	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111,1211 (2010)	12-Apr-2010

 $Q(\beta^{-})=-2439 \ 3; \ S(n)=6905 \ 5; \ S(p)=6415 \ 6; \ Q(\alpha)=1575 \ 5 2012$ Wa38

Note: Current evaluation has used the following Q record \$ -2439 3 6903 5 6416 6 1574 5 2009AuZZ,2003Au03.

Additional information 1. Additional information 2.

Other reactions:

¹⁵⁹Tb(¹⁴N,¹⁰Be) E=140 MeV: 1980Wi10 measured particle- γ coincidences and deduced σ .

 161 Dy(58 Ni,X γ) E=270 MeV; 162 Dy(58 Ni,X γ) E=285, 345 MeV: 1985JuZZ measured γ 's and γ -multiplicity.

¹⁶⁴Dy(α ,xn γ) E=50-120 MeV: 1983Ma32 measured σ and neutron multiplicity.

Structure calculations (selected references): 1996Du06, 1995Ly04, 1995Do10, 1993Ha11, 1989Hs01, 1982En02, 1974Ka12, 1970Ba02.

A total of 17 neutron resonances in the energy range 5.48 eV to 228.5 eV are known, see ${}^{162}\text{Er}(n,\gamma)$,(n,n):resonances data set for details.

¹⁶³Er Levels

Fragmentation of three-quasiparticle states: see discussion in ε decay.

Bands: see ε decay, (d,p), (d,t), and (¹⁸O,5n γ) for details.

Nomenclature of single quasiparticle orbitals (1997Ha23):

A: *ν*5/2[642], *α*=+1/2. B: ν5/2[642], α=-1/2. C: v3/2[651], $\alpha = +1/2$. D: v3/2[651], $\alpha = -1/2$. E: v5/2[523], $\alpha = +1/2$. F: v5/2[523], $\alpha = -1/2$. G: v3/2[521], $\alpha = +1/2$. H: v3/2[521], $\alpha = -1/2$. X: v11/2[505], $\alpha = +1/2$. Y: v11/2[505], $\alpha = -1/2$. a: $\pi 7/2[404]$, $\alpha = +1/2$. b: $\pi 7/2[404]$, $\alpha = -1/2$. c: $\pi 1/2[411]$, $\alpha = +1/2$. d: $\pi 1/2[411]$, $\alpha = -1/2$. e: $\pi 7/2[523]$, $\alpha = +1/2$. f: $\pi 7/2[523]$, $\alpha = -1/2$. k: $\pi 5/2[402]$, $\alpha = +1/2$. 1: $\pi 5/2[402]$, $\alpha = -1/2$.

Cross Reference (XREF) Flags

A	163 Tm ε decay (1.810 h)	D	¹⁶² Er(d,p)
В	150 Nd(18 O,5n γ)	Ε	164 Er(d,t)
С	161 Dy(α ,2n γ)		

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0 ^k	5/2-	75.0 min 4	ABCDE	$\% \varepsilon + \% \beta^+ = 100$ $\mu = +0.557 \ 4 \ (1972 \text{Ek} 03, 1989 \text{Ra} 17, 2005 \text{St} 24)$ $O = +2.55 \ 3 \ (1972 \text{Ek} 03, 1989 \text{Ra} 17, 2005 \text{St} 24)$

