	465.9 3	55 I7 100 20	222.22	$11/2^{-}$			
710 56	$(17/2^{-})$	388.0 <i>3</i> 187.76-10	100 30	100.03 531.70	9/2 (15/2 ⁻)			
119.30	(17/2)	352.90 10	71 11	366.65	$13/2^{-1}$			
795.44	$(11/2^+)$	131.44 10	55 17	664.01	$(9/2^+)$			

Continued on next page (footnotes at end of table)

γ ⁽¹⁶³Ho) (continued)</sup>

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.	α #	Comments
795.44 810.33	$(11/2^+)$ $(13/2^-)$	267.20 <i>10</i> 158.27 <i>10</i>	100 <i>30</i> 100 <i>15</i>	528.24 652.06	$7/2^+$ (11/2 ⁺)			
844.69	(13/2+)	197.51 <i>10</i> 478.0 <i>3</i> 622.5 <i>3</i>	51 <i>15</i> ≈25 100 <i>30</i>	612.80 366.65 222.22	9/2 ⁻ 13/2 ⁻ 11/2 ⁻			
876.00	5/2+	436.1 [‡] <i>1</i>	$100^{\ddagger} 2$	439.94	7/2+			
		444.8 + 2	$3.2^{+} 4$	431.18	7/2 ⁺ 5/2 ⁺			
		464.0^{+} 3	$3.0^{\ddagger}.3$	307.64	3/2 3/2 ⁺			
		578 1 [‡] 2	4.7 [‡] 4	297.88	$\frac{3}{2}^{+}$			
		875.8 [‡] 2	24.2 [‡] 12	0.0	$7/2^{-}$			
881.92?	$(13/2^+)$	294.37 ^{&} 10	100	587.56	$(9/2^+)$			
924.43	(19/2-)	204.87 10	100 15	719.56	$(17/2^{-})$	50	0.0202	
964 76	$(15/2^{+})$	392.65 <i>10</i> 154 40 <i>10</i>	88 <i>13</i> 15 5	531.79 810.33	(15/2) $(13/2^{-})$	E2	0.0303	Mult.: $\alpha(\mathbf{K}) \exp in (d, 2n\gamma)$.
201.70	(15/2)	312.73 10	100 15	652.06	$(11/2^+)$			
978.96	$(13/2^+)$	183.5 ^{&} 3	≤9	795.44	$(11/2^+)$			
		314.96 10	100 15	664.01	$(9/2^+)$			
1025.6	$(15/2^+)$	326.8 3 658 9 3	29.9	652.06 366.65	$(11/2^{+})$ $13/2^{-}$			
1023.80	$(17/2^{-})$	127.4	100	964.76	$(15/2^+)$			E_{γ} : from 2004Ho19 (heavy-ion data set).
		292 49 10		910 22	(12/2-)			γ not reported in (d,2n γ).
1113 57	5/2-	282.48 10	182	810.55	(13/2) $9/2^{-}$			
1115.57	5/2	1113.5 3	100 3	0.0	$7/2^{-}$			
1154.00	(21/2 ⁻)	229.57 <i>10</i> 434.45 <i>10</i>	97 <i>30</i> 100 <i>30</i>	924.43 719.56	(19/2 ⁻) (17/2 ⁻)			
1154.65?	$(15/2^+)$	175.7 ^{&} 3	33 10	978.96	$(13/2^+)$			
		359.2 ^{&} 3	100 30	795.44	$(11/2^+)$			
1220.1?	$(17/2^+)$	688.3 ^{&} 3	100	531.79	$(15/2^{-})$			
1266.3?	$(17/2^+)$	384.4 ^{&} 3	100	881.92?	$(13/2^+)$			
1363.8	$(19/2^+)$	399.03	100	964.76	$(15/2^{+})$			
1394.2	(23/2)	239.0° 3	50 <i>I</i> 5 100 <i>2</i> 0	024.42	(21/2)			
1457.7	$(21/2^{-})$	364.9 <i>3</i>	100 50	1092.80	(19/2) $(17/2^{-})$			
1505.2	$(17/2^+)$	973.1	100	531.79	(15/2 ⁻)			
1627.8	$(19/2^+)$	122.2	100	1505.2	$(17/2^+)$			
1003.2	(25/2)	209.2		1394.2	$(23/2^{-})$ $(21/2^{-})$			
1767.8	$(21/2^+)$	140.0	100	1627.8	$(19/2^+)$			
1837.4	$(23/2^+)$	473.6	100	1363.8	$(19/2^+)$			
1900.8	$(25/2^{-})$ $(23/2^{+})$	443.1	100	1457.7	$(21/2^{-})$ $(21/2^{+})$			
1924.9	(23/2)	296.8		1627.8	(21/2) $(19/2^+)$			
		771.2		1154.00	(21/2-)			
1932.3	$(27/2^{-})$	269.2 527.0		1663.2	$(25/2^{-})$			
2098 9	$(25/2^+)$	537.9 173.9		1394.2 1924 9	(23/2) $(23/2^+)$			
_0/0./	(20/2)	331.2		1767.8	$(21/2^+)$			
2238.1	(29/2 ⁻)	306.0 574.9		1932.3 1663.2	(27/2 ⁻) (25/2 ⁻)			

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π
2289.2	$(27/2^+)$	190.5 364.3		2098.9 1924.9	$(25/2^+)$ $(23/2^+)$	2956.1	(33/2+)	237.8 459.8		2718.4 2496.0	$(31/2^+)$ $(29/2^+)$
2377.9 2416.3 2496.0	$(27/2^+) (29/2^-) (29/2^+) (31/2^-)$	540.5 515.5 206.6 397.1 290.6	100 100	1837.4 1900.8 2289.2 2098.9 2238.1	$\begin{array}{c} (23/2^+) \\ (25/2^-) \\ (27/2^+) \\ (25/2^+) \\ (29/2^-) \end{array}$	2963.9 2998.7 3138.9 3209.3	(31/2 ⁺) (33/2 ⁻) (35/2 ⁻) (35/2 ⁺)	586 582.4 610.5 253.0 491.2	100 100 100	2377.9 2416.3 2528.4 2956.1 2718.4	$(27/2^+)$ $(29/2^-)$ $(31/2^-)$ $(33/2^+)$ $(31/2^+)$
2718.4 2858.9	$(31/2^+)$ $(33/2^-)$	595.9 222.4 429.4 330.6 620.8		1932.3 2496.0 2289.2 2528.4 2238.1	$\begin{array}{c} (27/2^{-}) \\ (27/2^{-}) \\ (29/2^{+}) \\ (27/2^{+}) \\ (31/2^{-}) \\ (29/2^{-}) \end{array}$	3475.1? 3642.1 4342.9	(37/2 ⁺) (37/2 ⁻) (41/2 ⁻)	266.0 ^{&} 519 ^{&} 643.4 700.8	100 100	3209.3 2956.1 2998.7 3642.1	$(35/2^+)$ $(35/2^+)$ $(33/2^+)$ $(33/2^-)$ $(37/2^-)$

$\gamma(^{163}\text{Ho})$ (continued)

[†] From (d,2n γ), (p,n γ), unless not seen or population uncertain in this reaction.

[‡] From ε decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with intensity suitably divided.

[&] Placement of transition in the level scheme is uncertain.

Legend

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶³₆₇Ho₉₆

 $^{163}_{67}\rm{Ho}_{96}$

Adopted Levels, Gammas

¹⁶³₆₇Ho₉₆

¹⁶³₆₇Ho₉₆

Adopted Levels, Gammas (continued)

¹⁶³₆₇Ho₉₆