¹⁴⁸Sm(²⁰Ne,5nγ) **1987Bl06**

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh	ENSDF	31-Dec-2014							

1987B106: ¹⁴⁸Sm(²⁰Ne,5n γ) E=106-117 MeV. OSIRIS. Measured γ 's, $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO). Multiplicity filters. γ 's assigned to ¹⁶³Hf on the basis of excitation functions and on the dependence of I γ 's on the γ -ray multiplicity.

1998We02: 128 Te(40 Ca, $5n\gamma$), 126 Te(40 Ca, $3n\gamma$) E=175 MeV. Measured lifetime of first excited state by recoil-distance method and average g factors (for transitions from 29/2⁺ to 13/2⁺) by transient-field technique using Gd layer.

¹⁶³Hf Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments				
0+x [#]	(13/2+)		E(level): x=150.9 according to the level scheme proposed by 2014Ya30, and also Adopted Levels.				
255.4+x [#] 3	(17/2 ⁺)	103 ps 8	g=0.05 8 T _{1/2} : recoil-distance method (1998We02). g: estimated experimental value (1998We02).				
689.9+x [#] 5	$(21/2^+)$						
1253.7+x [#] 5	$(25/2^+)$						
1816.8+x ^{&} 5	$(23/2^{-})$						
1912.3+x [#] 6	$(29/2^+)$						
2171.0+x ^{&} 6	$(27/2^{-})$						
2512.2+x ^{&} 6	$(31/2^{-})$						
$2642.0+x^{\#}$ 7	$(33/2^+)$						
2981.3+x ^{&} 7	$(35/2^{-})$						
$3405.5 + x^{\#} 7$	$(37/2^+)$						
3581.2+x ^{&} 7	$(39/2^{-})$						
4120.2+x [@] 8	$(41/2^+)$						
4289.4+x ^{&} 8	$(43/2^{-})$						
4813.3+x [@] 9	$(45/2^+)$						
5077.4+x ^{&} 9	$(47/2^{-})$						
5554.1+x [@] 9	$(49/2^+)$						
5940.2+x ^{&} 9	$(51/2^{-})$						
6360.0+x [@] 10	$(53/2^+)$						
6903.0+x? ^{&} 10	$(55/2^{-})$						
7234.1+x [@] 10	$(57/2^+)$						

[†] 1987Bl06 observed a number of weaker γ rays which might be members of a band built on the g.s. or the unfavored members of the $13/2^+$ band, but the coincidence relationships were too ambiguous to make firm assignments.

[‡] In neighboring odd-A nuclei the $vi_{13/2}$ sequence is most strongly populated in (HI,xn) reactions. Therefore, 1987B106 assume that this band is observed, built on the $13/2^+$ state. Parentheses are added by the evaluators for all levels up to 53/2.

[#] Band(A): Band A: $\pi = +, \alpha = +1/2$. $\nu i_{13/2}$, $K^{\pi} = 13/2^+$. Band assignment is from systematics of the neighboring nuclei (1987B106). Band crossing occurs at h\' $\omega \approx 0.36$ due to the alignment of a pair of neutrons, giving rise to ABC configuration. Average g factor=+0.18 4(stat) 2(syst) (1998We02) for 434.5 γ (21/2⁺ to 17/2⁺) and 658.6 γ (29/2⁺ to 25/2⁺).

[@] Band(B): Band ABC: $\pi = +, \alpha = +1/2$.

& Band(C): Band ABF: $\pi = -, \alpha = -1/2$.

¹⁴⁸Sm(²⁰Ne,5nγ) **1987Bl06** (continued)