 μ ,Q: atomic beam; Q includes Sternheimer correction.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁶³Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments				
				J^{π} : spin from atomic beam (1969St05,1969Ek01). Parity: log <i>ft</i> =5.33 2 to 1801.56 level from 1/2 ⁺ parent; the 1801.56 level decays by E1-E2 cascade to the g.s.; "finger-print" method of measured and predicted cross sections in (d,t) and (d,p); measured μ consistent with calculated μ =+0.66 for v5/2[523], β_{2} =0.2.				
				$T_{1/2}$: weighted average of 75.1 min 4 (1963Pe16) and 73 min 2 (1965St08). Others: 1963Gr14, 1961Bj02, 1960Bu27, 1953Ha43, 1951Bu25.				
69.23 ⁱ 1	5/2+	8.3 ns 5	ABCDE	J^{π} : E1 γ to 5/2 ⁻ , M1+E2 γ 's from 3/2 ⁺ (462 level) and 7/2 ⁺ (91 level). T _{1/2} : from ce γ (t) in ε decay.				
83.96 ¹ 1	7/2 ^{-@}	0.92 [#] ns 8	ABCDE	J ^{π} : M1+E2 γ to 5/2 ⁻ , M1+E2 γ from 7/2 ⁻ (249 level). T _{1/2} : ce γ (t) in ε decay.				
91.55 ^j 1	$7/2^{+}$	#	ABC	J^{π} : E1 γ to 5/2 ⁻ , M1+E2 γ from 9/2 ⁺ (120 level).				
104.32 ^t 1	3/2 ^{-@}	0.52 [#] ns 5	A CDE	J ^{π} : M1 γ to 5/2 ⁻ and possible ε feeding from 1/2 ⁺ . T _{1/2} : ce γ (t) in ε decay (1974An04).				
120.35 ^{<i>i</i>} 2	9/2+ [@]		ABCDE	E(level): from ¹⁶³ Tm ε decay. J ^{π} : E1 γ from 7/2 ⁻ (249 level).				
164.42 ^{\$} 1	5/2-	#	ABCDE	J ^{π} : M1+E2 γ 's to 3/2 ⁻ and 7/2 ⁻ . T _{1/2} : B(M2)(W.u.)(72.9 γ)≤1 from RUL suggests T _{1/2} >6.3 ns.				
189.7 ^k 2	9/2 ^{-@}	#	ABCDE	J^{π} : M1 γ to 7/2 ⁻ .				
199.3 ^j 2	$11/2^{+}$	#	BC	J^{π} : $\Delta J=2 \gamma$ to $7/2^+$, $\Delta J=1$, M1+E2 γ to $9/2^+$.				
247.0 ⁱ 2	$(13/2^+)$	#	BC	J^{π} : $\Delta J=(2) \gamma$ to $9/2^+$.				
249.53 ^t 1	7/2-		AB DE	J^{π} : E1 γ to 9/2 ⁺ and M1+E2 γ to 5/2 ⁻ .				
319.7 ¹ 2	$(11/2^{-})$	#	BC E	J^{π} : γ 's to $7/2^{-}$, $9/2^{-}$ and $9/2^{+}$ and band member.				
345.62 ^{<i>a</i>} 1	$1/2^{-2}$		A DE	J^{π} : M1 γ to 3/2 ⁻ , log <i>ft</i> =6.8 from 1/2 ⁺ .				
359.8 <mark>\$</mark> 3	$(9/2^{-})^{@}$		ΒE	J^{π} : γ' s to $5/2^{-}$ and $7/2^{-}$.				
404.00 ^{<i>a</i>} 1	3/2 ^{-@}		A DE	J^{π} : M1+E2 γ to 1/2 ⁻ , E2 γ to 7/2 ⁻ .				
411.9 <mark>/</mark> 2	$(15/2^+)$	#	BC	J^{π} : $\Delta J=(2) \gamma 11/2^+$, $\Delta J=1$, M1+E2 γ to (13/2 ⁺).				
439.54 ^a 1	5/2 ^{-@}		A CD	J^{π} : M1+E2 γ 's to 3/2 ⁻ and 7/2 ⁻ .				
445.5 9 6	(11/2 ⁻)	0.58 μs 10	BC E	J ^{π} : Δ J=1 γ to 9/2 ⁻ , γ 's to 11/2 ⁺ and 11/2 ⁻ and $\sigma(\theta)$ in (d,t). Systematics of odd-A Gd nuclides and N=95, 11/2 ⁻ , ν 11/2[505] states support this assignment. T _{1/2} : $\gamma\gamma(t)$ in (α ,2n γ) (1974An04).				
462.48 ^b 2	3/2+		A DE	J ^{π} : E1 γ to 3/2 ⁻ , (E2) γ to 7/2 ⁺ and log <i>ft</i> =7.2 from 1/2 ⁺ . Agreement of $\sigma(\exp)/\sigma(\text{predicted})$ in (d,t) and weak population in (d,p) is characteristic of a hole state. Dominant configuration is 3/2[402].				
464.0 ⁱ 2	$(17/2^+)$	#	BC	J^{π} : $\Delta J=2 \gamma$ to $(13/2^+)$.				
466.1 ^k 2	$13/2^{-}$	#	BC	J^{π} : $\Delta J=2$, E2 γ to 9/2 ⁻ , γ to 11/2 ⁺ .				
496.2 ^t 3	11/2 ^{-@}		B DE	J^{π} : γ 's to $7/2^{-}$ and $(9/2^{-})$.				
526.33 ^b 4	5/2+		A E	J^{π} : M1+E2 γ to 7/2 ⁺ , (E1) γ to 3/2 ⁻ .				
531.07 3	3/2+		Α	J^{π} : M1+E2 γ to 5/2 ⁺ , log <i>ft</i> =7.6 from 1/2 ⁺ .				
540.56 [°] 3	1/2+ [@]		A DE	J^{π} : E2 γ to 5/2 ⁺ , log <i>ft</i> =6.9 from 1/2 ⁺ . Agreement of $\sigma(\exp)/\sigma(\operatorname{predicted})$ in (d,t) and weak population in (d,p) is characteristic of a hole state. Configuration= $\nu 1/2[400]$.				
553 3	0		E					
573 ^a 3	$7/2^{-}$		DE					
574.08 3	3/2+		Α	J ^{<i>a</i>} : M1+E2 γ to 5/2 ⁺ , E1 γ to 3/2 ⁻ and log <i>ft</i> =7.5 from 1/2 ⁺ .				
610 ⁴ 3	(5/2 ⁻)	#	DE					
$616.5^{W} 5$	$(13/2^{-})$	π	BC	$J^{*}: \Delta J = 1 \gamma$ to $(11/2^{-})$.				
$019.30^{\circ} 2$	$3/2^{-1}$		AE	$J : E1 + W12 \gamma$ to $S/2$ and $\log \pi = 7.0$ from $1/2^{\circ}$.				
030 3	9/2		ע					

