¹⁶³Tm ε decay (1.810 h) 1982Vy07

		H	istory	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	C. W. Reich, Balraj Singh	NDS 111,1211 (2010)	12-Apr-2010
Parent: ¹⁶³ Tm: E=0;	$J^{\pi} = 1/2^+; T_{1/2} = 1.81$	0 h 5; Q(ε)=2439 3; % ε +% β	+ decay=100	
¹⁶³ Tm-J ^{π} ,T _{1/2} : From	the ¹⁶³ Tm Adopted	Levels.		
¹⁶³ Tm-Q(ε): From 2	009AuZZ, 2003Au03	3.		
¹⁶³ Tm-Configuration	$=\pi 1/2[411].$			
Additional information	on 1.			
1982Vy07 (also 1982	2Vy08): measured K	x ray, γ , ce, β^+ (spect), ce γ .	Chem, mass separation.	Level scheme given by 1982Vy08
1980Ab18 (also 1980	DAb22): measured γ ,	ce. Chem. 47 γ rays measur	ed up to 400 keV.	
1976Ab09: measured	1γ , ce.			
Others:				
γ: 1963Gr14, 1967G	n01, 1975Gr44.			
ce: 1962Ha24, 1963	Gr14, 1967Gn01, 198	37BaZB, 1991GaZZ.		
$ce\gamma(t)$: 1974An04.				
$(x ray)\gamma(t)$: 1969Vet	05.			
Eε,Iε: 1960Bo29, 19	64Gr37, 1982By03.			
T _{1/2} of ¹⁶³ Tm g.s.: 1	961Bj02, 1963Ra15,	1963Gr14, 1969Ve05. Other	s: 1959Ha09, 1960Bo29,	1960Bu27.
The decay scheme is	from 1982Vy07 and	1982Vy08, superseding the	level schemes of 1980Ab	18, 1976Ab09, 1967Gn01 and

1963Gr14.

¹⁶³Er Levels

Bands: band structure suggested by 1976Ab09 and 1970Hj02 extended and confirmed by 1982Vy08.

Fragmentation of three-quasiparticle states: $\approx 75\%$ of the decay of ¹⁶³Tm goes to levels above 1 MeV. Of the 19 levels, seven have $J^{\pi}=3/2^+$ and for most of the others the large ε feedings make J>3/2 very unlikely. This observed high density of 3/2⁺ levels may be related to the fact that the three-quasiparticle states are highly fragmented due to the interaction of the quasiparticle and collective degrees of freedom. Note, however, that theory predicts this fragmentation to be in the 2⁻ to 3-MeV range.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	5/2-		
69.23 [@] 1	5/2+	8.3 ns 5	E(level): from E γ . Level held fixed in least-squares analysis. T _{1/2} : weighted average of 8.8 ns 5 (1969Ve05, $\gamma\gamma$ (t)) and 7.7 ns 6 (1974An04, γ ce(t)).
83.96 [#] 1	$7/2^{-}$	0.92 ns 8	$T_{1/2}$: ce γ (t) (1974An04).
91.55 [@] 1	7/2+		
104.32 ^{&} 1	3/2-	0.52 ns 5	$T_{1/2}$: ce γ (t) (1974An04). Additional information 2.
120.35 [@] 2	9/2+		
164.42 ^{&} 1	$5/2^{-}$		
190.01 [#] 8	9/2-		
249.53 ^{&} 1	$7/2^{-}$		
345.62 ^{<i>a</i>} 1	$1/2^{-}$		
404.00 ^{<i>a</i>} 1	3/2-		
439.54 ^{<i>a</i>} 1	5/2-		
462.48 2	$3/2^{+}$		
526.33 ^b 4	5/2+		
531.07 3	$3/2^+$		
540.56° 3	$\frac{1}{2}$		
574.00 5	5/2		

¹⁶³Tm ε decay (1.810 h) 1982Vy07 (continued)

¹⁶³Er Levels (continued)

E(level) [†]	Jπ‡	Comments
619.36 ^d 2	3/2+	1976Ab09 assigned the 619 level as a member of the 1/2[400] band.
664.86 ^d 3	$5/2^{+}$	
683.75 ^e 2	$(1/2)^{-}$	
717.39 ^e 3	3/2-	
735.38 2	$1/2^+, 3/2^+$	
779.63 ^e 4	5/2-	
856.22 4	$(3/2)^{-}$	
963.29 8	$(3/2)^+$	
985.67 8	5/2-	
1059.75 4	3/2-	
1281.16 5	$1/2^+, 3/2^+$	
1369.46 <i>3</i>	$3/2^{+}$	
1514.61 <i>3</i>	3/2+	
1538.79 <i>3</i>	3/2+	Probable configuration= $(v5/2[523]) \otimes (\pi7/2[523]) \otimes (\pi1/2[411])$, with $K^{\pi} = 3/2^+$.
1569.80 2	3/2+	
1593.03 4	3/2+	
1653.15 6	3/2+	
1722.39 5	3/2+	
1801.56 4	3/2+	Probable configuration= $(v5/2[523]) \otimes (\pi7/2[523]) \otimes (\pi1/2[411])$, with $K^{n} = 1/2^{+}$.
1826.49 3	3/2+	
1853.54 4	3/2+	
18/2.79 6	$(3/2)^+$	
1917.48 7	$(3/2)^{+}$	
2040.68 8	3/2*	
2032.30 0	$\frac{3}{2}$	
2122.21 11	$1/2^{(-)}, 3/2$	
2243.21 19	3/2	
2274.5 10	1/2 ,3/2	

- [†] From least-squares fit to $E\gamma$'s by assuming double the uncertainties quoted by 1982Vy07. Least-squares analysis with the uncertainties given by 1982Vy07 resulted in a poor fit with about 60 γ rays out of a total of 225 γ rays deviating in energy by more than 2 σ 's. Doubling each uncertainty improved the fit in that only 19 γ rays deviated by more 2 σ 's. All the discrepant cases are noted under comments. This suggests that the uncertainties quoted by 1982Vy07 are underestimated. The level energies are further rounded-off to nearest 0.01 keV in view of poor fit to $E\gamma$'s.
- [‡] From Adopted Levels. Assignments proposed by 1982Vy08 based on multipolarities and band structure are consistent.
- # Band(A): v5/2[523] band.
- ^{(@} Band(B): v5/2[642] band. This is probably the dominant configuration, but this band most likely also contains sizeable components of other orbitals originating from the $i_{13/2}$ spherical-shell-model state that are introduced by the expected strong Coriolis coupling among these orbitals.
- [&] Band(C): v3/2[521] band.
- ^a Band(D): v1/2[521] band.
- ^b Band(E): v3/2[402] band (?).
- ^{*c*} Band(F): $\nu 1/2[400]$ band.
- ^d Band(G): v3/2[651] band.
- ^{*e*} Band(H): K-2 γ vibration built on the ν 5/2[523] g.s. The small value of the decoupling parameter excludes other interpretations for this K=1/2 band. This band may have some admixture of ν 1/2[510].

¹⁶³Tm ε decay (1.810 h) 1982Vy07 (continued)

ε, β^+ radiations

 $I\gamma(\gamma^{\pm})=4.7$ 6 relative to $I\gamma(104\gamma)=100$ (1982Vy07) compared to 6.2 5 (5.4 3 excluding I ε 's with upper limits and I ε (to 91.6)) from the decay scheme.

 $I\gamma(104\gamma)/I\gamma(K \times ray)=0.135 \ 3 \ (1982Vy07)$, compared to 0.208 6 from the decay scheme, is indicative of a substantive ε feeding which has not been placed. The measured $I\beta^+=0.047 \ 6$ to levels above 720 compared to 0.00074 5 also suggests that the ε feeding to levels between 735 and 1060 has been underestimated. The total-absorption γ spectroscopy measurements (NaI,Si(Li)) of 1982By03 also show a higher population of levels than observed in the present decay scheme.

Intensity balance gives apparent ε feedings (none expected from ΔJ and $\Delta \pi$) to the following levels, resulting in anomalously low log *ft* values. Such feedings have been omitted from the level scheme given here: 91.5,7/2⁺ level ($\%\varepsilon$ =0.7 2); 120.3,9/2⁺ level ($\%\varepsilon$ =0.14 6); 190.0,9/2⁻ level ($\%\varepsilon$ =0.11 4); 664.78,5/2⁺ ($\%\varepsilon$ =0.24 6). This discrepancy is due either to misplaced γ rays or to missing γ rays, or both.

Additional information 3.

TI,IE(E) From decay scheme, except as noted. Uncertainties include estimate of those caused by uncertain or multiply-placed γ rays.

E(decay)	E(level)	Ιβ ⁺ &	Ιε ^{&}	Log ft	$I(\varepsilon + \beta^+)^{\&}$	Comments
(164.5 32)	2274.5		0.008 4	7.1 2		εK=0.707 4; εL=0.221 3; εM+=0.0718 11
(195.8 30)	2243.21		0.15 2	6.06 6		εK=0.7373 23; εL=0.1991 17; εM+=0.0637 7
(316.8 30)	2122.21		0.16 2	6.55 6		εK=0.7849; εL=0.1642 5; εM+=0.05094 17
(386.5 30)	2052.50		1.15 7	5.90 <i>3</i>		εK=0.7963; εL=0.1558 3; εM+=0.04790 11
(398.3 30)	2040.68		0.85 5	6.06 3		εK=0.7978; εL=0.1547 3; εM+=0.04751 10
(521.5 30)	1917.48		0.75 4	6.38 <i>3</i>		εK=0.8086; εL=0.1467; εM+=0.04466 6
(566.2 30)	1872.79		2.48 14	5.93 <i>3</i>		εK=0.8112; εL=0.1448; εM+=0.04397
(585.5 30)	1853.54		2.06 8	6.05 2		εK=0.8122; εL=0.1441; εM+=0.04371
(612.5 30)	1826.49		5.33 17	5.68 2		εK=0.8135; εL=0.1431; εM+=0.04337
(637.4 30)	1801.56		12.9 4	5.33 2		εK=0.8146; εL=0.1424; εM+=0.04309
(716.6 30)	1722.39		2.86 11	6.09 2		ε K=0.8174; ε L=0.1402; ε M+=0.04234
(785.9 30)	1653.15		1.11 5	6.59 2		εK=0.8194; εL=0.1388; εM+=0.04182
(846.0 30)	1593.03		2.46 9	6.31 2		εK=0.8208; εL=0.1377; εM+=0.04145
(869.2 30)	1569.80		9.7 <i>3</i>	5.74 2		εK=0.8213; εL=0.1374; εM+=0.04132
(900.2 30)	1538.79		16.9 6	5.53 2		εK=0.8219; εL=0.1369; εM+=0.04115
(924.4 30)	1514.61		2.72 12	6.35 2		εK=0.8224; εL=0.1366; εM+=0.04104
(1069.5 30)	1369.46		7.84 26	6.02 2		ε K=0.8247; ε L=0.1349; ε M+=0.04044
(1157.8 30)	1281.16		0.62 5	7.20 4		εK=0.8257; εL=0.1341; εM+=0.04016
(1379.3 30)	1059.75		0.79 5	7.25 3		εK=0.8274; εL=0.1325; εM+=0.03960
(1453.3 30)	985.67		0.75 14	8.2^{1u} 2	0.75 14	εK=0.8165; εL=0.1407; εM+=0.04257
1475 9	963.29		0.37 15	7.6 2	0.37 15	av Eβ=219.7 14; εK=0.8274; εL=0.1319; εM+=0.03938
						$I\beta^+$: $I\beta(Emax=453)=0.0146$ 13 compared to $\Sigma I\beta(to$
						\geq 963)=0.0005 2 from decay scheme.
(1582.8 30)	856.22		0.18 4	8.0 1	0.18 4	av Eβ=267.0 14; εK=0.8265; εL=0.1311; εM+=0.03913
(1659.4 ^{<i>a</i>} 30)	779.63		0.14 8	9.2 ¹ <i>u</i> 3	0.14 8	ε K=0.8189; ε L=0.1384; ε M+=0.04174
1693 7	735.38	0.0064 6	0.92 9	7.37 5	0.93 9	av Eβ=320.4 14; εK=0.8242; εL=0.1302; εM+=0.03882
						$I\beta^+$: $I\beta(Emax=671)=0.032$ 4 compared to $\Sigma I\beta$ (to 735 and
						856)=0.0069 8 from decay scheme.
(1721.6 30)	717.39	0.0107 6	1.41 7	7.20 2	1.42 7	av Eβ=328.3 14; εK=0.8237; εL=0.1300; εM+=0.03877
(1755.3 30)	683.75	0.0047 6	0.52 7	7.65 6	0.52 7	av Eβ=343.1 14; εK=0.8226; εL=0.1297; εM+=0.03867
(1774.1 ^{<i>a</i>} 30)	664.86	0.0024 6	0.24 6	8.0 1	0.24 6	av Eβ=351.4 14; εK=0.8220; εL=0.1295; εM+=0.03862
						Transition is suspect since log ft is too low for a $1/2^+$ to
						$5/2^+$ transition.
(1819.6 30)	619.36	0.031 2	2.54 10	6.99 2	2.57 10	av Eβ=371.3 14; εK=0.8202; εL=0.1291; εM+=0.03847
(1864.9 30)	574.08	0.012 1	0.78 8	7.53 5	0.79 8	av Eβ=391.2 14; εK=0.8182; εL=0.1286; εM+=0.03832
1906 <i>3</i>	540.56	0.062 3	3.54 17	6.89 2	3.60 17	av E β =405.9 14; ε K=0.8165; ε L=0.1282; ε M+=0.03820
						I β^+ : I β (Emax=884)=0.136 7 compared to Σ I β (to \geq 540 and
						\leq 735)=0.0122 5 from decay scheme.
(1907.9 30)	531.07	0.011 1	0.63 4	7.64 <i>3</i>	0.64 4	av E β =410.1 14; ε K=0.8160; ε L=0.1281; ε M+=0.03816

Continued on next page (footnotes at end of table)

1982Vy07 (continued)

¹⁶³Tm ε decay (1.810 h)

				ϵ, β^+ radia	tions (continu	ed)
E(decay)	E(level)	$\mathrm{I}\beta^+$ &	Ie&	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\&}$	Comments
(1976.5 30)	462.48	0.045 3	1.91 12	7.19 3	1.96 12	av Eβ=440.2 14; εK=0.8119; εL=0.1272; εM+=0.03789
(1999.5 30)	439.54	0.0056 9	0.98 15	8.65 ¹ <i>u</i> 7	0.99 15	av Eβ=466.3 <i>13</i> ; εK=0.8185; εL=0.1353; εM+=0.04064
(2035.0 30)	404.00	0.054 9	1.8 3	7.23 7	1.9 <i>3</i>	av E β =465.9 <i>14</i> ; ϵ K=0.8077; ϵ L=0.1264; ϵ M+=0.03764
2091 2	345.62	0.19 [†] 2	5.3 [‡] 5	6.80 4	5.5 [‡] 5	av $E\beta$ =491.5 <i>14</i> ; ε K=0.8030; ε L=0.1255; ε M+=0.03736
(2274.6 30)	164.42	0.027 12	1.8 8	8.6 ¹ <i>u</i> 2	1.8 8	av E β =585.3 <i>13</i> ; ϵ K=0.8127; ϵ L=0.1326; ϵ M+=0.03974
2267 22	104.32	0.058 [†] 11	0.83 [‡] 16	7.7 1	0.89 [‡] 17	av E β =597.9 14; ε K=0.7774; ε L=0.1209; ε M+=0.03596
(2369.8 ^{<i>a</i>} 30)	69.23	≤0.04 [#]	≤0.52 [@]	≥7.9	≤0.56 [@]	I(ε+β ⁺): 2.0 20 from intensity balance. av Eβ=613.4 14; εK=0.7728; εL=0.1201; εM+=0.03573
(2439.0 ^{<i>a</i>} 30)	0.0	≤0.04 [#]	≤1.64 [@]	$\geq 8.8^{1u}$	≤1.68 [@]	I(ε+β ⁺): 0.7 6 from intensity balance. av Eβ=656.2 13; εK=0.8064; εL=0.1307; εM+=0.03914

[†] Relative intensities obtained by 1982Vy07 from Fermi-Kurie analysis and normalized to I β =0.41 *3* from ce(K)(104.3 γ)/ β ⁺=98.9 *35* and I β =0.332 *24* from β ⁺/ce(K)(655.8 γ +666.1 γ)=13.0 *6*. Renormalized by the evaluators from I γ normalization=0.188 *9* to 0.186 *5*.

[‡] From $I\beta^+$ and theoretical ε/β^+ .

[#] Upper limit estimated (evaluators) from Fermi-Kurie analysis of 1982Vy07 and theoretical ε/β^+ ratios.

^(a) From estimated upper limit on $I\beta^+$ and theoretical ε/β^+ ratios.

[&] Absolute intensity per 100 decays.

^{*a*} Existence of this branch is questionable.

 $\gamma(^{163}\text{Er})$

Iγ normalization: from ΣIγ(1+α)(to g.s.)=98.2 *18* (I(ε+β⁺)≤3.6 from log $f^{1u}t \ge 8.5$ for first-forbidden unique transition). Other: 0.188 9 from Iγ(104γ)/Iγ(K x ray)=0.135 3 (1982Vy07); 0.187 5 from ΣIγ(1+α)(to g.s.)=99.2 8 from estimated Iβ⁺(to g.s.)≤0.04.

 α (K)exp: from 1982Vy07, except as noted. α (K)exp's available from 1976Ab09 and from 1980Ab18 (for E γ <400) are in general agreement with those from 1982Vy07. Relative I γ 's and Ice(K)'s normalized to α (K)(104 γ ; M1)=0.218 by 1982Vy07, 1980Ab18, and 1976Ab09.

Subshell ratios are from 1980Ab18 or 1976Ab09.

83.96

 $7/2^{-}$

69.23 5/2+

E1

 14.72^{j} 2

S

cey-coincidences from 1982Vy07 and $\gamma\gamma$ -coincidences are from 1976Ab09.