$\gamma(^{163}\text{Hf})$

DCO is ratio of intensities measured in $\gamma\gamma$ coin with detectors at 30° and 90° gated on known E2 transitions.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{a}	Comments
255.4 3	80 4	255.4+x	(17/2 ⁺)	0+x	(13/2 ⁺)	(E2)	0.1299	DCO=0.76 <i>3</i> I _{γ} : from $\gamma\gamma$ projection spectrum. Mult.: DCO suggests Δ J=1, dipole; but in ⁹⁴ Zr(⁷⁴ Ge,5n γ) (2014Ya30), DCO is consistent with Δ J=2, quadrupole.
^x 308.9 3	4.3 9					D&		DCO=0.51 6
341.3 <i>3</i>	14.6 15	2512.2+x	$(31/2^{-})$	2171.0+x	$(27/2^{-})$	(E2) [@]	0.0542	DCO=0.98 8
354.2 <i>3</i>	3.3 7	2171.0+x	$(27/2^{-})$	1816.8+x	$(23/2^{-})$	(E2) [@]		DCO=1.01 9
^x 389.0 3	7.5 8					D&		DCO=0.78 9
434.5 <i>3</i>	100 [‡] 5	689.9+x	$(21/2^+)$	255.4+x	$(17/2^+)$	(E2) [@]		DCO=0.99 3
469.1 <i>3</i>	25.8 13	2981.3+x	$(35/2^{-})$	2512.2+x	$(31/2^{-})$	(E2) [@]		DCO=1.06 7
^x 513.4 3	7.7 8					Q [@]		DCO=1.06 12
^x 536.8 <i>3</i>	6.8 7					Q [@]		DCO=1.46 19
563.7 <i>3</i>	69 <i>3</i>	1253.7+x	$(25/2^+)$	689.9+x	$(21/2^+)$	Q [@]		DCO=1.01 4
599.9 <mark>b</mark> 3	25.5 <mark>b</mark> 13	2512.2+x	$(31/2^{-})$	1912.3+x	$(29/2^+)$	(Q)		
599.9 ^b 3	25.5 ^b 13	3581.2+x	(39/2 ⁻)	2981.3+x	(35/2 ⁻)	(Q)		DCO=1.04 8 Mult.: DCO for doublet consistent with ΔJ =2, quadrupole.
^x 619.0 <i>3</i>	5.6 6					Q [@]		DCO=1.07 21
658.6 <i>3</i>	40.3 20	1912.3+x	$(29/2^+)$	1253.7+x	$(25/2^+)$	Q [@]		DCO=1.02 5
693.1 <i>3</i>	6.9 [‡] 7	4813.3+x	$(45/2^+)$	4120.2+x	$(41/2^+)$	Q [@]		DCO=1.03 13
708.2 <i>3</i>	9.7 10	4289.4+x	$(43/2^{-})$	3581.2+x	(39/2 ⁻)	Q [@]		DCO=1.07 9
714.7 3	12.7 [‡] 13	4120.2+x	$(41/2^+)$	3405.5+x	$(37/2^+)$	Q [@]		DCO=1.06 9
729.7 3	30.0 15	2642.0+x	$(33/2^+)$	1912.3+x	$(29/2^+)$	Q [@]		DCO=0.99 10
740.8 <i>3</i>	5.7 [‡] 6	5554.1+x	$(49/2^+)$	4813.3+x	$(45/2^+)$	Q [@]		DCO=1.26 17
763.5 <i>3</i>	18.8 [‡] 19	3405.5+x	$(37/2^+)$	2642.0+x	$(33/2^+)$	Q [@]		DCO=0.94 18
787.9 10	4.8 10	5077.4+x	$(47/2^{-})$	4289.4+x	$(43/2^{-})$	Q [@]		DCO=0.85 13
805.9 10	3.5 [‡] 7	6360.0+x	$(53/2^+)$	5554.1+x	$(49/2^+)$	Q [@]		DCO=0.93 22
862.8 10	2.4 5	5940.2+x	$(51/2^{-})$	5077.4+x	$(47/2^{-})$	Q [@]		DCO=1.2 3
^x 869.0 3	6.1 6					Q [@]		DCO=1.43 34
874.1 10	<2.9 [‡]	7234.1+x	$(57/2^+)$	6360.0+x	$(53/2^+)$			DCO=0.9 6
917.3 <i>3</i>	12.0 12	2171.0+x	$(27/2^{-})$	1253.7+x	$(25/2^+)$	D&		DCO=0.51 6
962.8 [°] 10	<2.7	6903.0+x?	$(55/2^{-})$	5940.2+x	$(51/2^{-})$			
1127.0 <i>10</i> <i>x</i> 1164.0 <i>10</i>	3.1 6 2.7 5	1816.8+x	(23/2-)	689.9+x	$(21/2^+)$	D ^{&}		DCO=0.50 29

[†] Relative intensities from spectra in coincidence with 255.4 or 434.5 γ rays, except as noted. The quoted uncertainties represent upper limits.

[‡] From $\gamma\gamma$, gated with other than 255 γ or 434 γ .

[#] Assigned by the evaluator based on DCO ratios, where mult=Q indicates ΔJ =2, quadrupole (most likely E2) transition and mult=D indicates ΔJ =1, dipole or dipole with some quadrupole admixture. In a few cases, as noted, mult=D indicates ΔJ =0, dipole or dipole with some quadrupole admixture. For transitions below 500 keV, ΔJ =2, quadrupole transitions are assigned (E2) from RUL=1 for M2, assuming level half-life <10 ns.

[@] DCO \approx 1 or >1 consistent with Δ J=2, quadrupole.

¹⁴⁸Sm(²⁰Ne,5nγ) **1987Bl06** (continued)

$\gamma(^{163}\text{Hf})$ (continued)

& DCO<1 consistent with $\Delta J=1$, dipole or D+Q.

- ^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation
- based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^b Multiply placed with undivided intensity.
- ^c Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

 $^{163}_{72}{\rm Hf}_{91}$

4

 $^{163}_{72}{
m Hf}_{91}$