¹⁶³Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
639.6 ¹ 2	$(15/2^{-})$	BC	J^{π} : $\Lambda J=2 \gamma$ to $(11/2^{-})$, γ to $(13/2^{-})$.
655.3 ^s 3	$(13/2^{-})$	B	J^{π} : γ 's to $(9/2^{-})$ and $11/2^{-}$.
664.86 ^e 3	5/2+	A E	J^{π} : E1+M2 γ to 3/2 ⁻ and E1 γ to 7/2 ⁻ .
683.75 ^f 2	$(1/2)^{-}$	A E	J^{π} : M1 γ to $1/2^{-}$ and probable band member.
698 ^d 3	$(7/2^{-})$	DE	J^{π} : $\sigma(\theta)$ in (d,p) and probable band member.
717.39 f 3	3/2-	Α	J^{π} : M1+E2 γ to 5/2 ⁻ and log ft=7.2 (log f ^{1u} t<8.5) from 1/2 ⁺ .
735.0 ^j 2	$(19/2^+)$	BC	J^{π} : $\Delta J=2 \gamma$ to $(15/2^+)$ and $\Delta J=1 \gamma$ to $(17/2^+)$.
735.38 2	$1/2^+, 3/2^+$	A E	J^{π} : E1 γ to $1/2^{-}$.
759 3		DE	
777.1 ¹ 2	$(21/2^+)$	BC	J^{π} : $\Delta J=2 \gamma$ to $(17/2^+)$.
779.63 [†] 4	5/2-	A DE	J^{π} : M1+E2 γ 's to 3/2 ⁻ and 7/2 ⁻ .
≈805 ^d	$(9/2^{-})^{\textcircled{0}}$	D	
809.7 ⁴ 5	$(15/2^{-})$	BC	J^{π} : $\Delta J=1 \gamma$ to (13/2 ⁻), γ to (11/2 ⁻).
820.6 ^k 2 827 3	$(17/2^{-})$	BC D	J^{π} : γ 's to (15/2 ⁺), 13/2 ⁻ and (15/2 ⁻).
840.5 ^t 3	(15/2-)	В	J^{π} : γ 's to $11/2^{-}$ and $(13/2^{-})$.
842 3		DE	
856.22 ⁸ 4	$(3/2)^{-1}$	A DE	J^{π} : M1 γ 's to 3/2 ⁻ and 5/2 ⁻ .
877 <mark>8</mark> 3	(5/2 ⁻)	DE	
963.29 8	(3/2)+	Α	J^{n} : log ft=7.6 (log f ¹ t<8.5) from 1/2 ⁺ and E2(+M1) γ from 3/2 ⁺ (1369 level). γ to 5/2 ⁻ .
973 ⁸ 3	$(7/2^{-})^{\textcircled{0}}$	dE	
985.078	$\frac{5}{2}$	A CL	$J^{*}: M1+E2 \gamma \text{ to } 1/2 , \gamma \text{ to } 1/2 .$
1023.9 5	(17/2)	D	$J : \gamma S to (15/2) and (15/2).$
1032.3 ¹ 2	$(19/2^{-})$	BC	J^{π} : γ' s to (17/2 ⁺), (15/2 ⁻) and (17/2 ⁻).
1040.6 ^s 3	$(17/2^{-})$	В	J^{π} : γ 's to (13/2 ⁻) and (15/2 ⁻).
1059.75 4	3/2-	A D	J^{n} : M1 γ to $1/2^{-}$, (E1) γ to $5/2^{+}$.
1075'' 5	$(1/2^{-})^{\bullet}$	DE	π_{-} , f_{-} to $(15/2^{+})$, $(17/2^{+})$, and $(10/2^{+})$
$10/7.5^{\circ}$ 3	$(1/2^{+})$	В	J^{*} ; γ s to (15/2 ⁺), (17/2 ⁺) and (19/2 ⁺).
1098. 5	3/2	D	T_{1}^{T} AT 2 (10/2 ⁺) (21/2 ⁺)
1163.17 2	$(23/2^{+})$	BC	$J^{*}: \Delta J = 2 \gamma$ to (19/2 ⁺), γ to (21/2 ⁺).
1183^{h} 5	5/2-@	ם ת	
1184.8^{i} 2	$(25/2^+)$	RC	$I^{\pi} \cdot \Lambda I = 2 \gamma t_0 (21/2^+)$
1204 5	(23/2)	D	$3 \cdot 13 - 2 \neq 00 (21/2).$
1214.3 ^v 3	$(17/2^+)$	В	J^{π} : γ' s to (15/2 ⁺) and (17/2 ⁺).
1242.8 ^k 2	$(21/2^{-})$	BC	J^{π} : $\Delta J=(2) \gamma$ to $(17/2^{-}), \gamma'$ s to $(19/2^{+})$ and $(19/2^{-})$.
1245 ^h 5	$7/2^{-2}$	D	
1258.3 ⁹ 5	$(19/2^{-})$	BC	J^{π} : γ 's to (15/2 ⁻) and (17/2 ⁻).
1270.6 ^t 3	$(19/2^{-})$	В	J^{π} : γ 's to (15/2 ⁻) and (17/2 ⁻).
1281.16 5	$1/2^+, 3/2^+$	A D	J^{π} : E1 γ to 3/2 ⁻ . log ft=7.2 from 1/2 ⁺ .
1298.0 ¹ 5	(15/2 ⁻)	В	J ^{π} : Based on a comparison of experimental and calculated (K-allowed and K-hindered) reduced transition (E2) probabilities and K^{π} =19/2 ⁻ for the 1845 bandhead, 1994Br09 deduce K^{π} =15/2 ⁻ for the 1297 bandhead. 1994Br09 state that coupling between the available orbitals does not produce J^{π} =15/2 ⁻ . However, a K+2 γ vibration built on v11/2[505] would have 15/2 ⁻ in its ground state.
1316 5		D	1/2, 1 ho to 10 $1/(1)$ ($1/2$
1344 5		D	
1352.8 ^{<i>u</i>} 5	$(19/2^+)$	В	

¹⁶³Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1369.46 <i>3</i>	3/2+	Α	J^{π} : E1 γ to 5/2 ⁻ and log <i>ft</i> =6.0 from 1/2 ⁺ .
1395 <mark>h</mark> 5	9/2 ^{-@}	D	
1433 5	,	D	
1473.9 ^{\$} 3	$(21/2^{-})$	В	J^{π} : γ' s to (17/2 ⁻) and (19/2 ⁻).
1476.3 ^r 2	$(21/2^+)$	В	J^{π} : γ 's to (17/2 ⁺) and (23/2 ⁺).
1479.8 ¹ 2	$(23/2^{-})$	BC	J^{π} : γ' s to $(21/2^+)$ and $(19/2^-)$.
1485 5		D	
1510.3 ¹ 5	(17/2 ⁻)	BC	$T_{1/2}$: 1 ns to 75 ns from $\gamma\gamma(t)$ (1994Br09). J ^{<i>x</i>} : γ 's to (13/2 ⁻) and (15/2 ⁻).
1511.2 ^w 5	$(21/2^{-})$	В	J^{π} : γ 's to (17/2 ⁻) and (19/2 ⁻).
1514.61 <i>3</i>	$3/2^{+}$	Α	J^{π} : E1 γ 's to $1/2^{-}$ and $5/2^{-}$.
1529 5		D	
1529.6 ^v 3	$(21/2^+)$	В	J^{π} : γ 's to $(17/2^+)$ and $(21/2^+)$.
1538.79 3	3/21	A	J [*] : E1 γ to 5/2 , log <i>ft</i> =5.5 from 1/2 ⁺ . Probable configuration=(ν 5/2[523])(π 7/2[523])(π 1/2[411]).
1562 5	2/2+	D	
1503.03 4	$\frac{3}{2}$	A	J^{*} : E1 γ 's to 1/2 and 5/2.
1595.054 1607503	$\frac{3}{2}$	R	\mathbf{J} . El γ s to $1/2$ and $3/2$.
1635 5	(21/2)	ם	
1653.15 6	$3/2^{+}$	A	J^{π} : E2 γ to 7/2 ⁺ , log ft=6.6 from 1/2 ⁺ .
1671 5	-/-	D	
1681.1 ⁱ 2	$(29/2^+)$	BC	
$1685.7\frac{j}{2}$	$(27/2^+)$	BC	
1686.5	(21/2)	D	
1717.2 ^{<i>u</i>} 4	$(23/2^+)$	В	
$1719.2^{k}.2$	$(25/2^{-})$	BC	
1722.39 5	$3/2^+$	A D	J^{π} : E1 γ to $3/2^{-}$, γ to $7/2^{+}$, log ft=6.1 from $1/2^{+}$.
1759 5	- 1	D	
1776.0 ^t 3	$(23/2^{-})$	В	
1781.4 <mark>9</mark> 5	$(23/2^{-})$	В	
1784 5		D	
1801.56 4	3/2+	A D	Probable configuration= $(v5/2[523])(\pi7/2[523])(\pi1/2[411]), K^{\pi}=1/2^+.$ J ^{π} : E1 γ 's to $1/2^-$ and $5/2^-$.
1817 5	2/2+	D	
1826.49 3	$\frac{3}{2}$	A	J^{-1} : E1 γ 's to 1/2 and 5/2. The tail rest to 75 ns from exc(t) (1004Dr00)
1843.27 3	(19/2)	ВС	$J_{1/2}$: I ns to 75 ns from $\gamma\gamma(t)$ (1994Br09). J^{π} : Based on decay modes, Routhian calculations and calculated transition rates (B(M1)/B(E2)) using a tilted-axis cranking model, the best predicted configuration (1994Br09) is $\nu 5/2$ [642] coupled to the 7 ⁻ proton state formed by ($\pi 7/2$ [523])+($\pi 7/2$ [404]) in ¹⁶⁴ Er (1994Br09). No signature splitting is observed.
1853.54 <i>4</i>	$3/2^{+}$	A D	J^{π} : E1 γ to $5/2^{-}$, log ft=6.1 from $1/2^{+}$.
1872.79 6	$(3/2)^+$	A D	J^{π} : M1(+E2) γ to (1/2) ⁺ , (E1) γ to 5/2 ⁻ .
1900 5		D	
1917.48 7	$(3/2)^+$	A D	J^{π} : E2 γ to 7/2 ⁺ , log <i>ft</i> =6.4 from 1/2 ⁺ .
1931.8 ^V 2	$(25/2^+)$	В	
1934.9° 4	$(25/2^{-})$	В	
1938 5	(25/2+)	D	
1955.0 3	$(25/2^{+})$	В	
1957.9° 2	$(27/2^{-})$	В	
1939:3 1961 5 ^X 5	$(21/2^{-})$	ע RC	
1971 5	(21/2)	D	