	Th	e follow	ving	unplaced γ	rays repoi	rted by 1976	Ab09 only				
have bee	en om	itted, s	since	e these are i	not confir	ned by 1982V	y <mark>07</mark> or				
1980Ab18	3. (I	γ renoi	rmali	zed by evalu	uators to 3	$I\gamma(104\gamma)=100$	from]	[γ=1940) 3	7)
Eγ		$I\gamma$		Mult. $\alpha(K)$)exp	Εγ	$I\gamma$	Mult	. α(K)exp)
63 67		0 53	8	(F1)	 ≈ 07	755 4 3	 1 2		F2 (N	(1)	0 007
96 35	10	0.33	7	F1	<03	872 5 5	03	1	LL, (1	11)	0.007
97 41	7	0.55	9	(M1)	~ 4	906 9 2	0.5	-	14	2	F2
0 003	,	0.55	5	(111)	,	50015 2				2	12
98 29	7	0 47	9	F1	0 14	936 4 4			05	1	F2
0 003	,	0117	5		0111	55011 1			015	-	
111.10	15	0.07	4	M1		957.3 <i>8</i>			0.10	5	
118.65	5	0.61	10	E1	0.1	1011.3 6			0.4	1	E1.E2
<0.003											,
147.7	2	0.08	3	(M1)	1.0	1014.8 6			0.4	1	E2,(M1)
≈0.003											
152.7	1	0.38	7	E1	≈ 0.06	1018.8 6			0.4	1	
153.37	10	0.49	8	E2	0.33	1022.5 7			0.3	1	M1,E2
0.004											
287.6	4	0.2	(I)	L		1039.2					
289.8	3	0.35	18			1108.0 7			0.22	10	(E2)
\approx 0.002											
697.0	6	0.6	2			1113.0 7			0.5	2	
727.3	3	0.4	2			1212.4 6			0.4	2	E2,(M1)
0.002											
732.0	4	0.4	2	M1	0.013	1302.9 5			1.1	21	E1,(E2)
<0.001											
742.5	5	0.3	1	E2,(M1)	\approx 0.007	1889.5 4			0.15	5 5	
747.0	5	0.3	1	M1	\approx 0.014	2038.5 6			0.03	3 1	
E _v ‡	$E_i($	level)	J_i^{π}	$E_f = J_{\mathcal{L}}^{\pi}$	Mult. [#]	α^{h} $I_{(\gamma+ce)}^{\dagger g}$	1				

1.2^b 3

11.13

 $ce(L)/(\gamma+ce)=0.713$ 7; $ce(M)/(\gamma+ce)=0.165$ 3; $ce(N+)/(\gamma+ce)=0.0394$ 8

ce(N)/(γ +ce)=0.0357 7; ce(O)/(γ +ce)=0.00360 7; ce(P)/(γ +ce)=7.75×10⁻⁵ 15 α (M1): α (M2): α (M3)=0.46:0.44:0.72.

 E_{γ} : γ from 1980Ab18 only. Placement is doubtful due to intensity balance problems (evaluators).

Comments

M1:M2:M3=5 2:5 2:6 2.

					¹⁶³ Τm ε	decay (1.81	0 h) 1982Vy07	(continued)	
						$\gamma(^{163})$	Er) (continued)		
${\rm E_{\gamma}}^{\ddagger}$	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	$I_{(\gamma+ce)}^{\dagger g}$	Comments
20.34 ^{&} <i>j</i> 2	&	104.32	3/2-	83.96 7/2-	E2		4.33×10 ³	0.241 ^b 21	$\frac{\text{ce(N)}/(\gamma+\text{ce})=0.0414 \ 9; \ \text{ce(O)}/(\gamma+\text{ce})=0.00473 \ 10;}{\text{ce(P)}/(\gamma+\text{ce})=1.78\times10^{-6} \ 4}$
22.358 10		91.55	7/2+	69.23 5/2+	M1+E2	0.19 2	130 20	2.80 10	$ce(L)/(\gamma+ce)=0.77 \ 8; \ ce(M)/(\gamma+ce)=0.18 \ 4; \ ce(N+)/(\gamma+ce)=0.046 \ 10 \ ce(N)/(\gamma+ce)=0.041 \ 9; \ ce(O)/(\gamma+ce)=0.0050 \ 11; \ ce(P)/(\gamma+ce)=8.9\times10^{-5} \ 14 \ \alpha(L1):\alpha(L2):\alpha(L3)=26 \ 5:34 \ 7:42 \ 9.$
28.835 12		120.35	9/2+	91.55 7/2+	M1+E2	0.090 11	23.6 16	0.24 5	L1:L2:L3=60 6:78 8:94 9. ce(L)/(γ +ce)=0.75 4; ce(M)/(γ +ce)=0.169 15; ce(N+)/(γ +ce)=0.045 4 ce(N)/(γ +ce)=0.039 4; ce(O)/(γ +ce)=0.0053 5; ce(P)/(γ +ce)=0.000227 15 α (L1): α (L2): α (L3)=12.63 2:3.3 6:2.8 7. L1:L2:L3=18 2:6.0 6:2.0 3.
35.05 ^{&} <i>j</i> 3	&	104.32	3/2-	69.23 5/2+	E1		1.027	0.23 ^b 5	ce(L)/(γ +ce)=0.396 4; ce(M)/(γ +ce)=0.0887 13; ce(N+)/(γ +ce)=0.0223 4 ce(N)/(γ +ce)=0.0198 4; ce(O)/(γ +ce)=0.00239 4; ce(P)/(γ +ce)=7.29×10 ⁻⁵ 12 α (L1)=0.342 cr(L1)=0.342 cr(L1)=0.23 7 (1080Ab18)
35.56 3		439.54	5/2-	404.00 3/2-	M1+E2	0.090 11	11.5 6	0.10 2	$\begin{array}{l} \text{ce(L)}(xp=0.35) & (1500\text{AD16}).\\ \text{ce(L)}(\gamma+\text{ce})=0.716 & 23; \text{ ce(M)}/(\gamma+\text{ce})=0.162 & 10;\\ \text{ce(N+)}/(\gamma+\text{ce})=0.043 & 3\\ \text{ce(N)}/(\gamma+\text{ce})=0.0374 & 25; \text{ ce(O)}/(\gamma+\text{ce})=0.0052 & 4;\\ \text{ce(P)}/(\gamma+\text{ce})=0.000239 & 12\\ \text{Placement from 1976Ab09.}\\ 144 & 2=5 & 0 & 10 \\ \end{array}$
58.35 2		404.00	3/2-	345.62 1/2-	M1+E2	0.73 17	18 8	0.25 4	ce(K)/(γ+ce)=0.4 4; ce(L)/(γ+ce)=0.40 19; ce(M)/(γ+ce)=0.09 5; ce(N+)/(γ+ce)=0.026 13 Placement from 1976Ab09. α: near threshold for α(K). α(K) estimated as 8 8 (evaluators). L1:L2:L3=1.5 5:6.0 6:3.0 3. ce(L1) from complex line. α(L1):α(L2):α(L3)=1.1.2:3.1.9:3.4.10
60.105 <i>3</i>	7.76 14	164.42	5/2-	104.32 3/2-	M1+E2	0.222 8	12.77 19		$\alpha(L1).\alpha(L2).\alpha(L3)=1.12.5.19.5.470.$ $\alpha(K)=9.87\ 14;\ \alpha(L)=2.25\ 6;\ \alpha(M)=0.514\ 14;$ $\alpha(N+)=0.135\ 4$ $\alpha(N)=0.119\ 3;\ \alpha(O)=0.0159\ 4;\ \alpha(P)=0.000621\ 9$ $\alpha(L1):\alpha(L2):\alpha(L3)=1.40:0.476\ 24:0.41\ 3.$ $L1:L2:L3=100:34.5\ 12:28.6\ 17\ (1987BaZB).$
69.229 <i>3</i>	62.4 <i>14</i>	69.23	5/2+	0.0 5/2-	E1		0.853		$\alpha(K)=0.699 \ 10; \ \alpha(L)=0.1202 \ 17; \ \alpha(M)=0.0267 \ 4;$

¹⁶³₆₈Er₉₅-6

						163 Tm ε	decay (1.810	h) 19	82Vy07 (con	ntinued)
							γ (¹⁶³ E	er) (contin	ued)	
${\rm E}_{\gamma}^{\ddagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{h}	$I_{(\gamma+ce)}^{\dagger g}$	Comments
72.875 8	0.79 <i>3</i>	164.42	5/2-	91.55	7/2+	E1(+M2)	<0.08	1.0 3		
78.041 24	0.42 6	540.56	1/2+	462.48	3/2+	M1(+E2)	<0.6	6.1 <i>3</i>		$\alpha(N)=0.009 \ 4; \ \alpha(O)=0.0012 \ 6; \ \alpha(P)=5.0\times10^{-5} \ 24 \\ \alpha(K)\exp=0.78 \ 14 \ (1980Ab18). \\ \alpha(K)=4.5 \ 5; \ \alpha(L)=1.2 \ 5; \ \alpha(M)=0.29 \ 13; \ \alpha(N+)=0.08 \ 4 \\ \alpha(N)=0.07 \ 3; \ \alpha(O)=0.009 \ 4; \ \alpha(P)=0.00027 \ 3 \\ \alpha(K)\exp=5.0 \ 9. $
78.93 ^{&} <i>j</i> 2	&	619.36	3/2+	540.56	1/2+	(M1,E2)		6.5 9	0.014 ^b 7	ce(K)/(γ +ce)=0.43 15; ce(L)/(γ +ce)=0.34 20; ce(M)/(γ +ce)=0.08 6; ce(N+)/(γ +ce)=0.021 15 ce(N)/(γ +ce)=0.018 14; ce(O)/(γ +ce)=0.0022 15; ce(P)/(γ +ce)=2.5×10 ⁻⁵ 15 K/L1≈7.3 20. ce(L1) from complex line. Additional information 5.
80.460 7	2.80 8	164.42	5/2-	83.96	7/2-	M1+E2	0.048 <i>10</i>	5.32		$\alpha(K)=4.45 \ 7; \ \alpha(L)=0.680 \ 11; \ \alpha(M)=0.1510 \ 23; \\ \alpha(N+)=0.0405 \ 6 \\ \alpha(N)=0.0352 \ 6; \ \alpha(O)=0.00507 \ 8; \ \alpha(P)=0.000276 \ 4 \\ \alpha(L1):\alpha(L2):\alpha(L3)=0.623:0.060:0.013. \\ \alpha(K)\exp=4.8 \ 2. \\ K;L1;L2;L3=251 \ 30:34 \ 4;3.4 \ 4;0.70 \ 7. \end{cases}$
83.968 4	4.03 9	83.96	7/2-	0.0	5/2-	M1+E2	1.61 9	5.47		$\alpha(K)=2.22\ 7;\ \alpha(L)=2.49\ 8;\ \alpha(M)=0.603\ 18;\ \alpha(N+)=0.153\ 5$ $\alpha(N)=0.137\ 4;\ \alpha(O)=0.0162\ 5;\ \alpha(P)=0.000116\ 5$ $\alpha(L1):\alpha(L2):\alpha(L3)=0.20\ 6:1.33\ 21:1.35\ 22.$ $\alpha(K)\exp=2.47\ 9.\ \alpha(L3)\exp=0.82\ 16\ (1991GaZZ).$
85.118 4	2.08 6	249.53	7/2-	164.42	5/2-	M1+E2	0.19 2	4.56		$\alpha(K)=3.71 \ 6; \ \alpha(L)=0.656 \ 21; \ \alpha(M)=0.148 \ 5; \\ \alpha(N+)=0.0393 \ 13 \\ \alpha(N)=0.0343 \ 12; \ \alpha(O)=0.00479 \ 13; \ \alpha(P)=0.000229 \ 4 \\ \alpha(L1):\alpha(L2):\alpha(L3)=0.518 \ 4:0.090 \ 15:0.053 \ 16. \\ \alpha(K)\exp=3.7 \ 3. \\ Ket L2L2 \ 125 \ 15:21 \ 2:37 \ 4:22 \ 3. \\ Ket L2L2 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 2:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 2:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 2:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 2:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 2:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 2:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 125 \ 15:21 \ 3:37 \ 4:22 \ 3. \\ Ket L3L2 \ 4:21 \ 3:37 \ 4:21 \ 3:37 \ 4:37 \ $
91.550 8	1.26 7	91.55	7/2+	0.0	5/2-	E1		0.411		K:L1:L2:L3=135 15:21 2:3.7 4:2.3 3. $\alpha(K)=0.340$ 5; $\alpha(L)=0.0552$ 8; $\alpha(M)=0.01223$ 18; $\alpha(N+)=0.00318$ 5 $\alpha(N)=0.00279$ 4; $\alpha(O)=0.000371$ 6; $\alpha(P)=1.515\times10^{-5}$ 22 $\alpha(K)\exp=0.33$ 8.
93.88 ^{&} j 3	0.12 ^{&}	439.54	5/2-	345.62	1/2-	[E2]		3.74		$\alpha(K)=1.240 \ 18; \ \alpha(L)=1.91 \ 3; \ \alpha(M)=0.466 \ 7; \ \alpha(N+)=0.1178 \ 17$

From ENSDF

					¹⁶³ Tı	m ε decay (1	l.810 h) 19	82Vy07 (coi	ntinued)
						γ	(¹⁶³ Er) (contin	nued)	
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	Comments
104.320 3	100.0 19	104.32	3/2-	0.0	5/2-	M1(+E2)	<0.05	2.52	$\begin{aligned} &\alpha(\text{N})=0.1054 \ 15; \ \alpha(\text{O})=0.01234 \ 18; \ \alpha(\text{P})=5.18\times10^{-5} \ 8\\ &\alpha(\text{K})\exp=0.9 \ (1976\text{Ab09}).\\ &\alpha(\text{K})=2.11 \ 3; \ \alpha(\text{L})=0.318 \ 5; \ \alpha(\text{M})=0.0706 \ 11;\\ &\alpha(\text{N}+)=0.0190 \ 3 \end{aligned}$
106.05 <i>4</i>	0.17 5	190.01	9/2-	83.96 <i>^</i>	7/2-	M1		2.40	$\begin{aligned} &\alpha(N)=0.01646\ 24;\ \alpha(O)=0.00238\ 4;\ \alpha(P)=0.0001303\ 19\\ &\alpha(L1):\alpha(L2):\alpha(L3)=0.294:0.028:0.006.\\ &\delta:\ other:\ 0.11\ 6\ from\ L1/L2=8.8\ 11\ (1987BaZB).\\ &K:L1:L2:L3=4263\ 400:575\ 60:43\ 5:8.2\ 10.\\ &\alpha(K)=2.02\ 3;\ \alpha(L)=0.302\ 5;\ \alpha(M)=0.0671\ 10;\\ &\alpha(N+)=0.0180\ 3\\ &\alpha(N)=0.01564\ 22;\ \alpha(O)=0.00226\ 4;\ \alpha(P)=0.0001244\ 18\\ &Mult.:\ from\ adopted\ gammas. \end{aligned}$
129.21 3	0.48 8	249.53	7/2-	120.35	9/2+	E1		0.1646	α (K)exp=4.4 <i>14</i> . Additional information 4. α (K)=0.1375 <i>20</i> ; α (L)=0.0212 <i>3</i> ; α (M)=0.00470 <i>7</i> ; α (N+)=0.001231 <i>18</i> α (N)=0.001078 <i>16</i> ; α (Q)=0.0001464 <i>21</i> ; α (P)=6 43×10 ⁻⁶ 0
145.213 <i>11</i>	0.67 3	249.53	7/2-	104.32	3/2-	E2		0.755	$\alpha(N)=0.001078 70, \ \alpha(O)=0.0001404 21, \ \alpha(P)=0.43\times10^{-9}$ $\alpha(K)\exp\approx 0.1 \ (1976Ab09).$ $\alpha(K)=0.406 \ 6; \ \alpha(L)=0.268 \ 4; \ \alpha(M)=0.0645 \ 9;$ $\alpha(N+)=0.01641 \ 23$
161.31 <i>3</i>	0.86 <i>6</i>	735.38	1/2+,3/2+	574.08	3/2+	[M1,E2]		0.63 11	$\begin{aligned} &\alpha(N) = 0.01463\ 21;\ \alpha(O) = 0.001758\ 25;\ \alpha(P) = 1.774 \times 10^{-3}\ 25\\ &\alpha(L1):\alpha(L2):\alpha(L3) = 0.041:0.12:0.11.\\ &\alpha(K) \exp = 0.50\ 6.\\ &K:L1:L2:L3 = 5.2\ 8:0.50\ 5:1.7\ 2:1.5\ 2.\\ &\alpha(K) = 0.46\ 16;\ \alpha(L) = 0.13\ 4;\ \alpha(M) = 0.031\ 11;\ \alpha(N+) = 0.0079\\ &25 \end{aligned}$
164.419 8	4.86 17	164.42	5/2-	0.0	5/2-	M1+E2	0.135 21	0.690	α (N)=0.0070 23; α (O)=0.00090 22; α (P)=2.6×10 ⁻⁵ 13 Mult.: α (K)exp=0.12 (1976Ab09) gives E1 but ΔJ^{π} requires M1,E2. 1980Ab18 note that the peak is complex. α (K)=0.577 9; α (L)=0.0880 13; α (M)=0.0196 3; α (N+)=0.00525 8
165.60 6	0.38 8	249.53	7/2-	83.96	7/2-	M1+E2	0.26 4	0.667 11	$\begin{aligned} &\alpha(N) = 0.00456 \ 7; \ \alpha(O) = 0.000656 \ 10; \ \alpha(P) = 3.54 \times 10^{-5} \ 6 \\ &\alpha(L1): \alpha(L2) = 0.080; 0.008, \\ &\alpha(K) \exp = 0.59 \ 3; \ K: L1: L2 = 56 \ 8:7.6 \ 8:0.8 \ 1. \\ &\alpha(K) = 0.553 \ 10; \ \alpha(L) = 0.0893 \ 18; \ \alpha(M) = 0.0200 \ 5; \\ &\alpha(N+) = 0.00534 \ 11 \end{aligned}$
190.006 <i>6</i>	7.68 16	439.54	5/2-	249.53	7/2-	M1+E2	0.18 3	0.458	$\begin{aligned} &\alpha(N)=0.00464 \ 10; \ \alpha(O)=0.000660 \ 12; \ \alpha(P)=3.37\times10^{-5} \ 7 \\ &\alpha(L1):\alpha(L2):\alpha(L3)=0.076 \ 1:0.010 \ 1:0.0044 \ 11. \\ &\alpha(K)\exp=0.58 \ 17. \ K:L1:L2:L3=4.2 \ 9:0.56 \ 12:0.08 \ 2:0.04 \ 1. \\ &\alpha(K)=0.383 \ 6; \ \alpha(L)=0.0587 \ 9; \ \alpha(M)=0.01307 \ 20; \\ &\alpha(N+)=0.00350 \ 6 \\ &\alpha(N)=0.00304 \ 5; \ \alpha(O)=0.000437 \ 7; \ \alpha(P)=2.34\times10^{-5} \ 4 \end{aligned}$