Continued on next page (footnotes at end of table)

¹⁶³Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1982.4 ⁵ 5	(19/2+)	В	$T_{1/2}$: 1 ns to 75 ns from $\gamma\gamma(t)$ (1994Br09). J^{π} : Based on decay modes, Routhian calculations and calculated transition rates (B(M1)/B(E2)) using a tilted-axis cranking model, the best predicted configuration (1994Br09) is $\nu5/2[523]$ coupled to the 7 ⁻ proton state ($\pi7/2[523]$)+($\pi7/2[404]$) in ¹⁶⁴ Er. But, the configuration ($\nu11/2[505]$)($\nu5/2[523]$)($\nu3/2[521]$), giving $K^{\pi}=19/2^{-}$, is not ruled out (1994Br09).
1984 5 2019 5 2031 5		D D D	
2040.68 8	3/2+	Α	J^{π} : E1 γ to 5/2 ⁻ , log <i>ft</i> =6.1 from 1/2 ⁺ .
2044.1° 3 2052 50 6	$(25/2^+)$ $3/2^-$	B	I^{π} : F1 γ to 5/2 ⁺ log $f_{t}=5.9$ from 1/2 ⁺
2052.500 $2066.9^{W} 5$ 2077 5 2096 5	(25/2 ⁻)	B D	
$2090^{\circ}5^{\circ}$ 2104.3 ^y 5	(23/2 ⁻)	BC	
2113 5	(10/2+)	D	
2120.3 ⁵ 6 2122 21 11	$(19/2^{+})$ $1/2^{(-)} 3/2$	B A	I^{π} : γ to $5/2^{-}$ log ff-6.6 from $1/2^{+}$
2122.21 11 2135? 5	1/2**,5/2	D	$J : \gamma = 0 : 5/2 ; \log f = 0.0 \text{ from } 1/2 :$
2144.2 ⁴ 5 2148 5 2165 5	(21/2+)	B D D	$T_{1/2}$: 1 ns to 75 ns from $\gamma\gamma(t)$ (1994Br09).
2167.6 ^{<i>u</i>} 3	$(27/2^+)$	В	
2183 5		D	
2200^{-5}	$(29/2^{-})$	R	
2243.21 19	$3/2^{-}$	A	J^{π} : E1 γ to $1/2^+, 3/2^+, \gamma$ to $7/2^-, \log ft = 6.1$ from $1/2^+$.
2258.3 ⁱ 3	$(33/2^+)$	В	
2271.0 ^x 5	$(25/2^{-})$	BC	π ,
$22/4.5 \ 10$	$1/2^{(-)}, 3/2$	A	J^{n} : γ to $5/2$, $\log ft = 1.1$ ($\log f^{n}t < 8.4$) from $1/2^{+}$.
2291.4° 3	$(31/2^{+})$ $(27/2^{-})$	B	
2307.0° 5	$(21/2^+)$	R	
$2331.6^{5}.5$	$(23/2^+)$	B	
2368.1 ^{<i>q</i>} 5	$(27/2^{-})$	B	
2415.4^{ν} 2	$(29/2^+)$	В	
2418.0 ^P 4 2431 7 ^S 3	$(2^{7}/2^{-})$ $(2^{9}/2^{-})$	B	
2448.2^{r} 2	$(29/2^{+})$ $(29/2^{+})$	B	
2448.9^{l} 3	$(31/2^{-})$	B	
2460.9 ^y 5	$(27/2^{-})$	BC	
2481.5 5	(23/2)	В	$T_{1/2}$: < \approx 1.4 ns (1997Ha23).
2523.7 ³ 5	$(23/2^+)$	В	
2540.9° 3	$(29/2^+)$	В	
2342.1° 3 2629.3 ^{<i>n</i>} 14	$(23/2^+)$ $(29/2^+)$	В В	
$2672.6^{x} 5$	$(29/2^{-})$	B	
2682.7 ^w 6	(29/2-)	В	
2698.7^{μ} 3	$(31/2^+)$	В	
$2741.8^{\circ} 3$	$(33/2^{-})$	B	
2/48.0- 3	(23/21)	В	