 ∞

From ENSDF

 $^{163}_{68}\mathrm{Er}_{95}$ -8

					163	$Tm \varepsilon$ decay	(1.810 h)	1982Vy07 ((continued)
							$\gamma(^{163}\text{Er})$ (c	ontinued)	
E_{γ}^{\ddagger}	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	Comments
					<u> </u>				α(L1):α(L2):α(L3)=0.053:0.0055 4:0.0014 3. α(K)exp=0.393 15. K:L1:L2:L3=58 6:7.9 10:0.8 1:<0.3.
225.4 ^{&aj} 3	0.18 ^{&} 7	664.86	5/2+	439.54	5/2-	E1(+M2)	<0.23	0.07 4	α (K)=0.06 3; α (L)=0.010 6; α (M)=0.0024 14; α (N+)=0.0006 4 α (N)=0.0006 4; α (O)=8.E-5 5; α (P)=3.9×10 ⁻⁶ 23
239.585 5	23.7 9	404.00	3/2-	164.42	5/2-	M1+E2	0.21 3	0.241	α (K)exp=0.06 3. α (K)=0.201 4; α (L)=0.0306 5; α (M)=0.00680 10; α (N+)=0.00182 3 (N)=0.00182 4.22 (2)=0.000220 4 (3)=0.220 10=5.20
241.305 5	58.4 <i>15</i>	345.62	1/2-	104.32	3/2-	M1		0.240	$\alpha(N)=0.001584\ 23;\ \alpha(O)=0.000228\ 4;\ \alpha(P)=1.228\times10^{-5}\ 20$ $\alpha(L1):\alpha(L2):\alpha(L3)=0.0278\ 2:0.00275\ 14:0.00071\ 11.$ $\alpha(K)exp=0.188\ 7\ for\ 239.6y+241.3y.$ K:L1:L2:L3=98\ 10:13.2\ 15:1.30\ 15:0.33\ 4. $\alpha(K)=0.202\ 3;\ \alpha(L)=0.0299\ 5;\ \alpha(M)=0.00662\ 10;$ $\alpha(N+)=0.001779\ 25$ (N) = 0.001779\ 25
249.498 6	0.47 3	249.53	7/2-	0.0	5/2-	M1+E2	0.53 7	0.198 6	$\alpha(N)=0.001545\ 22;\ \alpha(O)=0.000225\ 4;\ \alpha(P)=1.257\times10^{-5}\ 18$ $\alpha(L1):\alpha(L2)=0.0280:0.0022.$ K:L1:L2=200:30:3. $\alpha(K)$ exp=0.188 7 for 239.6 γ +241.3 γ . $\alpha(K)=0.163\ 5;\ \alpha(L)=0.0275\ 4;\ \alpha(M)=0.00619\ 10;$ $\alpha(N+)=0.001648\ 24$ $\alpha(N)=0.0016437\ 24;\ \alpha(Q)=0.000202\ 2;\ \alpha(P)=0.7\times10^{-6}\ 4$
275.125 8	14.4 <i>4</i>	439.54	5/2-	164.42	5/2-	M1+E2	0.31 7	0.161 4	$\begin{aligned} \alpha(N) = 0.00143721, \alpha(O) = 0.0002023, \alpha(I) = 9.7\times10^{-4} \\ \alpha(L1): \alpha(L2) = 0.022:0.00385. \\ \alpha(K) = 0.09221. K:L1:L2 = 1.63:0.223:0.0403. ce(L2) \\ derived from a complex line. \\ \alpha(K) = 0.1354; \alpha(L) = 0.02083; \alpha(M) = 0.004627; \\ \alpha(N+) = 0.00123818 \\ \alpha(N) = 0.00107545; \alpha(O) = 0.000154223; \alpha(P) = 8.18\times10^{-6}24 \end{aligned}$
297.87 [°] 3	2.57 9	462.48	3/2+	164.42	5/2-	(E1)		0.0189	$\begin{aligned} \alpha(\mathbf{L}) &= 0.00107575, \ \alpha(\mathbf{C}) = 0.000134225, \ \alpha(\mathbf{L}) = 0.108110^{-1}247 \\ \alpha(\mathbf{L}) &= 0.0101072, \ \alpha(\mathbf{L}) = 0.001181, \ 0.0001819, \ 0.0001$
299.667 8	24.5 5	404.00	3/2-	104.32	3/2-	M1+E2	0.21 6	0.1310 25	$\begin{array}{l} \alpha(N)=0.0001172 \ 17, \ \alpha(G)=1.04010 \ 25, \ \alpha(1)=0.22\times10 \ 12 \\ \text{Level-energy difference=298.07.} \\ \alpha(K)=xp=0.110 \ 4 \ \text{for } 297.9\gamma+299.7\gamma. \\ \alpha(K)=0.1099 \ 23; \ \alpha(L)=0.01645 \ 24; \ \alpha(M)=0.00365 \ 6; \\ \alpha(N+)=0.000980 \ 14 \\ \alpha(N)=0.0009851 \ 12; \ \alpha(Q)=0.0001227 \ 10; \ \alpha(R)=6.60\times10^{-6} \ 15 \\ \end{array}$
303.06 9	0.38 4	1872.79	(3/2)+	1569.80	3/2+	(E2)		0.0670	$\begin{aligned} \alpha(K) = 0.00031 \ 15, \ \alpha(G) = 0.0001227 \ 19, \ \alpha(F) = 0.09\times10^{-1} \ 15 \\ \alpha(L1): \alpha(L2): \alpha(L3) = 0.015: 0.0014 \ 1: 0.00031 \ 6. \\ \alpha(K) \exp = 0.110 \ 4 \ for \ 297.9\gamma + 299.7\gamma. \\ \delta: \ from \ K: L1: L2: L3 = 58 \ 6: 8.0 \ 8: 0.70 \ 7: 0.16 \ 4, \ assuming insignificant contribution from \ 297.9\gamma \ (E1). \\ \alpha(K) = 0.0491 \ 7; \ \alpha(L) = 0.01377 \ 20; \ \alpha(M) = 0.00322 \ 5; \\ \alpha(N+) = 0.000834 \ 12 \end{aligned}$

					163	Tm ε deca	y (1.810 h)	1982Vy	07 (continued)
							$\gamma(^{163}\text{Er})$ (continued)	
E_{γ}^{\ddagger}	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	δ@	α^{h}	Comments
320.057 18	1.66 7	404.00	3/2-	83.96	7/2-	E2		0.0568	$\alpha(N)=0.000737 \ 11; \ \alpha(O)=9.48\times10^{-5} \ 14; \ \alpha(P)=2.53\times10^{-6} \ 4$ $\alpha(K)=x_{0}\approx0.05 \ (1976Ab09).$ $\alpha(K)=0.0422 \ 6; \ \alpha(L)=0.01131 \ 16; \ \alpha(M)=0.00264 \ 4; \ \alpha(N+)=0.00084 \ 10$ $\alpha(N+)=0.000644 \ 0 \ \alpha(O) \ 7.82\times10^{-5} \ 10 \ \alpha(D) \ 2.22\times10^{-6} \ 2$
324.49 15	0.28 3	574.08	3/2+	249.53	7/2-				$\alpha(N)=0.00004$ 9; $\alpha(O)=7.82\times10^{-5}$ 17; $\alpha(P)=2.20\times10^{-5}$ 5 $\alpha(L1):\alpha(L2)=0.0050:0.0039.$ $\alpha(K)\exp=0.042$ 6 (1980Ab18). K:L1:L2=1.5 2:0.20 5:0.15 5. Mult.: $\alpha(K)\exp=0.100$ 19 (1980Ab18) gives M1(+E2) with $\delta \le 0.55$, but ΔJ^{π} requires M2. No ce data available from 1982Vy07. $\alpha(K)\exp=0.100$ 10 (1000Ab18)
331.355 19	1.25 4	735.38	1/2+,3/2+	404.00	3/2-	E1		0.01452	α (K)exp=0.100 <i>19</i> (1980Ab18). α (K)=0.01227 <i>18</i> ; α (L)=0.001760 <i>25</i> ; α (M)=0.000388 <i>6</i> ; α (N+)=0.0001031 <i>15</i>
335.219 12	3.18 8	439.54	5/2-	104.32	3/2-	M1+E2	0.66 14	0.084 5	$\begin{array}{l} \alpha(N)=8.98\times10^{-5} \ I3; \ \alpha(O)=1.265\times10^{-5} \ I8; \ \alpha(P)=6.39\times10^{-7} \ 9 \\ \alpha(K)=0.069 \ 5; \ \alpha(L)=0.0114 \ 3; \ \alpha(M)=0.00256 \ 6; \ \alpha(N+)=0.000683 \ I7 \\ \alpha(N)=0.000595 \ I4; \ \alpha(O)=8.4\times10^{-5} \ 3; \ \alpha(P)=4.1\times10^{-6} \ 3 \\ \alpha(L_1):\alpha(L_2)=0.0094 \ 5; 0.00159 \ I7. \end{array}$
338.28 8	0.72 5	683.75	(1/2)-	345.62	1/2-	M1		0.0968	$\begin{aligned} &\alpha(K)\exp=0.085 \ 4. \\ &K:L1:L2=4.9 \ 6:0.65 \ 7:0.11 \ 2. \\ &\alpha(K)=0.0815 \ 12; \ \alpha(L)=0.01194 \ 17; \ \alpha(M)=0.00264 \ 4; \\ &\alpha(N+)=0.000711 \ 10 \\ &\alpha(N)=0.000616 \ 9; \ \alpha(O)=8.93\times10^{-5} \ 13; \ \alpha(P)=4.96\times10^{-6} \ 7 \end{aligned}$
345.608 9	5.89 <i>13</i>	345.62	1/2-	0.0	5/2-	E2		0.0453	$\begin{aligned} &\alpha(L1):\alpha(L2)=0.011:0.0008. \\ &\alpha(K)\exp=0.059 \ 9. \ K:L1:L2=1.1 \ 2:0.15 \ 3:<0.05. \\ &\alpha(K)=0.0342 \ 5; \ \alpha(L)=0.00862 \ 12; \ \alpha(M)=0.00200 \ 3; \\ &\alpha(N+)=0.000521 \ 8 \\ &\alpha(N)=0.000459 \ 7; \ \alpha(O)=5.99\times10^{-5} \ 9; \ \alpha(P)=1.80\times10^{-6} \ 3 \end{aligned}$
355.624 13	2.57 7	439.54	5/2-	83.96	7/2-	M1		0.0848	$\alpha(L1)=0.0041$ $\alpha(K)\exp=0.036 3$, K/L1(from complex lines)=6.1 4. $\alpha(K)=0.0714 \ 10$; $\alpha(L)=0.01044 \ 15$; $\alpha(M)=0.00231 \ 4$; $\alpha(N+)=0.000621 \ 9$ $\alpha(N)=0.000520 \ 8 \ \alpha(O) \ 7 \ 81\times10^{-5} \ 10 \ \alpha(D) \ 4 \ 25\times10^{-6} \ 6$
358.174 10	3.92 9	462.48	3/2+	104.32	3/2-	E1		0.01204	$\begin{array}{l} \alpha(N)=0.000359 \ \delta; \ \alpha(O)=7.81\times10^{-7} \ 17; \ \alpha(P)=4.35\times10^{-6} \ 0 \\ \alpha(L1)=0.0098 \\ \alpha(K)\exp=0.082 \ 4. \ K/L1=7.1 \ 22. \\ \alpha(K)=0.01018 \ 15; \ \alpha(L)=0.001454 \ 21; \ \alpha(M)=0.000320 \ 5; \\ \alpha(N+)=8.51\times10^{-5} \ 12 \\ \end{array}$
361.97 4	0.42 4	526.33	5/2+	164.42	5/2-	E1		0.01174	$\begin{aligned} &\alpha(N)=7.41\times10^{-3} \ 11; \ \alpha(O)=1.047\times10^{-3} \ 15; \ \alpha(P)=5.34\times10^{-7} \ 8\\ &\alpha(L1)=0.00121\\ &\alpha(K)\exp=0.0100 \ 11. \ K/L1=6.9 \ 19.\\ &\alpha(K)=0.00993 \ 14; \ \alpha(L)=0.001417 \ 20; \ \alpha(M)=0.000312 \ 5;\\ &\alpha(N+)=8.30\times10^{-5} \ 12 \end{aligned}$

From ENSDF

L.

					¹⁶³ Tr	n ε decay (1.	810 h) 1	.982Vy07 (co	ntinued)
						<u> γ(</u>	¹⁶³ Er) (cont	inued)	
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{h}	Comments
371.07 9	0.24 3	462.48	3/2+	91.55	7/2+	(E2)		0.0369	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00993 \ 14; \ \alpha(\mathbf{L}) = 0.001417 \ 20; \ \alpha(\mathbf{M}) = 0.000312 \ 5; \\ &\alpha(\mathbf{N}+) = 8.30 \times 10^{-5} \ 12 \\ &\alpha(\mathbf{N}) = 7.23 \times 10^{-5} \ 11; \ \alpha(\mathbf{O}) = 1.021 \times 10^{-5} \ 15; \ \alpha(\mathbf{P}) = 5.21 \times 10^{-7} \ 8 \\ &\alpha(\mathbf{K}) \exp = 0.006 \ 2. \\ &\alpha(\mathbf{K}) = 0.0282 \ 4; \ \alpha(\mathbf{L}) = 0.00675 \ 10; \ \alpha(\mathbf{M}) = 0.001563 \ 22; \\ &\alpha(\mathbf{N}+) = 0.000408 \ 6 \end{aligned}$
375.87 5	0.83 7	1059.75	3/2-	683.75	(1/2)-	M1+E2	1.1 3	0.053 6	$\alpha(N)=0.000359 5; \alpha(O)=4.72\times10^{-5} 7; \alpha(P)=1.506\times10^{-6} 22$ $\alpha(K)\exp=0.023 4.$ $\alpha(K)=0.043 6; \alpha(L)=0.0076 5; \alpha(M)=0.00172 9;$ $\alpha(N+)=0.000456 24$ $\alpha(N)=0.000398 20; \alpha(O)=5.5\times10^{-5} 4; \alpha(P)=2.5\times10^{-6} 4.$
380.57 ^c 17	0.19 4	1917.48	(3/2)+	1538.79	3/2+	(E2)		0.0344	$\begin{array}{l} \alpha(L)=0.000565 \\ \alpha(L)=0.00565 \\ \text{Mult.: from } \alpha(\text{K})\text{exp}=0.043 \ 4. \ \text{K/L1}=7.3 \ 17. \\ \alpha(\text{K})=0.0264 \ 4; \ \alpha(\text{L})=0.00620 \ 9; \ \alpha(\text{M})=0.001433 \ 21; \\ \alpha(\text{N}+)=0.000374 \ 6 \end{array}$
389.59 <i>3</i>	1.65 11	735.38	1/2+,3/2+	345.62	1/2-	E1		0.00987	$\alpha(N)=0.000329 5; \alpha(O)=4.34\times10^{-3} 7; \alpha(P)=1.413\times10^{-6} 20$ Level-energy difference=378.69. $\alpha(K)=0.00835 12; \alpha(L)=0.001186 17; \alpha(M)=0.000261 4;$ $\alpha(N+)=6.95\times10^{-5} 10$
393.261 <i>11</i>	7.37 15	462.48	3/2+	69.23	5/2+	M1+E2	0.44 7	0.0596 17	$\alpha(N)=6.05\times10^{-5} 9; \alpha(O)=8.57\times10^{-6} 12; \alpha(P)=4.40\times10^{-7} 7$ $\alpha(K)\exp=0.029 3. \text{ Other: } 0.0071 15 (1980Ab18).$ $\alpha(K)=0.0499 16; \alpha(L)=0.00760 16; \alpha(M)=0.00169 4;$ $\alpha(N+)=0.000453 9$ $\alpha(N)=0.000393 8; \alpha(O)=5.64\times10^{-5} 13; \alpha(P)=3.00\times10^{-6} 10$ $\alpha(L)\approx(2)=0.0068\times0.00074 5$
400 74 17	0.25.6	2122.21	1/2(-) 2/2	1700.20	2/2+				$\alpha(\text{E1}).\alpha(\text{E2})=0.0008.0.00074/5.$ $\alpha(\text{K})\exp=0.050/2.$ K:L1:L2=8.0 <i>15</i> :1.0 <i>1</i> :0.10 <i>1</i> .
403.989 10	5.66 <i>14</i>	404.00	3/2 ⁻	0.0	5/2 ⁻	E2		0.0291	α (K)=0.0225 4; α (L)=0.00508 8; α (M)=0.001172 17; α (N+)=0.000306 5 α (N)=0.000270 4; α (O)=3.57×10 ⁻⁵ 5; α (P)=1.217×10 ⁻⁶ 17
406.06 15	0.28 6	1369.46	3/2+	963.29	(3/2)+	E2(+M1)	≥2.0	0.032 4	$\begin{aligned} &\alpha(L1):\alpha(L2):\alpha(L3)=0.0027:0.0015:0.0009. \\ &\alpha(K)\exp=0.0266\ 15;\ K:L1:L2:L3=44:8:4:2. \\ &\alpha(K)=0.025\ 3;\ \alpha(L)=0.00523\ 25;\ \alpha(M)=0.00120\ 5; \\ &\alpha(N+)=0.000315\ 15 \\ &\alpha(N)=0.000276\ 12;\ \alpha(O)=3.71\times10^{-5}\ 21;\ \alpha(P)=1.39\times10^{-6}\ 19 \\ &\alpha(K)\exp=0.022\ 6 \end{aligned}$
409.77 <i>5</i> 411.66 <i>7</i>	0.82 6 0.53 4	574.08 985.67	3/2 ⁺ 5/2 ⁻	164.42 574.08	5/2 ⁻ 3/2 ⁺				α (K)exp=0.022 0. Mult.: α (K)exp=0.04 (1976Ab09) suggests M1,E2 but ΔJ^{π} requires E1
415.15 6	0.47 4	664.86	5/2+	249.53	7/2-	E1		0.00851	$\alpha(K)=0.00721 \ 10; \ \alpha(L)=0.001020 \ 15; \ \alpha(M)=0.000224 \ 4;$