¹⁶³Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
2772.7 ⁵ 5	$(27/2^+)$	В	4156.9 ^s 4	$(41/2^{-})$	В	6034.7 ^{<i>i</i>} 4	$(53/2^+)$	В
2783.7 ^t 3	$(31/2^{-})$	В	4159.3 ^{<i>l</i>} 3	$(43/2^{-})$	В	6077.0 ² 5	$(49/2^+)$	В
2890.5 ^p 3	$(31/2^{-})$	В	4175.9 ⁴ 5	$(37/2^+)$	В	6108.5 ^j 4	$(51/2^+)$	В
2905.2 ^y 4	$(31/2^{-})$	В	4292.5 ² 5	$(37/2^+)$	В	6144.7 <mark>P</mark> 5	$(51/2^{-})$	В
2908.7 ⁱ 3	$(37/2^+)$	В	4336.0° 5	$(41/2^+)$	В	6146.4 ^u 4	$(51/2^+)$	В
2912.5 ^m 2	$(31/2^+)$	В	4346.5 ^x 5	$(41/2^{-})$	В	6158.2 ^r 4	$(53/2^+)$	В
2928.3 ^r 3	$(33/2^+)$	В	4395.1 ⁱ 4	$(45/2^+)$	В	6174.1 ^y 5	$(51/2^{-})$	В
2930.8 ^{\$} 3	$(33/2^{-})$	В	4438.6 ⁿ 8	$(41/2^+)$	В	6188.9 ^m 5	$(51/2^+)$	В
2965.0 ¹ 3	$(35/2^{-})$	В	4494.4 ^{<i>J</i>} 4	$(43/2^+)$	В	6287.8 ⁴ 6	$(49/2^+)$	В
2967.2 ^V 3	$(33/2^+)$	В	4496.0 ⁵ 5	$(39/2^+)$	В	6336.6 ^v 5	$(53/2^+)$	В
2969.0 ^j 3	$(35/2^+)$	В	4505.3 ^k 4	$(45/2^{-})$	В	6426.6 ³ 5	$(51/2^+)$	В
2986.9 ³ 5	$(27/2^+)$	В	4529.5 ^t 4	$(43/2^{-})$	В	6455.9 ¹ 5	$(55/2^{-})$	В
3009.2 ⁹ 6	$(31/2^{-})$	В	4564.3 ³ 5	$(39/2^+)$	В	6463.2 ^{\$} 6	$(53/2^{-})$	В
3022.1 ⁴ 5	$(29/2^+)$	В	4588.5 ^r 3	$(45/2^+)$	В	6520.8 <mark>0</mark> 5	$(53/2^+)$	В
3074.0 ⁰ 4	$(33/2^+)$	В	4643.1 ^{<i>u</i>} 4	$(43/2^+)$	В	6562.4 ⁿ 5	$(53/2^+)$	В
3157.6 ^x 5	$(33/2^{-})$	В	4683.5 ^y 5	$(43/2^{-})$	В	6572.6 ^x 6	$(53/2^{-})$	В
3214.4 ^{<i>n</i>} 10	$(33/2^+)$	В	4686.1 ^{<i>p</i>} 4	$(43/2^{-})$	В	6682.4 ³ 6	$(51/2^+)$	В
3236.2 ² 5	$(29/2^+)$	В	4700.1 ^m 4	$(43/2^+)$	В	6792.0 ² 6	$(53/2^+)$	В
3274.5 ^k 3	$(37/2^{-})$	В	4821.44 5	$(41/2^+)$	В	6807.3 ¹ 5	$(55/2^{-})$	В
3288.7 ⁵ 5	$(31/2^+)$	В	4825.1 ^v 4	$(45/2^+)$	В	6848.0 ^k 6	$(57/2^{-})$	В
3299.1 ^{<i>u</i>} 3	$(35/2^+)$	В	4850.6 ² 5	$(41/2^+)$	В	6914.3 ¹ 5	$(57/2^+)$	В
3313.5 ¹ 3	$(35/2^{-})$	В	4856.4 ¹ 4	$(47/2^{-})$	В	6935.7 ^p 5	$(55/2^{-})$	В
3339.1 ^w 7	$(33/2^{-})$	В	4864.0 ^{\$} 5	$(45/2^{-})$	В	6947.0 ^J 6	$(55/2^+)$	В
3428.5 ^y 5	$(35/2^{-})$	B	5017.1° 5	$(45/2^+)$	B	$6977.5^{u}5$	$(55/2^+)$	B
3430.2° 3 3434 6 ^P 3	$(37/2^{-})$ $(35/2^{-})$	B	$5037.9^{n} 3$ 5089 0 ⁿ 4	(45/2) $(45/2^+)$	B	7020.8^{m} 6	(55/2)	B
3469 4 ^m 4	$(35/2^+)$	B	$5123.9^{3}5$	$(43/2^+)$	R	7020.0° 0	$(57/2^+)$	B
3494 5 ³ 5	$(33/2^{+})$ $(31/2^{+})$	B	5123.9 5 5182.8 ⁵ 5	$(13/2^+)$ $(43/2^+)$	R	7090.2 <i>3</i>	$(57/2^+)$	B
3511.9 ⁵ 4	$(37/2^{-})$	B	$5205 2^{i} 4$	$(10/2^+)$	R	$71735^{3}6$	$(55/2^+)$	B
$3530 4^{V} 3$	$(37/2^+)$	B	$5205.2 + 52180^{k}5$	$(40/2^{-})$	B	7175.0° 5	$(57/2^+)$	B
3530.4° 3	$(30/2^{-})$	B	$5218.9 \ 5$ $5228 \ 3^{t} \ 1$	$(47/2^{-})$	B	$7170.0^{-1}5$	$(57/2^+)$	B
3570.7 ⁴ 5	$(33/2^+)$	B	$5220.5 + 5305 0 \frac{1}{2} 4$	$(47/2^+)$	B	7348 8 ⁰ 6	$(57/2^+)$	B
3674.7i 3	(33/2)	B	5303.0° 4	(47/2)	B	7351.8 ⁵ 7	$(57/2^{-})$	B
3680 50 1	(+1/2) (37/2+)	D	5312.0 + 5372.0 ^{<i>U</i>} 1	$(47/2^+)$	D	7356.5 <mark>1</mark> .5	$(57/2^{-})$	פ
3080.5 4	(37/2)	D	5372.2 + 5297.2 p	$(47/2^{-})$	D D	7330.5 5 7412 5 X 8	$(57/2^{-})$	D D