						163 Tm ε d	ecay (1.810	h) 1982Vy	107 (continued)
							γ (¹⁶³ E	r) (continued)	
	E_{γ}^{\ddagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f .	I_f^{π} Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	Comments
									$\alpha(N+)=5.98\times10^{-5} 9$ $\alpha(N)=5.20\times10^{-5} 8; \ \alpha(O)=7.38\times10^{-6} 11; \ \alpha(P)=3.82\times10^{-7} 6$ $\alpha(K)\exp=0.0064 13.$
	417.89 ^{aj} 9	0.31 5	2243.21	3/2-	1826.49 3/	^{'2+}			
	421.92 3	0.90 6	526.33	5/2+	104.32 3/	′2 ⁻ (E1) ^d		0.00820	α (K)=0.00694 <i>10</i> ; α (L)=0.000981 <i>14</i> ; α (M)=0.000216 <i>3</i> ; α (N+)=5.75×10 ⁻⁵ <i>8</i>
									$\alpha(N) = 5.01 \times 10^{-5}$ 7; $\alpha(O) = 7.10 \times 10^{-6}$ 10; $\alpha(P) = 3.68 \times 10^{-7}$ 6
	433.2 3	0.48 10	1801.56	3/2+	1369.46 3/	/2 ⁺ M1+E2	1.1 8	0.036 13	α (K)exp=0.018 2. α (K)=0.030 11; α (L)=0.0050 10; α (M)=0.00113 21; α (N+)=0.00030 6
									$\alpha(N)=0.00026 5; \alpha(O)=3.7\times10^{-5} 9; \alpha(P)=1.7\times10^{-6} 8 \alpha(K)\exp=0.030 8.$
	434.72 <i>3</i>	2.82 9	526.33	5/2+	91.55 7/	/2 ⁺ M1+E2	0.58 19	0.043 4	$\alpha(K)=0.036\ 3;\ \alpha(L)=0.0056\ 3;\ \alpha(M)=0.00125\ 6;\ \alpha(N+)=0.000334$ 16
	436 24 6	0.85.5	540 56	1/2+	104 32 3	/2-			$\alpha(N)=0.000290$ 14; $\alpha(O)=4.15\times10^{-5}$ 22; $\alpha(P)=2.17\times10^{-6}$ 19 $\alpha(K)\exp=0.037$ 3. L1/L2=3.
12	439.575 17	1.99 <i>17</i>	439.54	5/2-	0.0 5/	/2 ⁻ M1		0.0487	α (K)=0.0410 <i>6</i> ; α (L)=0.00596 <i>9</i> ; α (M)=0.001318 <i>19</i> ; α (N+)=0.000354 <i>5</i>
									α (N)=0.000307 5; α (O)=4.46×10 ⁻⁵ 7; α (P)=2.49×10 ⁻⁶ 4 α (K)exp=0.04 (1976Ab09).
	447.90 16	0.41 10	2040.68	3/2+	1593.03 3/	/2 ⁺ [M1,E2]		0.034 13	$\alpha(K)=0.028 \ 11; \ \alpha(L)=0.0047 \ 11; \ \alpha(M)=0.00105 \ 21; \ \alpha(N+)=0.00028 \ 6$
	454 954 17	1716	619 36	3/2+	164 42 5	12-			$\alpha(N)=0.00024$ 5; $\alpha(O)=3.4\times10^{-9}$ 9; $\alpha(P)=1.7\times10^{-8}$ 8 $\alpha(K)=0.02$ (1976Ab09) gives M1 F2 but ΛI^{π} requires F1
	457.07 5	0.74 7	1826.49	$3/2^+$	1369.46 3/	/2 ⁺ M1,E2		0.032 12	$\alpha(\text{K})=0.027 \ 11; \ \alpha(\text{L})=0.0044 \ 10; \ \alpha(\text{M})=0.00099 \ 21; \ \alpha(\text{N}+)=0.00026 \ 6$
									α (N)=0.00023 5; α (O)=3.2×10 ⁻⁵ 8; α (P)=1.6×10 ⁻⁶ 7 α (K)exp=0.027 12.
	461.845 12	3.34 14	531.07	3/2+	69.23 5/	/2 ⁺ M1+E2	0.90 16	0.0327 22	$\alpha(K)=0.0271 \ 20; \ \alpha(L)=0.00438 \ 19; \ \alpha(M)=0.00098 \ 4; \ \alpha(N+)=0.000261 \ 11$
	160 65 1	2 20 10	574 09	2/2+	104 22 2	/2- E1		0.00642	$\alpha(N)=0.000227 \ 10; \ \alpha(O)=3.21\times10^{-5} \ 16; \ \alpha(P)=1.60\times10^{-6} \ 13 \ \alpha(K)=0.00276 \ 18.$
	409.0 <i>3</i> 4	2.39 10	574.08	5/2	104.32 3/	2 EI		0.00042	$\alpha(N) = 0.00345 6$, $\alpha(L) = 0.000705 11$, $\alpha(N) = 0.0001065 24$; $\alpha(N+) = 4.48 \times 10^{-5} 7$ $\alpha(N) = 3.00 \times 10^{-5} 6$; $\alpha(O) = 5.55 \times 10^{-6} 8$; $\alpha(D) = 2.00 \times 10^{-7} 4$
	471.330 <i>17</i>	21.8 5	540.56	1/2+	69.23 5/	/2 ⁺ E2		0.0192	$\alpha(K) = 0.008 (1976Ab09).$ $\alpha(K) = 0.01516 22; \alpha(L) = 0.00311 5; \alpha(M) = 0.000713 10;$
									$\alpha(N+)=0.000187 \ 3$

From ENSDF

 $^{163}_{68}\mathrm{Er}_{95}$ -12

¹⁶³₆₈Er₉₅-12

					¹⁶³ T	m ε decay (1	.810 h) 19	82Vy07 (cont	tinued)
						<u> </u>	(¹⁶³ Er) (contin	nued)	
E_{γ}^{\ddagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{h}	Comments
473.76 ^{<i>a j</i>} 5	1.08 10	2274.5	1/2 ⁽⁻⁾ ,3/2	1801.56	3/2+				α (N)=0.0001642 23; α (O)=2.21×10 ⁻⁵ 3; α (P)=8.34×10 ⁻⁷ 12 α (L1): α (L2): α (L3)=0.0019:0.008:0.00044. α (K)exp=0.0130 6. K:L1:L2:L3=98:15:5:2.4. Mult.: α (K)exp=0.025 5 gives M1+E2, δ =1.0 5.
478.49 <i>14</i> 484.03 <i>4</i>	0.26 8 1.41 <i>14</i>	1538.79 1853.54	3/2+ 3/2+	1059.75 1369.46	3/2 ⁻ 3/2 ⁺	M1(+E2)	≤0.94	0.033 5	$\alpha(K)=0.028 \ 5; \ \alpha(L)=0.0042 \ 5; \ \alpha(M)=0.00094 \ 9; \ \alpha(N+)=0.000251 \ 25$
^x 491.64 5	0.43 3					M1+E2	1.2 3	0.025 3	$\alpha(N)=0.000218\ 21;\ \alpha(O)=3.1\times10^{-4}\ 4;\ \alpha(P)=1.7\times10^{-5}\ 3$ $\alpha(K)\exp=0.028\ 4.$ $\alpha(K)=0.0207\ 25;\ \alpha(L)=0.00344\ 25;\ \alpha(M)=0.00077\ 6;$ $\alpha(N+)=0.000205\ 15$ $\alpha(N)=0.000179\ 13;\ \alpha(O)=2\ 51\times10^{-5}\ 20;\ \alpha(P)=1\ 21\times10^{-6}\ 16$
^x 493.83 4	0.74 4					M1+E2	1.7 3	0.0219 16	$\alpha(K)=0.000179715, \alpha(G)=2.51\times10^{-12}20, \alpha(I)=1.21\times10^{-11}10$
500.51 2	0.76 12	664.86	5/2+	164.42	5/2-				$\alpha(N)=0.000164 \ 8; \ \alpha(O)=2.27\times10^{-5} \ 12; \ \alpha(P)=1.05\times10^{-5} \ 9 \ \alpha(K)$ exp=0.0180 <i>14</i> . E _{γ} : uncertainty from table in 1982Vy08. 1982Vy07 quote 0.12.
504.878 <i>14</i>	6.3 3	574.08	3/2+	69.23	5/2+	M1+E2	0.8 5	0.027 6	Mult.: $\alpha(K)\exp=0.021 \ 4 \text{ gives } \delta(E2/M1)=1.1 \ +8-4 \text{ but } \Delta J^n$ requires E1. $\alpha(K)=0.023 \ 5; \ \alpha(L)=0.0035 \ 5; \ \alpha(M)=0.00078 \ 11;$ $\alpha(N+)=0.00021 \ 3$ $\alpha(N)=0.00018 \ 4; \ \alpha(Q)=2.6\times10^{-5} \ 4; \ \alpha(D)=1.2\times10^{-6} \ 4$
515.012 16	4.50 22	619.36	3/2+	104.32	3/2-	E1+M2	0.186 18	0.0084 7	$\begin{array}{l} \alpha(N)=0.00018 \ 5; \ \alpha(O)=2.6\times10^{-5} \ 4; \ \alpha(P)=1.5\times10^{-5} \ 4\\ \alpha(K)\exp=0.023 \ 2.\\ \alpha(K)=0.0071 \ 6; \ \alpha(L)=0.00107 \ 9; \ \alpha(M)=0.000237 \ 20;\\ \alpha(N+)=6.4\times10^{-5} \ 6\\ \alpha(N)=0.00107 \ 5; \ \alpha(D)=7.0\times10^{-6} \ 7; \ \alpha(M)=0.000237 \ 20;\\ \alpha(N+)=6.4\times10^{-5} \ 6\\ \alpha(N)=0.000237 \ 20;\\ \alpha(N+)=0.0\times10^{-5} \ 6\\ \alpha(N)=0.000237 \ 20;\\ \alpha(N)=0.00023$
520.1 2	0.28 6	683.75	(1/2)-	164.42	5/2-	E2		0.01487	$\begin{array}{l} \alpha(N)=5.5\times10^{-5} 5; \ \alpha(O)=7.9\times10^{-5} 7; \ \alpha(P)=4.2\times10^{-5} 4 \\ \alpha(K)\exp=0.0071 5. \\ \alpha(K)=0.01189 \ 17; \ \alpha(L)=0.00231 \ 4; \ \alpha(M)=0.000527 \ 8; \\ \alpha(N+)=0.0001388 \ 20 \\ \alpha(N)=0.0001216 \ 17; \ \alpha(O)=1.652\times10^{-5} 24 \\ \alpha(D)=6.60\times10^{-7} \\ \alpha(D)=0.0001216 \ 17; \ \alpha(D)=0.0001216 \ 10^{-7} \\ \alpha(D)=0.0001216 \ 10^{-7} \ 10^{-7} \\ \alpha(D)=0.0001216 \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \$
528.18 <i>14</i>	0.82 11	619.36	3/2+	91.55	7/2+	(E2)		0.01430	$a(N)=0.0001210 \ 17; \ \alpha(O)=1.052\times10^{-7} \ 24; \ \alpha(P)=6.00\times10^{-7} \ 10^{$
529.75 7	1.78 <i>19</i>	779.63	5/2-	249.53	7/2-	M1+E2	0.8 4	0.024 4	Mult.: α (K)exp=0.030 5 gives M1(+E2), δ <0.3 but ΔJ^{π} requires E2. α (K)=0.020 4; α (L)=0.0031 4; α (M)=0.00069 8;

					10	⁵³ Tm ε decay	(1.810 h)	1982Vy07 (c	ontinued)
							$\gamma(^{163}\text{Er})$ (cor	ntinued)	
E _γ ‡	Ι _γ ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{h}	Comments
^x 540.98 12	0.23 5					M1		0.0285	$\alpha(N+)=0.000184 22$ $\alpha(N)=0.000160 19; \alpha(O)=2.3\times10^{-5} 3; \alpha(P)=1.18\times10^{-6} 23$ $\alpha(K)=0.0203 3.$ $\alpha(K)=0.0241 4; \alpha(L)=0.00347 5; \alpha(M)=0.000767 11;$ $\alpha(N+)=0.000206 3$ $\alpha(N)=0.000179 3; \alpha(O)=2.60\times10^{-5} 4; \alpha(P)=1.453\times10^{-6} 21$
547.96 14	0.47 7	1917.48	$(3/2)^+$	1369.46	3/2+	[M1,E2]		0.020 8	$\alpha(K)=0.0001775, \alpha(C)=2.00\times10^{-4}, \alpha(1)=1.455\times10^{-21}$ $\alpha(K)=0.0177; \alpha(L)=0.00277; \alpha(M)=0.0006015;$ $\alpha(K+)=0.000164$
550.154 <i>16</i>	8.26 21	619.36	3/2+	69.23	5/2+	M1(+E2)	≤0.27	0.0268 7	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.00014 \ 4; \ \alpha(\mathrm{O}) = 2.0 \times 10^{-5} \ 6; \ \alpha(\mathrm{P}) = 1.0 \times 10^{-6} \ 5 \\ \alpha(\mathrm{K}) = 0.0226 \ 6; \ \alpha(\mathrm{L}) = 0.00328 \ 7; \ \alpha(\mathrm{M}) = 0.000724 \ 14; \\ \alpha(\mathrm{N}+) = 0.000195 \ 4 \end{array} $
552.948 <i>23</i>	3.69 <i>13</i>	717.39	3/2-	164.42	5/2-	M1		0.0270	$\alpha(N)=0.000169 \ 4; \ \alpha(O)=2.45\times10^{-5} \ 5; \ \alpha(P)=1.36\times10^{-6} \ 4 \\ \alpha(K)\exp=0.0240 \ 13. \\ \alpha(K)=0.0228 \ 4; \ \alpha(L)=0.00328 \ 5; \ \alpha(M)=0.000725 \ 11; \\ \alpha(N+)=0.000195 \ 3 \\ \alpha(N)=0.0001000 \ 24 \\ \alpha(D)=2.45\times10^{-5} \ 4 \\ \alpha(D)=1.274\times10^{-6} \ 20. \\ \alpha(D)=1.27\times10^{-6} \ 20. \\ \alpha(D)=1.2\times10^{-6} \ 20$
560.51 5	0.66 16	664.86	5/2+	104.32	3/2-	E1+M2	0.27 10	0.009 4	$\alpha(N)=0.000105024, \alpha(O)=2.43\times10^{-4}, \alpha(T)=1.574\times10^{-2}0^{-2}$ $\alpha(K)=0.027217$, possible contamination from ce(L)(504.9 γ) (evaluators). $\alpha(K)=0.0084; \alpha(L)=0.00126; \alpha(M)=0.0002713;$ $\alpha(N+)=7.E-54$
^x 563.80 5	0.69 16					M1(+E2)	≤0.99	0.022 4	$\begin{aligned} &\alpha(N) = 6.E-5 \ 3; \ \alpha(O) = 9.E-6 \ 4; \ \alpha(P) = 4.8 \times 10^{-7} \ 22 \\ &\alpha(K) \exp = 0.0080 \ 26. \\ &\alpha(K) = 0.019 \ 3; \ \alpha(L) = 0.0028 \ 4; \ \alpha(M) = 0.00062 \ 7; \\ &\alpha(N+) = 0.000167 \ 19 \end{aligned}$
573.23 4	1.51 6	664.86	5/2+	91.55	7/2+	M1(+E2)	≤0.61	0.0229 18	$\alpha(N)=0.000145 \ 17; \ \alpha(O)=2.1\times10^{-5} \ 3; \ \alpha(P)=1.12\times10^{-6} \ 19$ $\alpha(K)=0.0192 \ 16; \ \alpha(L)=0.00282 \ 18; \ \alpha(M)=0.00062 \ 4;$ $\alpha(N+)=0.000168 \ 11$
575.1 <i>3</i>	0.25 7	1538.79	3/2+	963.29	(3/2)+	- [M1,E2]		0.018 7	$\begin{aligned} &\alpha(N) = 0.000146 \ 9; \ \alpha(O) = 2.10 \times 10^{-5} \ 14; \ \alpha(P) = 1.15 \times 10^{-6} \ 10 \\ &\alpha(K) \exp[=0.021 \ 3. \\ &\alpha(K) = 0.015 \ 6; \ \alpha(L) = 0.0023 \ 7; \ \alpha(M) = 0.00052 \ 14; \\ &\alpha(N+) = 0.00014 \ 4 \end{aligned}$
579.510 <i>13</i>	8.53 19	683.75	(1/2)-	104.32	3/2-	M1(+E2)	≤0.51	0.0226 14	$\alpha(N)=0.00012 \ 4; \ \alpha(O)=1.7\times10^{-5} \ 5; \ \alpha(P)=9.E-7 \ 4 \\ \alpha(K)=0.0191 \ 12; \ \alpha(L)=0.00278 \ 14; \ \alpha(M)=0.00062 \ 3; \\ \alpha(N+)=0.000165 \ 8 \\ (N=0.000142 \ 5 = 0.000165 \ 8) $
584.86 ^c 9 589.13 ^c 11	0.49 <i>4</i> 0.37 <i>6</i>	1569.80 1369.46	3/2 ⁺ 3/2 ⁺	985.67 779.63	5/2 ⁻ 5/2 ⁻				$\alpha(N)=0.000143 /; \alpha(O)=2.0/\times10^{-3} II; \alpha(P)=1.15\times10^{-6} 8$ $\alpha(L1):\alpha(L2)=0.0028:0.00018.$ $\alpha(K)exp=0.0195 I2; K:L1:L2=50:8:<2 (1976Ab09).$ Level-energy difference=584.13. Level-energy difference=589.84.

From ENSDF

 $^{163}_{68}\mathrm{Er}_{95}$ -14

 $^{163}_{68}\mathrm{Er}_{95}$ -14

				163,	$\Gamma m \varepsilon$ decay (1.	810 h) 19	82Vy07 (cont	tinued)
					$\gamma(1)$	⁶³ Er) (contin	ued)	
E _γ ‡	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	Comments
595.35 5	1.28 9	664.86	5/2+	69.23 <u>5</u> /2 ⁺	E2		0.01064	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00862 \ 12; \ \alpha(\mathrm{L}) = 0.001571 \ 22; \ \alpha(\mathrm{M}) = 0.000356 \ 5; \\ \alpha(\mathrm{N}+) = 9.40 \times 10^{-5} \ 14 \\ \alpha(\mathrm{N}) = 8.22 \times 10^{-5} \ 12; \ \alpha(\mathrm{O}) = 1.129 \times 10^{-5} \ 16; \ \alpha(\mathrm{P}) = 4.83 \times 10^{-7} \\ 7 \\ \alpha(\mathrm{N}) = 0.0075 \ 5 \end{array} $
598.12 ^{<i>c</i>} 3	1.36 7	1281.16	1/2+,3/2+	683.75 (1/2)	- (E1)		0.00379	$\alpha(K) \exp[=0.0075 \ 5.$ $\alpha(K) = 0.00322 \ 5; \ \alpha(L) = 0.000446 \ 7; \ \alpha(M) = 9.80 \times 10^{-5} \ 14;$ $\alpha(N+) = 2.61 \times 10^{-5} \ 4$ $\alpha(N) = 2.27 \times 10^{-5} \ 4; \ \alpha(O) = 3.25 \times 10^{-6} \ 5; \ \alpha(P) = 1.738 \times 10^{-7} \ 25$ Level-energy difference=597.41.
606.4 2	0.64 4	856.22	(3/2)-	249.53 7/2-	[E2]		0.01018	$\begin{array}{l} \alpha(\text{K}) \exp \approx 0.003 \ (1976\text{Ab09}). \\ \alpha(\text{K}) = 0.00826 \ 12; \ \alpha(\text{L}) = 0.001493 \ 21; \ \alpha(\text{M}) = 0.000338 \ 5; \\ \alpha(\text{N}+) = 8.93 \times 10^{-5} \ 13 \\ \alpha(\text{N}) = 7.81 \times 10^{-5} \ 11; \ \alpha(\text{O}) = 1.074 \times 10^{-5} \ 15; \ \alpha(\text{P}) = 4.64 \times 10^{-7} \\ 7 \end{array}$
613.054 <i>18</i>	3.60 9	717.39	3/2-	104.32 3/2-	M1+E2	0.39 16	0.0193 12	Mult.: $\alpha(K)\exp=0.0285\ 24$ gives M1 but ΔJ^{π} requires E2. $\alpha(K)=0.0163\ 10;\ \alpha(L)=0.00238\ 12;\ \alpha(M)=0.000526\ 24;\ \alpha(N+)=0.000141\ 7$ $\alpha(N)=0.000123\ 6;\ \alpha(O)=1.77\times10^{-5}\ 9;\ \alpha(P)=9.8\times10^{-7}\ 7$
615.18 <i>3</i>	1.78 12	779.63	5/2-	164.42 5/2-	M1+E2	0.56 21	0.0180 15	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0166 \ 9. \\ &\alpha(\text{K}) = 0.0151 \ 13; \ \alpha(\text{L}) = 0.00224 \ 15; \ \alpha(\text{M}) = 0.00050 \ 3; \\ &\alpha(\text{N}+) = 0.000133 \ 9 \\ &\alpha(\text{N}) = 0.000116 \ 8; \ \alpha(\text{O}) = 1.67 \times 10^{-5} \ 12; \ \alpha(\text{P}) = 9.0 \times 10^{-7} \ 8 \end{aligned}$
619.44 <i>10</i>	0.35 5	619.36	3/2+	0.0 5/2-	E1+M2	0.17 8	0.0051 17	$\alpha(K) \exp = 0.0154 \ I3.$ $\alpha(K) = 0.0043 \ I4; \ \alpha(L) = 0.00062 \ 23; \ \alpha(M) = 0.00014 \ 6;$ $\alpha(N+) = 3.7 \times 10^{-5} \ I4$ $\alpha(N) = 3.2 \times 10^{-5} \ I3; \ \alpha(O) = 4.6 \times 10^{-6} \ I8; \ \alpha(P) = 2.5 \times 10^{-7} \ I0$ $\alpha(K) \exp = 0.0043 \ 9$
633.77 <i>9</i> 640.4 <i>2</i>	0.78 7 0.40 6	717.39 985.67	3/2 ⁻ 5/2 ⁻	83.96 7/2 ⁻ 345.62 1/2 ⁻				Mult.: $\alpha(K)\exp=0.0203\ 24$ gives M1 but ΔJ^{π} requires E2.
655.760 20	4.25 10	1059.75	3/2-	404.00 3/2-	M1(+E2)	≤0.38	0.0169 7	$\alpha(K)=0.0143 \ 6; \ \alpha(L)=0.00206 \ 7; \ \alpha(M)=0.000456 \ 14; \ \alpha(N+)=0.000123 \ 4 \ \alpha(N)=0.000106 \ 4; \ \alpha(O)=1.54\times10^{-5} \ 5; \ \alpha(P)=8.6\times10^{-7} \ 4 \ \alpha(K)=0.0151 \ 10.$
662.67 <i>11</i> 666.178 <i>19</i>	1.42 <i>16</i> 11.04 <i>25</i>	1722.39 735.38	3/2 ⁺ 1/2 ⁺ ,3/2 ⁺	1059.75 3/2 ⁻ 69.23 5/2 ⁺	(E2)		0.00815	$\alpha(K)=0.00666 \ 10; \ \alpha(L)=0.001158 \ 17; \ \alpha(M)=0.000261 \ 4; \\ \alpha(N+)=6.91\times10^{-5} \ 10 \\ \alpha(N)=6.04\times10^{-5} \ 9; \ \alpha(O)=8.37\times10^{-6} \ 12; \ \alpha(P)=3.76\times10^{-7} \ 6 \\ (W)=0.0071 \ 4; \\ \alpha(D)=0.0071 \ 4; \\ \alpha(D)=0.0071 \ 4; \\ \alpha(D)=0.0021 \ 4;$
675.20 11	0.91 8	779.63	5/2-	104.32 3/2-	M1+E2	0.8 4	0.0130 22	α (K)exp=0.00/4 4. α (K)=0.0109 19; α (L)=0.00164 22; α (M)=0.00036 5; α (N+)=9.7×10 ⁻⁵ 13

 $^{163}_{68}\mathrm{Er}_{95}$ -15

						163 Tm ε de	cay (1.810	h) 1982V	y07 (continued)
							γ (¹⁶³ E	(continued)	<u>)</u>
E _γ ‡	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{h}	Comments
683.87 <i>3</i>	2.66 17	683.75	(1/2)-	0.0	5/2-	(E2)		0.00767	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0109 \ 19; \ \alpha(\mathrm{L}) = 0.00164 \ 22; \ \alpha(\mathrm{M}) = 0.00036 \ 5; \\ &\alpha(\mathrm{N}+) = 9.7 \times 10^{-5} \ 13 \\ &\alpha(\mathrm{N}) = 8.5 \times 10^{-5} \ 11; \ \alpha(\mathrm{O}) = 1.21 \times 10^{-5} \ 17; \ \alpha(\mathrm{P}) = 6.5 \times 10^{-7} \ 12 \\ &\alpha(\mathrm{K}) = 0.0112 \ 19. \\ &\alpha(\mathrm{K}) = 0.00628 \ 9; \ \alpha(\mathrm{L}) = 0.001081 \ 16; \ \alpha(\mathrm{M}) = 0.000243 \ 4; \end{aligned}$
									$\alpha(N+)=6.45\times10^{-5} 9$ $\alpha(N)=5.63\times10^{-5} 8$; $\alpha(O)=7.82\times10^{-6} 11$; $\alpha(P)=3.55\times10^{-7} 5$ Mult.: $\alpha(K)\exp=0.0082 7$ gives $\delta(E2/M1)=1.7 + 6-3$ but ΔJ^{π} requires E2.
688.12 <i>11</i>	1.09 <i>11</i>	779.63	5/2-	91.55	7/2+	(E1)		0.00283	$\alpha(\mathbf{K})=0.00241 \ 4; \ \alpha(\mathbf{L})=0.000331 \ 5; \ \alpha(\mathbf{M})=7.27\times10^{-5} \ 11; \\ \alpha(\mathbf{N}+)=1.94\times10^{-5} \ 3 \\ \alpha(\mathbf{N})=1.687\times10^{-5} \ 24; \ \alpha(\mathbf{O})=2.42\times10^{-6} \ 4; \ \alpha(\mathbf{P})=1.307\times10^{-7} \ 19 \\ \alpha(\mathbf{K})=0.006 \ (1076 \ 4500)$
691.736 22	3.23 12	856.22	(3/2)-	164.42	5/2-	M1		0.01532	$\alpha(\mathbf{K}) = 0.000 (1900009).$ $\alpha(\mathbf{K}) = 0.01295 19; \ \alpha(\mathbf{L}) = 0.00185 3; \ \alpha(\mathbf{M}) = 0.000409 6; \ \alpha(\mathbf{N}+) = 0.0001099 16 \ \alpha(\mathbf{N}) = 9.53 \times 10^{-5} 14; \ \alpha(\mathbf{O}) = 1.384 \times 10^{-5} 20; \ \alpha(\mathbf{P}) = 7.78 \times 10^{-7} 11 \ \mathbf{M}$
695.81 <i>12</i>	0.70 8	779.63	5/2-	83.96	7/2-	M1+E2	0.7 4	0.0126 <i>19</i>	$\alpha(K)\exp=0.0137 8.$ $\alpha(K)=0.0106 17; \ \alpha(L)=0.00156 \ 20; \ \alpha(M)=0.00035 \ 5;$ $\alpha(N+)=9.3\times10^{-5} \ 12$ $\alpha(N)=8.1\times10^{-5} \ 10; \ \alpha(O)=1.16\times10^{-5} \ 16; \ \alpha(P)=6.3\times10^{-7} \ 11$ $\alpha(K)\exp=0.0107 \ 18.$
710.81 <i>11</i> 714.04 <i>10</i>	0.51 <i>5</i> 0.41 <i>4</i>	779.63 1059.75	5/2 ⁻ 3/2 ⁻	69.23 345.62	5/2+ 1/2 ⁻	M1 ^e		0.01415	$\alpha(K)=0.01196 \ 17; \ \alpha(L)=0.001708 \ 24; \ \alpha(M)=0.000377 \ 6; \ \alpha(N+)=0.0001014 \ 15 \ \alpha(N)=8.79\times10^{-5} \ 13; \ \alpha(O)=1.277\times10^{-5} \ 18; \ \alpha(P)=7.18\times10^{-7} \ 10$
717.42 3	0.92 8	717.39	3/2-	0.0	5/2-	M1+E2	1.5 4	0.0091 11	$\begin{aligned} \alpha(K) = 0.0075 & (C) = 0.00118 & 11; & \alpha(M) = 0.000263 & 24; \\ \alpha(K) = 0.0075 & (C) = 0.00118 & 11; & \alpha(M) = 0.000263 & 24; \\ \alpha(N+) = 7.0 \times 10^{-5} & 7 \\ \alpha(N) = 6.1 \times 10^{-5} & 6; & \alpha(O) = 8.7 \times 10^{-6} & 9; & \alpha(P) = 4.4 \times 10^{-7} & 6 \end{aligned}$
733.6 ^c 2 735.97 10	0.35 <i>3</i> 0.61 8	1514.61 985.67	3/2+ 5/2 ⁻	779.63 249.53	5/2 ⁻ 7/2 ⁻	E2(+M1)	≥2.46	0.0070 5	α (K)exp=0.0077 8. Level-energy difference=734.98. α (K)=0.0058 5; α (L)=0.00094 5; α (M)=0.000211 11; α (N+)=5.6×10 ⁻⁵ 3
749.6 <i>3</i>	0.32 9	1369.46	3/2+	619.36	3/2+				$\alpha(N)=4.9\times10^{-3} \ 3; \ \alpha(O)=6.9\times10^{-6} \ 4; \ \alpha(P)=3.3\times10^{-7} \ 3 \ \alpha(K)\exp=0.0054 \ 8.$
752.04 5	2.01 9	856.22	(3/2)-	104.32	3/2-	M1 ^e		0.01244	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01052 \ 15; \ \alpha(\mathbf{L}) = 0.001499 \ 21; \ \alpha(\mathbf{M}) = 0.000331 \ 5; \\ &\alpha(\mathbf{N}+) = 8.90 \times 10^{-5} \ 13 \\ &\alpha(\mathbf{N}) = 7.71 \times 10^{-5} \ 11; \ \alpha(\mathbf{O}) = 1.120 \times 10^{-5} \ 16; \ \alpha(\mathbf{P}) = 6.31 \times 10^{-7} \ 9 \\ &\alpha(\mathbf{K}) \exp = 0.0129 \ 9. \end{aligned}$

From ENSDF

 $^{163}_{68}\mathrm{Er}_{95}$ -16

¹⁶³₆₈Er₉₅-16

L.

					¹⁶³ Tr	n ε decay (1.	.810 h)	1982Vy07 (continued)	
					<u> γ(</u>	¹⁶³ Er) (cor	ntinued)			
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	Comments	
^x 756.17 7	1.17 9					M1		0.01227	$\alpha(K)=0.01037 \ 15; \ \alpha(L)=0.001479 \ 21; \ \alpha(M)=0.000326 \ 5; \\ \alpha(N+)=8.78\times10^{-5} \ 13 \\ \alpha(N)=7.61\times10^{-5} \ 11; \ \alpha(O)=1.105\times10^{-5} \ 16; \ \alpha(P)=6.22\times10^{-7} \ 9 \\ \alpha(K)\exp=0.0121 \ 12.$	
759.41 <i>9</i> *779.93 <i>5</i>	1.25 7 3.54 <i>13</i>	1538.79	3/2+	779.63	5/2-	d M1		0.01136	Mult.: $\alpha(K)\exp=0.0060\ 7\ \text{gives M1,E2 but } \Delta J^{\pi}\ \text{requires E1.}$ $\alpha(K)=0.00961\ 14;\ \alpha(L)=0.001368\ 20;\ \alpha(M)=0.000302\ 5;$ $\alpha(N+)=8.12\times10^{-5}\ 12$ $\alpha(N)=7.04\times10^{-5}\ 10;\ \alpha(O)=1.022\times10^{-5}\ 15;\ \alpha(P)=5.76\times10^{-7}\ 8$ $\alpha(K)\exp=0.0116\ 7.$ $780\gamma+782\gamma\ \text{in coin with ce}(K)(69\gamma),\ ce(K)(80\gamma),\ and$ $eev(104\gamma)$	
^x 781.88 9	2.03 9					E1,E2			$\alpha(K) = 0.0033 \ 14$ $\alpha(K) = 0.0023 \ 7$	
^x 785.72 14	0.46 6					E2(+M1)	≥2.2	0.0061 5	$\begin{aligned} \alpha(\mathbf{N}) &= \alpha(\mathbf{N}) = 0.0025 \ \gamma(\mathbf{L}) = 0.00081 \ 6; \ \alpha(\mathbf{M}) = 0.000181 \ 11; \\ \alpha(\mathbf{N}+) &= 4.8 \times 10^{-5} \ 3 \\ \alpha(\mathbf{N}) &= 4.2 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 5.9 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 2.9 \times 10^{-7} \ 3 \\ \alpha(\mathbf{K}) &= 0.0045 \ 10 \end{aligned}$	
790.12 6	1.65 11	1569.80	3/2+	779.63	5/2-	E1		0.00215	$\alpha(K) \exp [-0.0045 \ 10.$ $\alpha(K) = 0.00183 \ 3; \ \alpha(L) = 0.000249 \ 4; \ \alpha(M) = 5.47 \times 10^{-5} \ 8; \ \alpha(N+) = 1.464 \times 10^{-5} \ 21 \ \alpha(N) = 1.271 \times 10^{-5} \ 18; \ \alpha(O) = 1.83 \times 10^{-6} \ 3; \ \alpha(P) = 9.96 \times 10^{-8} \ 14 \ \alpha(N) = 0.0022 \ 5 \ \alpha(P) = 0.0022 \ 5 \ \alpha(P$	
796.2 <i>2</i> 798.74 <i>9</i>	0.35 6 0.92 5	1653.15 963.29	3/2 ⁺ (3/2) ⁺	856.22 164.42	(3/2) ⁻ 5/2 ⁻				Mult.: α (K)exp=0.010 (1976Ab09) gives M1,E2 but ΔJ^{π}	
803.469 22	1.44 5	1538.79	3/2+	735.38	1/2+,3/2+	M1		0.01055	requires E1. $\alpha(K)=0.00893 \ 13; \ \alpha(L)=0.001270 \ 18; \ \alpha(M)=0.000280 \ 4; \ \alpha(N+)=7.53\times10^{-5} \ 11 \ \alpha(N)=6.53\times10^{-5} \ 10; \ \alpha(O)=9.49\times10^{-6} \ 14; \ \alpha(P)=5.35\times10^{-7} \ 8 \ \alpha(P)=5.35\times10^{-7} \ 10$	
813.32 10	0.81 13	1593.03	3/2+	779.63	5/2-	E1		0.00203	$\alpha(\mathbf{K}) \exp = 0.0098 \ 7.$ $\alpha(\mathbf{K}) = 0.001727 \ 25; \ \alpha(\mathbf{L}) = 0.000235 \ 4; \ \alpha(\mathbf{M}) = 5.16 \times 10^{-5} \ 8; \ \alpha(\mathbf{N}+) = 1.381 \times 10^{-5} \ 20 \ \alpha(\mathbf{N}) = 1.199 \times 10^{-5} \ 17; \ \alpha(\mathbf{O}) = 1.724 \times 10^{-6} \ 25; \ \alpha(\mathbf{P}) = 9.42 \times 10^{-8} \ 14 \ \alpha(\mathbf{K}) \exp = 0.0020 \ 4$	
821.3 2 828.8 <i>3</i>	0.36 <i>10</i> 0.31 <i>5</i>	985.67 1369.46	5/2 ⁻ 3/2 ⁺	164.42 540.56	5/2 ⁻ 1/2 ⁺	M1		0.00978	$\alpha(K)=0.00827 \ 12; \ \alpha(L)=0.001175 \ 17; \ \alpha(M)=0.000259 \ 4; \\ \alpha(N+)=6.97\times10^{-5} \ 10 \\ \alpha(N)=6.04\times10^{-5} \ 9; \ \alpha(O)=8.78\times10^{-6} \ 13; \ \alpha(P)=4.95\times10^{-7} \ 7$	
833.96 ^c 4	2.75 10	1569.80	3/2+	735.38	1/2+,3/2+	M1+E2	1.2 3	0.0069 7	$\alpha(K) \exp = 0.0116 \ 28.$ $\alpha(K) = 0.0057 \ 6; \ \alpha(L) = 0.00086 \ 8; \ \alpha(M) = 0.000191 \ 16;$ $\alpha(N+) = 5.1 \times 10^{-5} \ 5$ $\alpha(N) = 4.4 \times 10^{-5} \ 4; \ \alpha(O) = 6.4 \times 10^{-6} \ 6; \ \alpha(P) = 3.4 \times 10^{-7} \ 4$	

¹⁶³₆₈Er₉₅-17

					1	⁶³ Tm ε deca	ny (1.810 h)	1982Vy07 (continued)
							$\gamma(^{163}\text{Er})$ (co	ntinued)
E_{γ}^{\ddagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\alpha^{\boldsymbol{h}}$	Comments
837.94 13	0.32 11	1801.56	3/2+	963.29	(3/2)+	(M1)	0.00951	Level-energy difference=834.42. $\alpha(K)\exp=0.0058 \ 4.$ $\alpha(K)=0.00805 \ 12; \ \alpha(L)=0.001143 \ 16; \ \alpha(M)=0.000252 \ 4;$ $\alpha(N+)=6.78\times10^{-5} \ 10$ $\alpha(N)=0.00252 \ 4;$ $\alpha(N)=0.00252 \ 4;$
844.69 ^c 13 ^x 846.57 12	0.45 <i>10</i> 0.83 <i>12</i>	1369.46	3/2+	526.33	5/2+	E2	0.00477	$\begin{aligned} \alpha(N) &= 3.88 \times 10^{-5} \ 9, \ \alpha(O) &= 8.54 \times 10^{-5} \ 12, \ \alpha(P) &= 4.82 \times 10^{-5} \ 7 \\ \alpha(K) &= 0.009 \ 3. \end{aligned}$ Level-energy difference=843.15. $\begin{aligned} \alpha(K) &= 0.00396 \ 6; \ \alpha(L) &= 0.000633 \ 9; \ \alpha(M) &= 0.0001416 \ 20; \\ \alpha(N+) &= 3.77 \times 10^{-5} \ 6 \\ \alpha(N) &= 3.28 \times 10^{-5} \ 5; \ \alpha(O) &= 4.62 \times 10^{-6} \ 7; \ \alpha(P) &= 2.25 \times 10^{-7} \ 4 \\ \alpha(K) &= x_0 \ 0.0030 \ 5. \end{aligned}$
^x 852.9 <i>3</i> 858.72 <i>6</i>	0.29 8 1.92 <i>13</i>	963.29	$(3/2)^+$	104.32	3/2-	(E1)	0.00183	$\alpha(\mathbf{K})=0.001555\ 22;\ \alpha(\mathbf{L})=0.000211\ 3;\ \alpha(\mathbf{M})=4.63\times10^{-5}\ 7;$ $\alpha(\mathbf{N}+)=1.240\times10^{-5}\ 18$
863.2 <i>3</i>	0.29 10	1826.49	3/2+	963.29	(3/2)+	M1,E2	0.0067 22	$\begin{aligned} &\alpha(\mathrm{N}) = 1.077 \times 10^{-5} \ 15; \ \alpha(\mathrm{O}) = 1.549 \times 10^{-6} \ 22; \ \alpha(\mathrm{P}) = 8.50 \times 10^{-8} \ 12 \\ &\alpha(\mathrm{K}) = 0.0026 \ 3. \\ &\alpha(\mathrm{K}) = 0.0056 \ 19; \ \alpha(\mathrm{L}) = 0.00083 \ 23; \ \alpha(\mathrm{M}) = 0.00018 \ 5; \\ &\alpha(\mathrm{N}+) = 4.9 \times 10^{-5} \ 14 \\ &\alpha(\mathrm{N}) = 4.3 \times 10^{-5} \ 12; \ \alpha(\mathrm{O}) = 6.2 \times 10^{-6} \ 18; \ \alpha(\mathrm{P}) = 3.3 \times 10^{-7} \ 12 \\ &\alpha(\mathrm{K}) = 0.0064 \ 25 \end{aligned}$
873.88 17	0.47 7	1538.79	3/2+	664.86	5/2+	(E2) ^{<i>d</i>}	0.00446	$\alpha(K) = 0.00370 \ 6; \ \alpha(L) = 0.000587 \ 9; \ \alpha(M) = 0.0001311 \ 19; \ \alpha(N+) = 3.49 \times 10^{-5} \ 5$
881.4 <i>3</i>	0.25 6	985.67	5/2-	104.32	3/2-	(M1)	0.00840	$\begin{aligned} \alpha(N) &= 3.04 \times 10^{-5} 5; \ \alpha(O) &= 4.29 \times 10^{-6} 6; \ \alpha(P) &= 2.11 \times 10^{-7} 3 \\ \alpha(K) &= 0.0028 \ 12. \\ \alpha(K) &= 0.00711 \ 10; \ \alpha(L) &= 0.001008 \ 15; \ \alpha(M) &= 0.000222 \ 4; \\ \alpha(N+) &= 5.98 \times 10^{-5} 9 \\ \alpha(N) &= 5.18 \times 10^{-5} \ 8; \ \alpha(O) &= 7.53 \times 10^{-6} \ 11; \ \alpha(P) &= 4.25 \times 10^{-7} \ 6 \end{aligned}$
886.06 <i>3</i>	2.00 10	1569.80	3/2+	683.75	(1/2)-	E1	1.72×10 ⁻³	$\alpha(K) \exp = 0.014 \ 4.$ $\alpha(K) = 0.001465 \ 21; \ \alpha(L) = 0.000199 \ 3; \ \alpha(M) = 4.35 \times 10^{-5} \ 6;$ $\alpha(N+) = 1.166 \times 10^{-5} \ 17$ $\alpha(N) = 1.012 \times 10^{-5} \ 15; \ \alpha(O) = 1.457 \times 10^{-6} \ 21; \ \alpha(P) = 8.01 \times 10^{-8} \ 12$
^x 892.8 2 894.26 ⁱ 11	0.65 <i>13</i> 1.4 ^{<i>i</i>} 7	963.29	(3/2)+	69.23	5/2+	[M1,E2]	0.0062 20	$\alpha(K) \exp = 0.00185 \ 21.$ $\alpha(K) = 0.0052 \ 17; \ \alpha(L) = 0.00076 \ 21; \ \alpha(M) = 0.00017 \ 5; \alpha(N+) = 4.5 \times 10^{-5} \ 13 \alpha(N) = 3.9 \times 10^{-5} \ 11; \ \alpha(O) = 5.7 \times 10^{-6} \ 16; \ \alpha(P) = 3.1 \times 10^{-7} \ 11 I_{\gamma}: I_{\gamma} = 2.10 \ 10 \text{ divided (evaluators) using } \alpha(K) \exp \text{ and assumed mults.} $
894.26 ⁱ 11	0.7 ⁱ 7	985.67	5/2-	91.55	7/2+	[E1]	1.69×10^{-3}	$\alpha(K) = 0.001439 \ 21; \ \alpha(L) = 0.000195 \ 3; \ \alpha(M) = 4.28 \times 10^{-5} \ 6;$