$3707.6^{\circ} 4$	(39/2)	D D	5307.2^{2} 4	(47/2)	D	7413.3 8	(57/2)	D
3717.0 3 2759 2 ² 5	(31/2) $(32/2^+)$	D	5403.5° 5 5407.2 ^m A	$(47/2^+)$	D	7518.0 8	(55/2)	D
3730.5 J	(33/2)	D D	5407.3 4	(47/2)	D	7575.9 0	(51/2)	D
2050 ok 4	(31/2)	D D	5527.04 5	(45/2)	D	7001.2 J	(59/2)	D
28630.2 4	(41/2)	D D	5557.2 5	(43/2)	D D	$\frac{1}{3}$	(39/2)	Б Р
3807.1° 3	$(35/2^{+})$	В	5555.5' 4	$(49/2^{+})$	В	7921 0 7	(01/2)	В
$3893.0^{\circ} 4$	(39/2)	В	5622.3° 4	(51/2)	В	7831.9^{-7}	(59/2)	В
$3952.0^{47}3$	$(39/2^+)$	В	5633.4° 5	(49/2)	В	7845.5^{j} 9	$(59/2^+)$	В
3908./' 3	$(41/2^+)$	В	5/58.0° 5	(49/2')	В	/850./°0	$(01/2^+)$	В
4023.13 5	(39/2)	В	5792 CX 5	(47/2')	в	/954.6 ' 9	$(57/2^+)$	В
4024.8° 5 4036.9° A	$(35/2^+)$ $(30/2^-)$	B	$5/83.6^{\circ}$ 5 5802 7 ⁿ 5	(49/2)	B	/988.3° 6 8067 7 ^V 6	$(59/2^+)$ $(61/2^+)$	B
+050.9 ¹ 4	(39/2)	ם	5005 65 6	(+2/2)	D D	8080 21 K	(01/2)	ם
4007.0 ¹¹ 4	$(37/2^{-})$	D R	5988 0t 5	$(47/2^{-1})$ $(51/2^{-1})$	D R	$8127 0^{n} 5$	$(01/2^+)$ $(61/2^+)$	D R
4149 0 ^V A	(37/2) $(41/2^+)$	B	5900.2 5	$(51/2^{-})$	B	$8105 0^{0} 7$	$(61/2^+)$	B
+1+2.7 +	(+1/2)	Ы	J777.0 J	Continue	d on next	page (footnot	tes at end of	f table)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
8277.9 ^{\$} 8	$(61/2^{-})$	В	9806.5 ³ 8	$(67/2^+)$	В	12049.6 ^k 9	$(77/2^{-})$	В
8306.3 ^x 9	$(61/2^{-})$	В	9816.1 ^k 7	$(69/2^{-})$	В	12699.4 ¹ 8	(79/2-)	В
8322.9 ^l 5	$(63/2^{-})$	В	9845.9 ⁱ 10	$(69/2^+)$	В	12758.7 ^z 12	$(81/2^{-})$	В
8420.1 ² 6	$(61/2^+)$	В	9909.4 ⁿ 6	$(69/2^+)$	В	12881.5 ⁱ 19	$(81/2^+)$	В
8551.7 <mark>P</mark> 5	$(63/2^{-})$	В	10076.3 ⁰ 9	$(69/2^+)$	В	13864.7 ^z 14	$(85/2^{-})$	В
8636.8 ^t 6	$(63/2^{-})$	В	10183.2 ^{<i>s</i>} 11	$(69/2^{-})$	В	x ^{&6}	(25/2) ^{&}	В
8697.8 ^y 9	$(63/2^{-})$	В	10229.2 ^r 9	$(69/2^+)$	В	612.0+x ⁶ 8	(29/2)	В
8745.1 ^k 7	$(65/2^{-})$	В	10299.9 ² 10	$(69/2^+)$	В	1076.5+x ⁶ 9	(33/2)	В
8794.5 ^j 11	$(63/2^+)$	В	10380.0 ^{<i>p</i>} 6	$(71/2^{-})$	В	1624.0+x ⁶ 9	(37/2)	В
8847.7 ⁱ 6	$(65/2^+)$	В	10440.1 ¹ 6	$(71/2^{-})$	В	1927.9+x ⁷ 12	(39/2)	В
8866.8 ³ 7	$(63/2^+)$	В	10569.8 ^y 12	$(71/2^{-})$	В	2236.0+x ⁶ 12	(41/2)	В
8986.9 ⁿ 6	$(65/2^+)$	В	10732.0 ^z 8	$(73/2^{-})$	В	2565.4+x ⁷ 12	(43/2)	В
9002.2 ^v 6	$(65/2^+)$	В	10808.7 ³ 12	$(71/2^+)$	В	2915.9+x ⁶ 12	(45/2)	В
9106.0 <mark>0</mark> 8	$(65/2^+)$	В	10824.9 ⁱ 13	$(73/2^+)$	В	3283.8+x ⁷ 12	(47/2)	В
9128.2 ^r 8	$(65/2^+)$	В	10903.6 ^k 8	$(73/2^{-})$	В	3671.4+x ⁶ 12	(49/2)	В
9212.9 ^{\$} 9	$(65/2^{-})$	В	10909.0 ⁿ 7	$(73/2^+)$	В	4075.6+x ⁷ 12	(51/2)	В
9330.3 ² 8	$(65/2^+)$	В	11325.0 ² 12	$(73/2^+)$	В	4495.4+x ⁶ 12	(53/2)	В
9352.3 ¹ 6	$(67/2^{-})$	В	11377.5 <mark>P</mark> 8	$(75/2^{-})$	В	4930.7+x ⁷ 13	(55/2)	В
9440.6 ^p 5	$(67/2^{-})$	В	11548.4 ¹ 6	$(75/2^{-})$	В	5393.7+x ⁶ 14	(57/2)	В
9607.8 ^y 10	$(67/2^{-})$	В	11713.7 ^z 11	$(77/2^{-})$	В	5866.5+x ⁷ 14	(59/2)	В
9630.0 ^t 7	$(67/2^{-})$	В	11830.9 ⁱ 17	$(77/2^+)$	В	6357.7+x ⁶ 15	(61/2)	В
9779.6 ^z 7	$(69/2^{-})$	В	11870.0 ³ 13	$(75/2^+)$	В			