L.

					163 Tm ε decay	y (1.810 h)	1982Vy07	7 (continued)
						$\gamma(^{163}\text{Er})$	(continued)	
${\rm E}_{\gamma}$ ‡	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	f Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	Comments
902.18 14	0.55 13	985.67	5/2-	83.96 7/2	- M1+E2	0.9 7	0.0062 16	$\begin{aligned} \alpha(N+) &= 1.145 \times 10^{-5} \ 16 \\ \alpha(N) &= 9.94 \times 10^{-6} \ 14; \ \alpha(O) &= 1.431 \times 10^{-6} \ 20; \\ \alpha(P) &= 7.87 \times 10^{-8} \ 11 \\ \alpha(K) &= 0.0053 \ 14; \ \alpha(L) &= 0.00077 \ 17; \ \alpha(M) &= 0.00017 \ 4; \\ \alpha(N+) &= 4.6 \times 10^{-5} \ 10 \\ \alpha(D) &= 5.6 \ (D) \ 5.7 \ 10^{-6} \ 12 \ (D) \ 2.1 \ 10^{-7} \ 0 \end{aligned}$
905.6 2	1.16 <i>18</i>	1569.80	3/2+	664.86 5/2	+ M1(+E2)	≤0.61	0.0074 6	$\alpha(N)=4.0\times10^{-5} 9; \ \alpha(O)=5.7\times10^{-6} 13; \ \alpha(P)=3.1\times10^{-7} 9$ $\alpha(K)\exp=0.0054 \ 13.$ $\alpha(K)=0.0062 \ 5; \ \alpha(L)=0.00089 \ 6; \ \alpha(M)=0.000196 \ 13;$ $\alpha(N+)=5.3\times10^{-5} 4$ $\alpha(N)=4.6\times10^{-5} 3; \ \alpha(D)=6.6\times10^{-6} 5; \ \alpha(D)=2.7\times10^{-7} 3$
908.18 ^c 18	1.10 <i>21</i>	1872.79	(3/2)+	963.29 (3/2	2) ⁺ E2(+M1)	≥2.0	0.0045 4	$\alpha(\mathbf{N})=4.0\times10^{-5} \text{ s; } \alpha(\mathbf{O})=6.0\times10^{-5} \text{ s; } \alpha(\mathbf{P})=5.7\times10^{-5} \text{ s}$ $\alpha(\mathbf{K})=0.0075 \ 16.$ $\alpha(\mathbf{K})=0.0037 \ 4; \ \alpha(\mathbf{L})=0.00058 \ 4; \ \alpha(\mathbf{M})=0.000128 \ 9;$ $\alpha(\mathbf{N}+)=3.42\times10^{-5} \ 25$ $\alpha(\mathbf{N})=2.98\times10^{-5} \ 21; \ \alpha(\mathbf{O})=4.2\times10^{-6} \ 4; \ \alpha(\mathbf{P})=2.15\times10^{-7} \ 21$
916.81 9	1.10 <i>11</i>	985.67	5/2-	69.23 5/2	+ E1		1.61×10 ⁻³	Level-energy difference=909.50. $\alpha(K)=0.001373\ 20;\ \alpha(L)=0.000186\ 3;\ \alpha(M)=4.07\times10^{-5}\ 6;\ \alpha(N+)=1.091\times10^{-5}\ 16$ $\alpha(N)=9.47\times10^{-6}\ 14;\ \alpha(O)=1.364\times10^{-6}\ 20;$
^x 923.1 <i>3</i>	0.45 12				E2(+M1)	≥1.6	0.0045 5	$\alpha(P)=7.51\times10^{-8} 11$ $\alpha(K)\exp=0.00151 24.$ $\alpha(K)=0.0037 5; \alpha(L)=0.00057 6; \alpha(M)=0.000127 12;$ $\alpha(N+)=3.4\times10^{-5} 4$ $\alpha(N)=2.9\times10^{-5} 3; \alpha(Q)=4.2\times10^{-6} 5; \alpha(P)=2.2\times10^{-7} 3$
928.06 11	0.74 11	1593.03	3/2+	664.86 5/2	+ M1(+E2)	≤1.0	0.0065 9	$\alpha(\mathbf{K}) = 2.5 \times 10^{-5} \text{ s}, \alpha(\mathbf{C}) = 4.2 \times 10^{-5} \text{ s}, \alpha(\mathbf{I}) = 2.2 \times 10^{-5} \text{ s}$ $\alpha(\mathbf{K}) = 0.0032 \ 10.$ $\alpha(\mathbf{K}) = 0.0055 \ 8; \ \alpha(\mathbf{L}) = 0.00079 \ 10; \ \alpha(\mathbf{M}) = 0.000175 \ 21;$ $\alpha(\mathbf{N}+) = 4.7 \times 10^{-5} \ 6$ $\alpha(\mathbf{K}) = 0.0055 \ \mathbf{K} = 0.00079 \ \mathbf{K} = 0.000175 \ \mathbf{K} = 0.00$
940.62 3	2.72 9	1514.61	3/2+	574.08 3/2	+ E2		0.00382	$\alpha(N)=4.1\times10^{-5} \text{ s; } \alpha(O)=5.9\times10^{-6} \text{ s; } \alpha(P)=5.3\times10^{-7} \text{ s}$ $\alpha(K)\exp=0.0058 \ I0.$ $\alpha(K)=0.00318 \ 5; \ \alpha(L)=0.000494 \ 7; \ \alpha(M)=0.0001102 \ I6;$ $\alpha(N+)=2.94\times10^{-5} \ 5$ $\alpha(N)=0.0001102 \ I6;$ $\alpha(N+)=2.94\times10^{-5} \ 5$
945.27 <i>3</i>	4.67 12	1801.56	3/2+	856.22 (3/2	2) ⁻ E1		1.52×10 ⁻³	$\alpha(N)=2.56\times10^{-5} 4; \ \alpha(O)=3.62\times10^{-6} 5; \ \alpha(P)=1.81\times10^{-7} 3$ $\alpha(K)\exp=0.0026 2.$ $\alpha(K)=0.001296 19; \ \alpha(L)=0.0001752 25; \ \alpha(M)=3.84\times10^{-5}$ $6; \ \alpha(N+)=1.028\times10^{-5} 15$ $\alpha(N)=8.93\times10^{-6} 13; \ \alpha(O)=1.287\times10^{-6} 18;$
950.85 7	1.03 7	1569.80	3/2+	619.36 3/2	+ M1+E2	0.9 <i>3</i>	0.0055 6	$\alpha(P)=7.10\times10^{-\circ} 10$ $\alpha(K)\exp=0.00146 \ I2.$ $\alpha(K)=0.0047 \ 6; \ \alpha(L)=0.00068 \ 7; \ \alpha(M)=0.000150 \ I5;$

Т

					¹⁶³ T i	m ε decay (1	.810 h)	1982Vy07 (co	ntinued)
						<u>γ(</u>	¹⁶³ Er) (co	ntinued)	
E_{γ}^{\ddagger}	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{h}	Comments
									$\alpha(N+)=4.0\times10^{-5} 4$ $\alpha(N)=3.5\times10^{-5} 4; \ \alpha(O)=5.0\times10^{-6} 5; \ \alpha(P)=2.7\times10^{-7}$ $\alpha(K)=0.0047 5$
961.61 <i>12</i>	0.65 12	2243.21	3/2-	1281.16	1/2+,3/2+	E1		1.47×10 ⁻³	$\alpha(K) \approx p = 0.0047 \ 5.$ $\alpha(K) = 0.001255 \ 18; \ \alpha(L) = 0.0001696 \ 24;$ $\alpha(M) = 3.72 \times 10^{-5} \ 6; \ \alpha(N+) = 9.95 \times 10^{-6} \ 14$ $\alpha(N) = 8.64 \times 10^{-6} \ 12; \ \alpha(O) = 1.245 \times 10^{-6} \ 18;$ $\alpha(P) = 6.87 \times 10^{-8} \ 10$ $\alpha(K) \exp = 0.0012 \ 4.$
975.19 ^a j 4	2.00 10	1059.75	3/2-	83.96	7/2-	(E2)		0.00354	$\begin{aligned} \alpha(\mathbf{K}) = 0.00296 \ 5; \ \alpha(\mathbf{L}) = 0.000455 \ 7; \ \alpha(\mathbf{M}) = 0.0001013 \\ 15; \ \alpha(\mathbf{N}+) = 2.70 \times 10^{-5} \ 4 \\ \alpha(\mathbf{N}) = 2.35 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 3.33 \times 10^{-6} \ 5; \\ \alpha(\mathbf{P}) = 1.683 \times 10^{-7} \ 24 \\ \alpha(\mathbf{K}) \exp = 0.0038 \ 3. \end{aligned}$
987.74 ^c 10	1.32 11	1722.39	3/2+	735.38	1/2+,3/2+	M1+E2	1.1 4	0.0048 7	$\alpha(K)=0.0040 \ 6; \ \alpha(L)=0.00059 \ 7; \ \alpha(M)=0.000130 \ 16; \\ \alpha(N+)=3.5\times10^{-5} \ 5 \\ \alpha(N)=3.0\times10^{-5} \ 4; \ \alpha(O)=4.3\times10^{-6} \ 6; \ \alpha(P)=2.4\times10^{-7} \\ 4 \\ Level-energy \ difference=987.01. \\ \alpha(K)=x_{P}=0.0040 \ 5 \\ \end{array}$
991.0 4	0.31 9	1059.75	3/2-	69.23	5/2+	(E1) ^d		1.39×10 ⁻³	$\alpha(\mathbf{K}) = 0.001187 \ 17; \ \alpha(\mathbf{L}) = 0.0001601 \ 23; \alpha(\mathbf{M}) = 3.51 \times 10^{-5} \ 5; \ \alpha(\mathbf{N}+) = 9.39 \times 10^{-6} \ 14 \alpha(\mathbf{N}) = 8.15 \times 10^{-6} \ 12; \ \alpha(\mathbf{O}) = 1.176 \times 10^{-6} \ 17; \alpha(\mathbf{P}) = 6.50 \times 10^{-8} \ 10 \alpha(\mathbf{K}) = \exp(-0.003) \ (1976 \ \Delta b09)$
995.8 2	1.08 12	1569.80	3/2+	574.08	3/2+	M1(+E2)	≤0.43	0.00601 24	$\alpha(K) \approx 0.005 (17) (1000).$ $\alpha(K) = 0.00509 21; \ \alpha(L) = 0.00072 3; \ \alpha(M) = 0.000159$ $6; \ \alpha(N+) = 4.27 \times 10^{-5} 16$ $\alpha(N) = 3.71 \times 10^{-5} 14; \ \alpha(O) = 5.38 \times 10^{-6} 21;$ $\alpha(P) = 3.03 \times 10^{-7} 13$ $\alpha(K) \approx n = 0.0058 8$
997.67 19	0.47 9	1538.79	3/2+	540.56	1/2+	M1+E2	1.3 9	0.0044 14	$\alpha(K) = 0.0037 \ 12; \ \alpha(L) = 0.00055 \ 16; \ \alpha(M) = 0.00012 \ 4; \alpha(N+) = 3.2 \times 10^{-5} \ 9 \alpha(N) = 2.8 \times 10^{-5} \ 8; \ \alpha(O) = 4.1 \times 10^{-6} \ 12; \ \alpha(P) = 2.2 \times 10^{-7} 8 \alpha(K) = 0.0038 \ 8$
1005.01 9	1.03 15	1722.39	3/2+	717.39	3/2-	E1		1.36×10 ⁻³	$\alpha(K) = 0.001156 \ 17; \ \alpha(L) = 0.0001559 \ 22; \\ \alpha(M) = 3.41 \times 10^{-5} \ 5; \ \alpha(N+) = 9.15 \times 10^{-6} \ 13$

From ENSDF

					16	53 Tm ε decay	(1.810 h)	1982Vy07	(continued)
							$\gamma(^{163}\text{Er})$ (c	continued)	
E_{γ}^{\ddagger}	I_{γ} ‡ f	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^{h}	Comments
1029.18 6	0.81 10	1569.80	3/2+	540.56 1/2	+	E2		0.00317	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001156 \ 17; \ \alpha(\mathbf{L}) = 0.0001559 \ 22; \ \alpha(\mathbf{M}) = 3.41 \times 10^{-5} \\ &5; \ \alpha(\mathbf{N}+) = 9.15 \times 10^{-6} \ 13 \\ &\alpha(\mathbf{N}) = 7.94 \times 10^{-6} \ 12; \ \alpha(\mathbf{O}) = 1.145 \times 10^{-6} \ 16; \\ &\alpha(\mathbf{P}) = 6.34 \times 10^{-8} \ 9 \\ &\alpha(\mathbf{K}) = 8.96 \times 10^{-5} \ 13; \end{aligned}$
1022.05.11	0.70.12	1652 15	2/2+	610.26 2/2	+				$\alpha(N+)=2.39\times10^{-5} 4$ $\alpha(N)=2.08\times10^{-5} 3; \ \alpha(O)=2.96\times10^{-6} 5; \ \alpha(P)=1.510\times10^{-7} 22$ $\alpha(K)\exp=0.0022 4.$ Mult + $\alpha(K)\exp=0.001 (1076 Ab00)$ gives F1 but A U
1055.95 11	0.70 12	1035.15	5/2	019.30 3/2					requires M1,E2.
1037.1 4	0.67 7	1722.39	3/2+	683.75 (1/2	2)-				Mult.: α (K)exp=0.003 (1976Ab09) gives M1,E2 but ΔJ^{π} requires E1.
1042.66 ^c 9	0.74 12	1569.80	3/2+	526.33 5/2	+	M1(+E2)	≤1.2	0.0048 8	$\alpha(K)=0.0041\ 7;\ \alpha(L)=0.00058\ 9;\ \alpha(M)=0.000129\ 18;$ $\alpha(N+)=3.5\times10^{-5}\ 5$
									$\alpha(N)=3.0\times10^{-5} 5; \alpha(O)=4.4\times10^{-6} 7; \alpha(P)=2.4\times10^{-7} 4$ Level-energy difference=1043.46. $\alpha(K)=0.0044 9.$
1046.9 2 1052.37 <i>13</i>	0.69 8 0.56 8	1826.49 1593.03	3/2 ⁺ 3/2 ⁺	779.63 5/2 540.56 1/2	+	(M1) ^e		0.00545	Mult.: $\alpha(K)\exp=0.00245$ gives E2 but ΔJ^{π} requires E1. $\alpha(K)=0.004627$; $\alpha(L)=0.00065110$; $\alpha(M)=0.000143420$; $\alpha(N+)=3.86\times10^{-5}6$
									$\alpha(N)=3.34\times10^{-3} 5; \alpha(O)=4.86\times10^{-6} 7; \alpha(P)=2.75\times10^{-7} 4$ $\alpha(K)=0.0149 22.$
1066.49 8	1.06 9	1801.56	3/2+	735.38 1/2	+,3/2+	M1+E2	1.0 4	0.0041 6	$\alpha(K) = 0.0035 5; \alpha(L) = 0.00050 6; \alpha(M) = 0.000111 14; \alpha(N+) = 3.0 \times 10^{-5} 4$
									$\alpha(N)=2.6\times10^{-5}$ 4; $\alpha(O)=3.7\times10^{-6}$ 5; $\alpha(P)=2.0\times10^{-7}$ 3 $\alpha(K)\exp=0.0035$ 4.
1075.13 <i>3</i>	4.28 20	1514.61	3/2+	439.54 5/2	_	E1		1.20×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001022 \ 15; \ \alpha(\mathbf{L}) = 0.0001373 \ 20; \ \alpha(\mathbf{M}) = 3.01 \times 10^{-5} \\ &5; \ \alpha(\mathbf{N}+) = 8.06 \times 10^{-6} \ 12 \\ &\alpha(\mathbf{N}) = 6.99 \times 10^{-6} \ 10; \ \alpha(\mathbf{O}) = 1.010 \times 10^{-6} \ 15; \end{aligned}$
									$\alpha(P)=5.61\times10^{-8} 8$
1091.01 4	1.78 <i>18</i>	1826.49	3/2+	735.38 1/2	+,3/2+	M1+E2	1.0 4	0.0039 6	$\alpha(K) \exp -0.00125 T/.$ $\alpha(K) = 0.0033 5; \ \alpha(L) = 0.00047 6; \ \alpha(M) = 0.000105 13;$ $\alpha(N+) = 2.8 \times 10^{-5} 4$
								2	$\alpha(N)=2.4\times10^{-5}$ 3; $\alpha(O)=3.5\times10^{-6}$ 5; $\alpha(P)=1.9\times10^{-7}$ 3 $\alpha(K)\exp=0.0034$ 4.
1099.38 <i>3</i>	2.82 17	1538.79	3/2+	439.54 5/2	_	E1		1.15×10 ⁻³	$\alpha(K) = 0.000981 \ 14; \ \alpha(L) = 0.0001318 \ 19; \ \alpha(M) = 2.88 \times 10^{-5} \\ 4; \ \alpha(N+) = 7.73 \times 10^{-6} \ 11 \\ \alpha(N) = 6.71 \times 10^{-6} \ 10; \ \alpha(O) = 9.69 \times 10^{-7} \ 14; \ \alpha(P) = 5.39 \times 10^{-8} \\ 8 \\ \alpha(K) \exp = 0.00104 \ 12 $

From ENSDF

					163 Tm ε do	ecay (1.810 h	ı) 198 2	2Vy07 (continu	ued)
						$\gamma(^{163}\text{Er})$) (continu	ed)	
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	Comments
1130.224 23	12.3 4	1569.80	3/2+	439.54	5/2-	E1		1.10×10 ⁻³	$\alpha(K)=0.000933 \ I3; \ \alpha(L)=0.0001252 \ I8; \alpha(M)=2.74\times10^{-5} \ 4; \ \alpha(N+)=1.162\times10^{-5} \ I7 \alpha(N)=6.37\times10^{-6} \ 9; \ \alpha(O)=9.21\times10^{-7} \ I3; \alpha(P)=5.13\times10^{-8} \ 8; \ \alpha(IPF)=4.28\times10^{-6} \ 6 \alpha(K)=0.00096 \ 6$
1135.28 9	1.81 <i>17</i>	1538.79	3/2+	404.00	3/2-	E1		1.09×10 ⁻³	$\alpha(K) = 0.000926 \ 13; \ \alpha(L) = 0.0001242 \ 18; \alpha(M) = 2.72 \times 10^{-5} \ 4; \ \alpha(N+) = 1.227 \times 10^{-5} \ 18 \alpha(N) = 6.32 \times 10^{-6} \ 9; \ \alpha(O) = 9.13 \times 10^{-7} \ 13; \alpha(P) = 5.09 \times 10^{-8} \ 8; \ \alpha(IPF) = 4.99 \times 10^{-6} \ 8 \alpha(K) \exp = 0.0013 \ 2.$
1137.10 <i>10</i>	2.01 11	1872.79	(3/2)+	735.38	1/2+,3/2+	M1(+E2)	≤0.57	0.00428 25	$\alpha(K) = 0.00363 \ 21; \ \alpha(L) = 0.00051 \ 3; \alpha(M) = 0.000113 \ 6; \ \alpha(N+) = 3.15 \times 10^{-5} \ 17 \alpha(N) = 2.63 \times 10^{-5} \ 14; \ \alpha(O) = 3.82 \times 10^{-6} \ 21; \alpha(P) = 2.15 \times 10^{-7} \ 14; \ \alpha(IPF) = 1.19 \times 10^{-6} \ 4 \alpha(K) \exp = 0.0039 \ 4.$
1142.51 5	4.33 15	1826.49	3/2+	683.75	(1/2)-	E1		1.08×10 ⁻³	$\alpha(K) = 0.000915 \ 13; \ \alpha(L) = 0.0001227 \ 18; \alpha(M) = 2.69 \times 10^{-5} \ 4; \ \alpha(N+) = 1.335 \times 10^{-5} \ 19 \alpha(N) = 6.25 \times 10^{-6} \ 9; \ \alpha(O) = 9.03 \times 10^{-7} \ 13; \alpha(P) = 5.03 \times 10^{-8} \ 7; \ \alpha(IPF) = 6.15 \times 10^{-6} \ 9 \alpha(K) \exp = 0.00072 \ 7.$
x1147.36 <i>15</i> 1153.45 <i>3</i>	0.39 <i>10</i> 5.64 <i>16</i>	1593.03	3/2+	439.54	5/2-	E1		1.06×10 ⁻³	α (K)=0.000900 13; α (L)=0.0001206 17; α (M)=2.64×10 ⁻⁵ 4; α (N+)=1.534×10 ⁻⁵ 22 α (N)=6.14×10 ⁻⁶ 9; α (O)=8.87×10 ⁻⁷ 13; α (P)=4.94×10 ⁻⁸ 7; α (IPF)=8.27×10 ⁻⁶ 12 α (K)exp=0.00077 5.
1158.0 ^{aj} 2 1165.6 2	0.29 <i>16</i> 0.76 <i>12</i>	2122.21 1569.80	$\frac{1/2^{(-)}}{3/2^+}$,3/2	963.29 404.00	$(3/2)^+$ $3/2^-$				Mult.: α (K)exp=0.0028 <i>16</i> consistent with E2.
1168.97 <i>5</i>	2.3 3	1514.61	3/2+	345.62	1/2-	E1		1.04×10 ⁻³	$\alpha(K)=0.000879 \ 13; \ \alpha(L)=0.0001177 \ 17; \\ \alpha(M)=2.58\times10^{-5} \ 4; \ \alpha(N+)=1.90\times10^{-5} \ 3 \\ \alpha(N)=5.99\times10^{-6} \ 9; \ \alpha(O)=8.66\times10^{-7} \ 13; \\ \alpha(P)=4.83\times10^{-8} \ 7; \ \alpha(IPF)=1.208\times10^{-5} \ 17 \\ \alpha(K)\exp=0.00088 \ 14.$
1176.09 ^{<i>c</i>} 3	2.60 16	1281.16	1/2+,3/2+	104.32	3/2-	E1		1.03×10 ⁻³	$\alpha(K) = 0.000869 \ 13; \ \alpha(L) = 0.0001164 \ 17; \alpha(M) = 2.55 \times 10^{-5} \ 4; \ \alpha(N+) = 2.10 \times 10^{-5} \ 3 \alpha(N) = 5.92 \times 10^{-6} \ 9; \ \alpha(O) = 8.56 \times 10^{-7} \ 12; \alpha(P) = 4.78 \times 10^{-8} \ 7; \ \alpha(IPF) = 1.414 \times 10^{-5} \ 20 Level-energy difference = 1176.83. \alpha(K) exp = 0.00087 \ 18.$

				¹⁶³ T	$m \varepsilon$ decay	r (1.810 h)	1982Vy07 (continued)
						γ ⁽¹⁶³ Er) (cont	tinued)
Ε _γ ‡	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{h}	Comments
1181.94 16	0.81 11	1722.39	3/2+	540.56 1/2+	(E2)	0.00240	$\alpha(K)=0.00202 \ 3; \ \alpha(L)=0.000298 \ 5; \ \alpha(M)=6.60\times10^{-5} \ 10; \\ \alpha(N+)=2.11\times10^{-5} \ 3 \\ \alpha(N)=1.534\times10^{-5} \ 22; \ \alpha(O)=2.19\times10^{-6} \ 3; \ \alpha(P)=1.149\times10^{-7} \ 16; \\ \alpha(IPF)=3.49\times10^{-6} \ 5 \\ \alpha(IPF)=3.40\times10^{-6} \ 5 \\$
1189.00 ⁱ 13	0.42 ^{<i>i</i>} 11	1593.03	3/2+	404.00 3/2-	(E1)	1.02×10 ⁻³	α(K)exp=0.0024 0. $ α(K)=0.000852 12; α(L)=0.0001141 16; α(M)=2.50×10^{-5} 4; α(N+)=2.51×10^{-5} 4 $ $ α(N)=5.81×10^{-6} 9; α(O)=8.40×10^{-7} 12; α(P)=4.68×10^{-8} 7; α(IPF)=1.84×10^{-5} 3 $ $ I_{\gamma}: total I_{\gamma}=0.85 11. $ 1982Vy07 place this γ from the 1593 level only. Least-squares analysis suggests double placement (evaluators). Equal intensity assigned, arbitrarily, in each place. α(K)exp=0.0013 5.
1189.00 ⁱ 13	0.42 ⁱ 11	1872.79	(3/2)+	683.75 (1/2)-	(E1)		$\alpha(K) = 0.000852$ $\alpha(K) = 0.0013$ 5
1192.34 <i>19</i>	0.86 8	1538.79	3/2+	345.62 1/2-	(E1)	1.01×10 ⁻³	$\alpha(\mathbf{K}) = 0.000848 \ 12; \ \alpha(\mathbf{L}) = 0.0001135 \ 16; \ \alpha(\mathbf{M}) = 2.48 \times 10^{-5} \ 4; \\ \alpha(\mathbf{N}+) = 2.62 \times 10^{-5} \ 4 \\ \alpha(\mathbf{N}) = 5.78 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 8.35 \times 10^{-7} \ 12; \ \alpha(\mathbf{P}) = 4.66 \times 10^{-8} \ 7; \\ \alpha(\mathbf{IPF}) = 1.96 \times 10^{-5} \ 3 \\ \alpha(\mathbf{N}) = 0.0007 \ 3 \$
1205.019 24	13.1 3	1369.46	3/2+	164.42 5/2-	E1		$\alpha(K)\exp=0.0007.5.$ $\alpha(K)=0.000832$ $\alpha(K)\exp=0.00083.5.$
1213.52 <i>15</i> <i>x</i> 1218.89 <i>19</i>	0.72 <i>10</i> 0.47 7	1653.15	3/2+	439.54 5/2-			
1224.152 24	11.2 3	1569.80	3/2+	345.62 1/2-	E1		$\alpha(K)=0.000809$ $\alpha(K)=0.00072$ 4
^x 1240.27 <i>12</i>	0.74 5				E2	0.00219	$\alpha(K) = 0.00184 \ 3; \ \alpha(L) = 0.000269 \ 4; \ \alpha(M) = 5.95 \times 10^{-5} \ 9; \\ \alpha(N+) = 2.58 \times 10^{-5} \ 4 \\ \alpha(N) = 1.384 \times 10^{-5} \ 20; \ \alpha(O) = 1.98 \times 10^{-6} \ 3; \ \alpha(P) = 1.047 \times 10^{-7} \ 15; \\ \alpha(IPF) = 9.90 \times 10^{-6} \ 14 \\ \alpha(K) \exp = 0.00174 \ 26$
1247.44 3	4.87 13	1593.03	3/2+	345.62 1/2-	E1		$\alpha(K) \approx 0.00174 \ 20.$ $\alpha(K) = 0.000783 \ \alpha(K) \approx p = 0.00066 \ 5.$
1251.90 ^c 10	1.08 5	1917.48	(3/2)+	664.86 5/2+	E2	0.00215	$\alpha(K)=0.00180 \ 3; \ \alpha(L)=0.000264 \ 4; \ \alpha(M)=5.84\times10^{-5} \ 9; \\ \alpha(N+)=2.71\times10^{-5} \ 4 \\ \alpha(N)=1.357\times10^{-5} \ 19; \ \alpha(O)=1.94\times10^{-6} \ 3; \ \alpha(P)=1.028\times10^{-7} \ 15; \\ \alpha(IPF)=1.149\times10^{-5} \ 17 \\ Level-energy \ difference=1252.62. \\ \alpha(K)exp=0.0019 \ 3.$

From ENSDF

Т

					163	³ Tm ε decay	(1.810 h)	1982Vy07	(continued)
							$\gamma(^{163}\text{Er})$ (continued)	
$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^{h}	Comments
1261.20 8	1.30 14	1801.56	3/2+	540.56	1/2+	(M1) ^e		0.00354	$\alpha(K)=0.00299 \ 5; \ \alpha(L)=0.000418 \ 6; \ \alpha(M)=9.21\times10^{-5} \ 13; \\ \alpha(N+)=4.03\times10^{-5} \ 6 \\ \alpha(N)=2.15\times10^{-5} \ 3; \ \alpha(O)=3.13\times10^{-6} \ 5; \ \alpha(P)=1.775\times10^{-7} \\ 25; \ \alpha(IPF)=1.548\times10^{-5} \ 22 \\ \alpha(K)=0.0049 \ 6 \\ \alpha(N)=0.0049 \ 6 \\ \alpha(N)=0.00$
1265.116 25	27.8 5	1369.46	3/2+	104.32	3/2-	E1			$\alpha(K) = 0.000764$ $\alpha(K) = 0.000764$
1273.17 14	0.97 18	2052.50	3/2-	779.63	5/2-	M1(+E2)	≤0.68	0.00324 23	$\alpha(K) = 0.00274 \ 19; \ \alpha(L) = 0.000385 \ 25; \ \alpha(M) = 8.5 \times 10^{-5} \ 6; \alpha(N+) = 4.00 \times 10^{-5} \ 20 \alpha(N) = 1.98 \times 10^{-5} \ 13; \ \alpha(O) = 2.87 \times 10^{-6} \ 19; \alpha(P) = 1.62 \times 10^{-7} \ 12; \ \alpha(IPF) = 1.72 \times 10^{-5} \ 6 \alpha(K) \exp = 0.0033 \ 7.$
1285.82 5	1.80 14	1826.49	3/2+	540.56	1/2+	M1+E2	0.7 4	0.0029 4	$\alpha(K) = 0.0025 \ 3; \ \alpha(L) = 0.00035 \ 4; \ \alpha(M) = 7.7 \times 10^{-5} \ 9; \\ \alpha(N+) = 4.0 \times 10^{-5} \ 3 \\ \alpha(N) = 1.80 \times 10^{-5} \ 19; \ \alpha(O) = 2.6 \times 10^{-6} \ 3; \ \alpha(P) = 1.46 \times 10^{-7} \\ 18; \ \alpha(IPF) = 1.89 \times 10^{-5} \ 9 \\ \alpha(K) = 0.0025 \ 3.$
1300.41 6	2.78 17	1369.46	3/2+	69.23	5/2+	M1+E2	1.0 4	0.0027 3	$\begin{aligned} \alpha(K) &= 0.0022 \ 3; \ \alpha(L) = 0.00032 \ 4; \ \alpha(M) = 7.0 \times 10^{-5} \ 8; \\ \alpha(N+) &= 4.0 \times 10^{-5} \ 3 \\ \alpha(N) &= 1.62 \times 10^{-5} \ 18; \ \alpha(O) = 2.3 \times 10^{-6} \ 3; \ \alpha(P) = 1.30 \times 10^{-7} \\ 17; \ \alpha(IPF) = 2.11 \times 10^{-5} \ 10 \\ \alpha(K) &= 0.00224 \ 21. \end{aligned}$
x1303.80 12 1307.26 11	1.06 7 0.94 7	1653.15	3/2+	345.62	1/2-				Mult.: α (K)exp=0.002 (1976Ab09) gives M1,E2 but ΔJ^{π}
1318.34 <i>3</i>	8.27 17	1722.39	3/2+	404.00	3/2-	(E1) <i>d</i>			requires E1. $\alpha(K)=0.00071$ $\alpha(K)=0.00118 8.$
1323.64 18	0.49 12	2040.68	3/2+	717.39	3/2-	(E1) ^{<i>d</i>}			$\alpha(K) = 0.000706$ $\alpha(K) = 0.002 (1976 \Delta b 09)$
1332.13 7	0.70 12	1872.79	(3/2)+	540.56	1/2+	M1(+E2)	≤0.91	0.0029 3	$\alpha(\mathbf{K}) \approx 0.00239\ 24;\ \alpha(\mathbf{L}) = 0.00034\ 3;\ \alpha(\mathbf{M}) = 7.4 \times 10^{-5}\ 7;$ $\alpha(\mathbf{N}+) = 4.9 \times 10^{-5}\ 3$ $\alpha(\mathbf{N}) = 1.73 \times 10^{-5}\ 16;\ \alpha(\mathbf{O}) = 2.51 \times 10^{-6}\ 24;$ $\alpha(\mathbf{P}) = 1.41 \times 10^{-7}\ 15;\ \alpha(\mathbf{IPF}) = 2.93 \times 10^{-5}\ 13$ $\alpha(\mathbf{K}) \approx p = 0.0028\ 6.$
1338.62 <i>14</i> 1345.82 <i>19</i>	0.49 <i>12</i> 0.36 7	1801.56 1872.79	3/2 ⁺ (3/2) ⁺	462.48 526.33	3/2 ⁺ 5/2 ⁺	M1,E2			α(K)=0.0021 5
1350.15 <i>3</i>	2.29 9	1514.61	3/2+	164.42	5/2-	E1		8.94×10 ⁻⁴	α (K)exp=0.0040 20. α (K)=0.000682 10; α (L)=9.08×10 ⁻⁵ 13;