¹⁶³Er Levels (continued)

[†] Low spin levels (J<9/2) are from ¹⁶³Tm ε decay or from (d,t), (d,p) reactions if not seen in ¹⁶³Tm ε decay. High-spin (J>7/2) levels are from (¹⁸O,5n γ). In ¹⁶³Tm ε decay, the level energies and uncertainties were obtained by doubling the quoted uncertainties (by 1982Vy07) of γ -ray energies (see details in ¹⁶³Tm ε decay data set) in the least-squares fitting procedure.

[‡] For levels of J>9/2, assignments are from 1997Ha23 and are based on selected $\gamma\gamma(\theta)$ (DCO) data in (¹⁸O,5n γ) and $\gamma(\theta)$ data in (α ,2n γ). The assignments made by 1997Ha23 are also based on interband crossings, linkages and band associations. Most assignments given by 1997Ha23 are claimed as firm by the authors, but these are given in parentheses here because, in evaluators' opinion, strong arguments (as in policies of Nuclear Data Sheets) for firm assignments still seem lacking.

[#] <10 ns from $\gamma\gamma(t)$ in $(\alpha, 2n\gamma)$.

^(a) J^{π} value assigned from comparison of relative experimental and theoretical DWBA cross sections for levels within a rotational band in (d,p) and/or (d,t). See details in (d,p) and (d,t) data sets.

- [&] The γ rays from band 1 and band 2 are observed in coin with those of band A and band B, but no linking transitions are reported (1997Ha23). 1997Ha23 quote energy x=2074.2 and J=(25/2) based on population intensity and γ -ray energies. But in the absence of linking transitions the level energy cannot be defined precisely, it is probably near 2 MeV.
- ^{*a*} Band(a): $\nu 1/2[521]$ band. A=13.4, B=-13 eV, a=0.457.
- ^b Band(b): v3/2[402] band (?). A=12.8, if B=0.
- ^{*c*} Band(C): $\nu 1/2[400]$ band.
- ^d Band(d): v5/2[512] band (?). A=13.1, B=-43 eV.
- ^e Band(e): v3/2[651] band. A=9.1, if B=0.
- ^{*f*} Band(f): K-2 γ vibration. Based on v5/2[523]. A=11.83, a=-0.052.
- ^g Band(g): v1/2[530] band. A=8.9, a=0.53.
- ^h Band(h): v1/2[510] band (?). A=12, B=60 eV, a=-0.37.
- ^{*i*} Band(I): Yrast band A: $\nu 5/2[642]$, $\alpha = +1/2$. Dominant configuration at low spins, but other $i_{13/2}$ -related orbitals are probably present due to the expected strong Coriolis coupling among them. A band crossing at a rotational frequency of ≈ 400 suggests a change to ABC configuration (alignment of a pair of $i_{13/2}$ neutrons) and a second band crossing suggesting a change to ABCef (alignment of a pair of $h_{11/2}$ protons).

Continued on next page (footnotes at end of table)

¹⁶³Er Levels (continued)

- ^{*j*} Band(A): Band B: v5/2[642], $\alpha = -1/2$. A band crossing at a rotational frequency of ≈ 400 keV suggests a change to BAD configuration (alignment of a pair of $i_{13/2}$ neutrons). See the comment on the other signature partner for this band.
- ^k Band(D): Band E: v5/2[523], $\alpha = +1/2$. No signature splitting is observed. A band crossing at a rotational frequency of ≈ 250 suggests a change to EAB configuration (alignment of a pair of $i_{13/2}$ neutrons) and a second band crossing suggests a change to EABef.
- ^{*l*} Band(E): Band F: v5/2[523], $\alpha = -1/2$. No signature splitting is observed. A band crossing at a rotational frequency of ≈ 250 suggests a change to FAB configuration (alignment of a pair of $i_{13/2}$ neutrons) and a second band crossing suggests a change to FABef.
- ^{*m*} Band(J): band (BEH or BFG), $\alpha = -1/2$.
- ^{*n*} Band(K): band (BEG or BFH), $\alpha = +1/2$.
- ^o Band(L): band (AFG), $\alpha = +1/2$.
- ^{*p*} Band(M): band (EAC), $\alpha = -1/2$.
- ^{*q*} Band(N): Band Y: $\nu 11/2[505]$, $\alpha = -1/2$. No signature splitting is observed. A band crossing at a rotational frequency of ≈ 300 is probably due to alignment of a pair of $i_{13/2}$ neutrons.
- ^{*r*} Band(B): band C: v3/2[651], $\alpha = +1/2$.
- ^s Band(F): Band G: v3/2[521], $\alpha = +1/2$. First band crossing suggests change to GAB (alignment of a pair of $i_{13/2}$ neutrons) and a second crossing to GABef (alignment of a pair of $h_{11/2}$ protons.).
- ^t Band(G): Band H: v3/2[521], $\alpha = -1/2$. A band crossing at about 27/2 suggests a change to HAB.
- ^{*u*} Band(H): band (AEG), $\alpha = -1/2$.
- ^{*v*} Band(O): band (AEH), $\alpha = +1/2$.
- ^{*w*} Band(P): Band X: $\nu 11/2[505]$, $\alpha = +1/2$. No signature splitting is observed. A band crossing at a rotational frequency of ≈ 300 is probably due to alignment of a pair of $i_{13/2}$ neutrons.
- ^{*x*} Band(Q): Band faA, K=19/2, α =+1/2. A band crossing at about 29/2 suggests a change to faABC. Based on decay modes, Routhian calculations and calculated transition rates (B(M1)/B(E2)) using a tilted-axis cranking model, the best predicted configuration (1994Br09) is v5/2[642] coupled to the 7⁻ state formed by (π 7/2[523])+(π 7/2[404]) in ¹⁶⁴Er. No signature splitting is observed.
- ^y Band(R): Band eaA, K=19/2, α =-1/2. A band crossing at about 25/2 suggests a change to eaABC. See also comment for band faA.
- ^z Band(S): band EABef.
- ¹ Band(T): Band X,Y + γ vibration. Based on a comparison of experimental and calculated (K-allowed and K-hindered) reduced E2 transition probabilities and $K^{\pi}=19/2^{-}$ for the 1845 bandhead, 1994Br09 deduce $K^{\pi}=15/2^{-}$ for the 1297 bandhead. 1994Br09 state that coupling between the available orbitals does not produce $J^{\pi}=15/2^{-}$. However, a γ vibration built on $\nu 11/2[505]$ would have $15/2^{-}$ in its ground state.
- ² Band(U): Band faE, K=19/2, α =+1/2. A band crossing at about 33/2 suggests a change to faEAB.
- ³ Band(V): Band eaE, K=19/2, α =-1/2. A band crossing at about 33/2 suggests a change to eaEAB.
- ⁴ Band(W): Band YAG, K=19/2, α =+1/2. Based on decay modes, Routhian calculations and calculated transition rates (B(M1)/B(E2)) using a tilted-axis cranking model, the best predicted configuration (1994Br09) is v5/2[523], coupled to the 7⁻ state formed by (π 7/2[523])+(π 7/2[404]) in ¹⁶⁴Er. But the configuration (v11/2[505])+(v5/2[523])+(v3/2[521]), K^{π} =19/2⁻ is not ruled out. No signature splitting is observed.
- ⁵ Band(X): Band XAG, K=19/2, α =-1/2. See comment for band YAG.
- ⁶ Band(Y): Band 1.
- ⁷ Band(Z): Band 2.