Т

						¹⁶³ Tm ε c	¹⁶³ Tm ε decay (1.810 h) 1982Vy07 (continued)						
$\gamma(^{163}\text{Er})$ (continued)													
E_{γ}^{\ddagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{h}	Comments				
1365.6 <i>5</i>	0.34 11	1826.49	3/2+	462.48	3/2+	M1 ^e		0.00295	$\begin{aligned} &\alpha(M) = 1.99 \times 10^{-5} \ 3; \ \alpha(N+) = 0.0001011 \ 15 \\ &\alpha(N) = 4.62 \times 10^{-6} \ 7; \ \alpha(O) = 6.69 \times 10^{-7} \ 10; \ \alpha(P) = 3.75 \times 10^{-8} \ 6; \\ &\alpha(IPF) = 9.58 \times 10^{-5} \ 14 \\ &\alpha(K) \exp = 0.00077 \ (1976 \text{Ab09}). \\ &\alpha(K) = 0.00247 \ 4; \ \alpha(L) = 0.000345 \ 5; \ \alpha(M) = 7.60 \times 10^{-5} \ 11; \\ &\alpha(N+) = 6.03 \times 10^{-5} \ 9 \\ &\alpha(N) = 1.773 \times 10^{-5} \ 25; \ \alpha(O) = 2.58 \times 10^{-6} \ 4; \ \alpha(P) = 1.467 \times 10^{-7} \ 21; \\ &\alpha(IPF) = 3.98 \times 10^{-5} \ 6 \end{aligned}$				
1374.34 <i>3</i>	23.0 6	1538.79	3/2+	164.42	5/2-	E1			α (K)exp=0.0032 14. α (K)=0.000661 α (K)exp=0.00066 4				
1376.79 10	1.83 18	1722.39	$3/2^{+}$	345.62	$1/2^{-}$								
1386.99 3	5.83 14	1826.49	$3/2^+$	439.54	5/2-	E1			$\alpha(K)=0.000651$ $\alpha(K)=x_0=0.00063_5$				
1397.52 3	37.8 8	1801.56	3/2+	404.00	3/2-	E1			$\alpha(K) = 0.000643$ $\alpha(K) = 0.000643$ $\alpha(K) = 0.000654$				
1405.36 3	4.11 14	1569.80	3/2+	164.42	5/2-	E1			$\alpha(K) = 0.000636$ $\alpha(K) = 0.000636$				
1410.19 <i>3</i>	2.47 9	1514.61	3/2+	104.32	3/2-	E1			$\alpha(K) \exp [-0.000633] \alpha(K) \exp [-0.00070] 9$				
1422.58.12	0.58.7	1826.49	$3/2^{+}$	404.00	3/2-				$\alpha(\mathbf{K})\exp[=0.00070^{\circ})$. $\alpha(\mathbf{K})\exp[=0.002, (1976Ab09)]$.				
1434.45 3	42.8 10	1538.79	$3/2^+$	104.32	3/2-	E1			$\alpha(K) = 0.000614$ $\alpha(K) = 0.000614$ $\alpha(K) = 0.00062.4$				
1446.88 <i>13</i>	0.49 6	1538.79	$3/2^{+}$	91.55	$7/2^{+}$								
1455.94 <i>3</i>	19.5 6	1801.56	3/2+	345.62	1/2-	E1			$\alpha(K)=0.000599$ $\alpha(K)=0.00057$ 4.				
1465.73 ^c 3	10.3 3	1569.80	3/2+	104.32	3/2-	E1			$\alpha(K)=0.000592$ Level-energy difference=1465.47. $\alpha(K)=x_{0}=0.00078$ 6				
1469.42 <i>3</i>	15.6 <i>3</i>	1538.79	3/2+	69.23	5/2+	M1+E2	0.65 20	0.00226 12	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00186 \ 10; \ \alpha(\mathbf{L}) = 0.000260 \ 14; \ \alpha(\mathbf{M}) = 5.7 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{N}+) = 8.7 \times 10^{-5} \ 3 \\ &\alpha(\mathbf{N}) = 1.33 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 1.94 \times 10^{-6} \ 11; \ \alpha(\mathbf{P}) = 1.09 \times 10^{-7} \ 7; \end{aligned}$				
1480.94 <i>3</i>	3.33 22	1826.49	3/2+	345.62	1/2-	E1			α (IPF)=7.15×10 ⁻⁵ 20 α (K)exp=0.00189 10. α (K)=0.000582 α (K)exp=0.00046 14.				
1489.04 <i>10</i>	0.41 7	1593.03	3/2+	104.32	3/2-				<i>.</i>				
1500.61 4	2.00 12	1569.80	3/2+	69.23	5/2+	M1+E2	0.9 4	0.00204 21	α (K)=0.00166 <i>18</i> ; α (L)=0.000234 <i>24</i> ; α (M)=5.1×10 ⁻⁵ <i>6</i> ; α (N+)=9.5×10 ⁻⁵ <i>6</i>				

From ENSDF

						163 Tm ε de	cay (1.81	0 h) 1982V	y07 (continued)		
$\gamma(^{163}\text{Er})$ (continued)											
E_{γ}^{\ddagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{h}}$	Comments		
	0.04.5	1511 (1	2.124		5 /2-				$\begin{split} &\alpha(\mathrm{K}){=}0.00166\ l8;\ \alpha(\mathrm{L}){=}0.000234\ 24;\ \alpha(\mathrm{M}){=}5.1{\times}10^{-5}\ 6;\\ &\alpha(\mathrm{N}{+}){=}9.5{\times}10^{-5}\ 6\\ &\alpha(\mathrm{N}){=}1.20{\times}10^{-5}\ l2;\ \alpha(\mathrm{O}){=}1.74{\times}10^{-6}\ l8;\ \alpha(\mathrm{P}){=}9.7{\times}10^{-8}\ l1;\\ &\alpha(\mathrm{IPF}){=}8.1{\times}10^{-5}\ 4\\ &\alpha(\mathrm{K})\mathrm{exp}{=}0.00169\ l5. \end{split}$		
1514.3 <i>4</i> 1525.97 <i>4</i>	0.34 5 4.04 <i>20</i>	1514.61 2052.50	$3/2^+$ $3/2^-$	0.0 526.33	5/2 ⁻ 5/2 ⁺	E1			$\alpha(K)=0.000553$ $\alpha(K)=0.00054$ 9.		
^x 1531.90 <i>13</i>	0.39 5					M1,E2		0.0019 4	$\alpha(K) = 0.0016 \ 4; \ \alpha(L) = 0.00022 \ 5; \ \alpha(M) = 4.8 \times 10^{-5} \ 10; \alpha(N+) = 0.000105 \ 12 \alpha(N) = 1.12 \times 10^{-5} \ 23; \ \alpha(O) = 1.6 \times 10^{-6} \ 4; \ \alpha(P) = 9.1 \times 10^{-8} \ 21; \alpha(IPF) = 9.2 \times 10^{-5} \ 9 \alpha(K) \exp = 0.0016 \ 4.$		
1561.60 <i>5</i>	1.11 7	1653.15	3/2+	91.55	7/2+	E2		1.49×10 ⁻³	$\alpha(K) = 0.001186 \ 17; \ \alpha(L) = 0.0001679 \ 24; \ \alpha(M) = 3.70 \times 10^{-5} \ 6; \\ \alpha(N+) = 0.0001031 \ 15 \\ \alpha(N) = 8.61 \times 10^{-6} \ 12; \ \alpha(O) = 1.241 \times 10^{-6} \ 18; \ \alpha(P) = 6.76 \times 10^{-8} \\ 10; \ \alpha(IPF) = 9.32 \times 10^{-5} \ 13 \\ \alpha(K) \exp = 0.00141 \ 15.$		
1569.65 10	0.43 6	1569.80	3/2+	0.0	5/2-						
1577.66 15	0.28 3	2040.68	$3/2^+$ $3/2^+$	462.48	3/2+ 5/2+	M1		0.00218	$\alpha(K) = 0.001742.25; \alpha(L) = 0.000242.4; \alpha(M) = 5.33 \times 10^{-5}.8;$		
1363.73 +	2.137	1055.15	5/2	09.25	572	1411		0.00210	$\alpha(N)=0.001742 2.5, \alpha(E)=0.000242 4, \alpha(M)=5.55\times10^{-6} 3, \alpha(N)=1.0001383 20$ $\alpha(N)=1.243\times10^{-5} 18; \alpha(O)=1.81\times10^{-6} 3; \alpha(P)=1.031\times10^{-7}$ 15; $\alpha(IPF)=0.0001240 18$ $\alpha(K)\exp=0.00158 11.$		
1593.05 11	0.22 6	1593.03	$3/2^{+}$	0.0	5/2-						
1618.20 <i>19</i> <i>x</i> 1626.58 <i>16</i>	0.19 7 0.26 5	1722.39	3/2+	104.32	3/2-						
1631.4 4	0.16 5	1722.39	$3/2^+$	91.55	7/2+						
1637.46 12	0.45 10	1801.56	3/2 -	164.42	3/2 3/2-						
x1654.47 8	0.29 11 0.58 7	2032.30	5/2	404.00	5/2	E2(+M1)	>1	0.00154 16	$\alpha(K)=0.00119 \ 13; \ \alpha(L)=0.000167 \ 18; \ \alpha(M)=3.7\times10^{-5} \ 4; \ \alpha(N+)=0.000146 \ 9$		
									$\alpha(N)=8.6\times10^{-6} \ 9; \ \alpha(O)=1.24\times10^{-6} \ 14; \ \alpha(P)=6.9\times10^{-8} \ 9; \ \alpha(IPF)=0.000136 \ 8 \ \alpha(K)=x_{P}=0.00113 \ 19$		
1662.12 5	5.35 20	1826.49	3/2+	164.42	5/2-	E1			$\alpha(K) \exp[-0.00115 T_{2}]$ $\alpha(K) = 0.000480$ $\alpha(K) \exp[-0.00063 4]$.		
^x 1673.48 <i>12</i>	0.61 5					E1(+M2)	< 0.25	0.00098 10	$\alpha(K)=0.00056 \ 9; \ \alpha(L)=7.6\times10^{-5} \ 13; \ \alpha(M)=1.7\times10^{-5} \ 3; \ \alpha(N+)=0.000322 \ 8$		

From ENSDF

 $^{163}_{68}\mathrm{Er}_{95}$ -26

					163	³ Tm ε deca	ay (1.810 h)	1982Vy07 (continued)
							$\gamma(^{163}\text{Er})$ (co	ontinued)
${\rm E_{\gamma}}^{\ddagger}$	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{h}	Comments
								$\alpha(N)=3.9\times10^{-6}$ 7; $\alpha(O)=5.6\times10^{-7}$ 10; $\alpha(P)=3.2\times10^{-8}$ 6; $\alpha(IPF)=0.000317$ 9 $\alpha(K)=0.00055$ 10
1689.15 4	1.98 12	1853.54	3/2+	164.42	5/2-	E1		$\alpha(\mathbf{K}) = 0.00035 TV.$ $\alpha(\mathbf{K}) = 0.000467$ $\alpha(\mathbf{K}) = 0.000467$
1697.22 4	2.60 12	1801.56	3/2+	104.32	3/2-	E1		$\alpha(K) = 0.000463$ $\alpha(K) = 0.000463$ $\alpha(K) = 0.00050.7$
1709.03 ^c 6	0.73 4	1872.79	(3/2)+	164.42	5/2-	(E1)		$\alpha(K) \exp -0.000307.$ $\alpha(K) = 0.000458$ Level-energy difference=1708.36. $\alpha(K) \exp -0.0002415$
1722.37 5	2.80 10	1826.49	3/2+	104.32	3/2-	E1		$\alpha(K) \exp = 0.00034 \ TS.$ $\alpha(K) = 0.000452$ $\alpha(K) \exp = 0.00037 \ 4$
^x 1729.7 <i>3</i> 1732.92 <i>15</i>	0.18 <i>4</i> 0.87 <i>4</i>	1801.56	3/2+	69.23	5/2+	(M1)	0.00186	$\alpha(K)=0.001412\ 20;\ \alpha(L)=0.000196\ 3;\ \alpha(M)=4.31\times10^{-5}\ 6;$ $\alpha(N+)=0.000209\ 3$
								$\alpha(N)=1.004\times10^{-5}$ 14; $\alpha(O)=1.463\times10^{-6}$ 21; $\alpha(P)=8.34\times10^{-8}$ 12; $\alpha(IPF)=0.000197$ 3 $\alpha(K)=x_{D}\approx0002$ (1976Ab09)
1741.75 ^c 9	0.45 3	1826.49	3/2+	83.96	7/2-			Level-energy difference=1742.52. α (K)exp=0.001 (1976Ab09) gives M1.E2 but ΔJ^{π} requires M2.
1749.22 4	5.53 19	1853.54	3/2+	104.32	3/2-	E1		$\alpha(K) = 0.000441$ $\alpha(K) = 0.000361$ 23.
1753.45 8 1757.25 <i>14</i>	0.79 7 0.34 <i>3</i>	1917.48 1826.49	$(3/2)^+$ $3/2^+$	164.42 69.23	5/2 ⁻ 5/2 ⁺			
1767.65 ^c 10 1784.29 4	0.99 5 2.03 9	1872.79 1853.54	$(3/2)^+$ $3/2^+$	104.32 69.23	3/2 ⁻ 5/2 ⁺	E2	1.28×10^{-3}	Level-energy difference=1768.46. $\alpha(K)=0.000927 \ 13; \ \alpha(L)=0.0001293 \ 18; \ \alpha(M)=2.84\times10^{-5} \ 4;$
								$\alpha(N+)=0.000192 \ 3$ $\alpha(N)=6.62\times10^{-6} \ 10; \ \alpha(O)=9.56\times10^{-7} \ 14; \ \alpha(P)=5.28\times10^{-8} \ 8;$ $\alpha(IPF)=0.000184 \ 3$
^x 1790.12 5 ^x 1793 38 7	0.83 7							$\alpha(K)\exp=0.00109 \ 8.$
1803.55 5	6.96 19	1872.79	(3/2)+	69.23	5/2+	E2	1.26×10^{-3}	α (K)=0.000909 <i>13</i> ; α (L)=0.0001266 <i>18</i> ; α (M)=2.79×10 ⁻⁵ <i>4</i> ; α (N+)=0.000200 <i>3</i>
								$\alpha(N)=6.48\times10^{-6} \ 9; \ \alpha(O)=9.37\times10^{-7} \ 14; \ \alpha(P)=5.17\times10^{-8} \ 8; \ \alpha(IPF)=0.000192 \ 3 \ \alpha(K)\exp=0.00096 \ 6.$
1813.60 [°] 7	0.249 21	1917.48	$(3/2)^+$	104.32	$3/2^{-}$	52	1.05. 10-3	Level-energy difference=1813.15.
1825.23° 7	1.05 4	1917.48	(3/2)*	91.55	7/2+	E2	1.25×10 ⁻⁵	$\alpha(\mathbf{K})=0.000889 \ 13; \ \alpha(\mathbf{L})=0.0001237 \ 18; \ \alpha(\mathbf{M})=2.72\times10^{-3} \ 4; \\ \alpha(\mathbf{N}+)=0.000209 \ 3 \\ \alpha(\mathbf{N})=6.33\times10^{-6} \ 9; \ \alpha(\mathbf{O})=9.15\times10^{-7} \ 13; \ \alpha(\mathbf{P})=5.06\times10^{-8} \ 7;$

From ENSDF

					¹⁶³ Tı	$\operatorname{Im} \varepsilon \operatorname{decay} (1.810 \text{ h}) \qquad 1982 \text{Vy07} \text{ (continued)}$					
γ ⁽¹⁶³ Er) (continued)											
${\rm E}_{\gamma}^{\ddagger}$	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\alpha^{\boldsymbol{h}}$	Comments			
x1925.00.20	0.125.10							α (IPF)=0.000202 3 Level-energy difference=1825.92. α (K)exp=0.00103 10.			
*1835.69 20	0.125 19	1017 49	$(2/2)^{+}$	(0.22	5/2+	(1)	1.60×10^{-3}	$(K) = 0.00121(-17, -17) = 0.0001(22, 24, -104) = 2.70 \times 10^{-5}$			
1848.22 9	0.20 0	1917.48	$(3/2)^{*}$	09.23	5/2	$(\mathbf{M}\mathbf{I})$	1.69×10 -	$\alpha(\mathbf{K})=0.001210\ 17;\ \alpha(\mathbf{L})=0.0001082\ 24;\ \alpha(\mathbf{M})=5.70\times10^{-6}\ 0;$ $\alpha(\mathbf{N}+)=0.000270\ 4$			
								$\alpha(N)=8.63\times10^{-6}$ 12; $\alpha(O)=1.257\times10^{-6}$ 18; $\alpha(P)=7.17\times10^{-8}$ 10; $\alpha(IPF)=0.000260$ 4 $\alpha(K)\exp=0.0015$ 8.			
1853.33 12	0.15 3	1853.54	3/2+	0.0	5/2-						
1876.23 6	1.20 11	2040.68	3/2+	164.42	5/2-	E1		$\alpha(K) = 0.000393$ $\alpha(K) \exp = 0.00041 \ 8.$			
^x 1879.6 2	0.146 18										
1888.1 3	0.11 6	2052.50	3/2-	164.42	5/2-						
^1913.88 <i>14</i>	0.090 14	2040 69	2/2+	104.22	2/2-	E1		- (IZ) 0.000274			
1930.38 0	1.90 5	2040.08	5/2	104.52	5/2	EI		$\alpha(K) = 0.000574$ $\alpha(K) \exp = 0.00029 \ 3.$			
1948.40 5	0.36 3	2052.50	$3/2^{-}$	104.32	3/2-						
1957.577	0.29 4	2122.21	$\frac{1}{2^{(-)}}, \frac{3}{2}$	164.42	$5/2^{-}$						
19/1.2 2	0.050 15	2040.08	3/2-	69.23	5/2+						
2017.96.9	0.33 3	2032.30	$\frac{3/2}{1/2^{(-)}}$ $\frac{3}{2}$	104 32	3/2-						
2017.50 5	0.174 26	2040.68	$3/2^+$	0.0	$5/2^{-}$						
2052.8 2	0.086 8	2052.50	3/2-	0.0	$5/2^{-}$						
2079.0 4	0.077 10	2243.21	3/2-	164.42	5/2-						
2159.98 16	0.083 12	2243.21	3/2-	83.96	7/2-						
2274.5 5	0.042 18	2274.5	$1/2^{(-)}, 3/2$	0.0	$5/2^{-}$						

[†] Absolute intensities obtained by 1982Vy07 from Ice's and theoretical α 's, except as noted. Renormalized by the evaluators from I γ normalization=0.188 9 to 0.186 5.

[‡] From 1982Vy07, unless otherwise stated. Least-squares analysis of γ rays suggests that the uncertainties quoted by 1982Vy07 are too low to be realistic. These should at least be doubled.

[#] From $\alpha(K)\exp's$ and subshell ratios given in comments. 1982Vy07 appear to give only the dominant component when there is only $\alpha(K)\exp$. $\delta's$ added in these cases by the evaluators.

[@] From subshell ratios when available, otherwise from $\alpha(K)$ exp.

 $^{\&}\gamma$ from 1980Ab18 only. It is considered as uncertain (evaluators) due to lack of confirmation by 1982Vy07. Intensity is renormalized to 100 for 104 γ .

^{*a*} Tentative placement (evaluators) based on approximate (within <1 keV) level-energy difference.

^b Deduced (evaluators) from renormalized ce's of 1980Ab18 and α 's.

^c Poor fit, deviates by more than 2 σ 's in the least-squares analysis. It is possible that some of the γ rays in this category are misplaced.

28

From ENSDF

¹⁶³Tm ε decay (1.810 h) 1982Vy07 (continued)

$\gamma(^{163}\text{Er})$ (continued)

- ^d E1,E2 from α (K)exp. Multipolarity further restricted by adopted ΔJ^{π} .
- ^e Large value of $\alpha(K)$ exp suggests possibility of some E0 admixture.
- ^f For absolute intensity per 100 decays, multiply by 0.186 5.
- ^g Absolute intensity per 100 decays.
- ^h Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^{*i*} Multiply placed with intensity suitably divided.
- ^{*j*} Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

¹⁶³₆₈Er₉₅

¹⁶³Tm ε decay (1.810 h) 1982Vy07

Decay Scheme (continued)

 $^{163}_{68}{\rm Er}_{95}$

¹⁶³Tm ε decay (1.810 h) 1982Vy07

¹⁶³₆₈Er₉₅

¹⁶³Tm ε decay (1.810 h) 1982Vy07

¹⁶³₆₈Er₉₅

$^{163}{\rm Tm}~\varepsilon$ decay (1.810 h) 1982Vy07

¹⁶³Tm ε decay (1.810 h) 1982Vy07

¹⁶³Tm ε decay (1.810 h) 1982Vy07

¹⁶³Tm ε decay (1.810 h) 1982Vy07

¹⁶³₆₈Er₉₅

¹⁶³Tm ε decay (1.810 h) 1982Vy07 (continued)

Band(H): K-2 γ vibration built on the v5/2[523] g.s. The small value of the decoupling parameter excludes other interpretations for this K=1/2 band

5/2- 779.63

3/2- 717.39

683.75

Band(G): v3/2[651] band (1/2)⁻

5/2+ 664.86

3/2+ 619.36

¹⁶³₆₈Er₉₅