$\gamma(^{163}{\rm Er})$

See ε decay and $(\alpha, 2n\gamma)$ for many unplaced gamma rays.

9

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{d}	$I_{(\gamma+ce)}$	Comments
69.23	5/2+	69.229 <i>3</i>	100	0.0	5/2-	E1		0.853		B(E1)(W.u.)= $4.4 \times 10^{-5} 3$ From RUL, $\delta(M2/E1) \le 0.0050$.
83.96	7/2-	14.72 ^{<i>f</i>} 2	13 <i>3</i>	69.23	5/2+	E1		11.13	160 40	B(E1)(W.u.)=0.0013 4 I _y : from I(γ +ce) and α .
		83.968 4	100.0 22	0.0	5/2-	M1+E2	1.61 9	5.47		B(M1)(W.u.)=0.00139 19; $B(E2)(W.u.)=2.5\times10^2$ 3
91.55	7/2+	22.358 <i>10</i> 91.550 8	8.8 <i>14</i> 100 <i>6</i>	69.23 0.0	5/2+ 5/2-	M1+E2 E1	0.19 2	134 <i>20</i> 0.411	1190 43	I_{γ} : from $I(\gamma+ce)$ and α .
104.32	3/2-	20.34 ^{<i>f</i>} 2	0.0016 2	83.96	7/2-	E2		4.33×10 ³	6.9 7	B(E2)(W.u.)=26 4 I _{γ} : from I(γ +ce) and α .
120.35	9/2+	35.05 ^f 3 104.320 3 28.835 12	3.1 8 100.0 <i>19</i>	69.23 0.0 91.55	5/2+ 5/2- 7/2+	E1 M1(+E2) M1+E2	<0.05 0.090 <i>11</i>	1.027 2.52 23.6 <i>16</i>		B(E1)(W.u.)= 8.6×10^{-5} 24 B(M1)(W.u.)> 0.0092 ; B(E2)(W.u.)<1.3 ce(L)/(γ +ce)= 0.770 16; ce(M)/(γ +ce)= 0.181 13 E : from ¹⁶³ Tm s decay
164.42	5/2-	51.1 ^f 60.105 3 72.875 8 80.460 7 164 419 8	100.0 <i>18</i> 10.2 <i>4</i> 36.1 <i>11</i> 62.6 22	69.23 104.32 91.55 83.96 0.0	5/2 ⁺ 3/2 ⁻ 7/2 ⁺ 7/2 ⁻ 5/2 ⁻	M1+E2 E1(+M2) M1+E2 M1+E2	0.222 8 <0.08 0.048 10 0.135 21	12.77 <i>19</i> 1.0 <i>3</i> 5.32 0.690		E_{γ} : from (¹⁸ O,5n γ) only.
189.7	9/2-	105.8 <i>3</i> 189.73 <i>21</i>	21 <i>11</i> 100 <i>50</i>	0.0	7/2 ⁻ 5/2 ⁻	M1		2.42		E _γ : from (¹⁸ O,5nγ). Eγ=106.05 4 in ¹⁶³ Tm ε for a weak γ. Mult.: $\Delta J=1 \gamma$ from $\gamma(\theta)$ in (α ,2nγ). M1 or E1+M2 from α (K)exp in ¹⁶³ Tm ε. Comparison to RUL excludes E1+M2. I _γ : from (¹⁸ O,5nγ). E _γ ,I _γ : from (¹⁸ O,5nγ). In ¹⁶³ Tm ε decay 190.0γ is assigned to deexcitation of the 439.5 level only, but part of the intensity
199.3 247.0 249.53	11/2 ⁺ (13/2 ⁺) 7/2 ⁻	79.0 <i>4</i> 107.8 <i>3</i> 126.79 <i>20</i> 85.118 <i>4</i>	100 37 100 100 <i>3</i>	120.35 91.55 120.35 164.42	9/2 ⁺ 7/2 ⁺ 9/2 ⁺ 5/2 ⁻	M1+E2 ^{<i>a</i>} (E2) ^{&} (E2) ^{&} M1+E2	0.19 2	6.5 9 2.22 1.224 4.56		(≈10% of the total intensity in ε decay) probably belongs to the decay of the 190 level. I _γ : from (α,2nγ). I _γ : from (α,2nγ).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{d}	$I_{(\gamma+ce)}$	Comments
249.53	7/2-	129.21 <i>3</i> 145.213 <i>11</i> 165.60 <i>6</i> 249.498 <i>6</i>	23 4 32.2 15 18 4 22.6 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E1 E2 M1+E2 M1+E2	0.26 <i>4</i> 0.53 7	0.1646 0.755 0.667 <i>11</i> 0.198 6		
319.7	(11/2 ⁻)	130.07 24 199.5 4 235.68 21	40 6 33 3	$\begin{array}{c} 0.0 & 0/2 \\ 189.7 & 9/2^{-} \\ 120.35 & 9/2^{+} \\ 83.06 & 7/2^{-} \end{array}$	[M1,E2]	0.55 /	1.23 12		
345.62	1/2-	235.08 21 241.305 5 345.608 9	100.0 26 10.09 22	$\begin{array}{cccc} 83.30 & 7/2 \\ 104.32 & 3/2^{-} \\ 0.0 & 5/2^{-} \end{array}$	M1 E2		0.240 0.0453		
359.8	(9/2 ⁻)	109.6 <i>5</i> 196.5 <i>5</i>	63 29 100 <i>37</i>	249.53 7/2 ⁻ 164.42 5/2 ⁻					
404.00	3/2-	58.35 2 239.585 5 299.667 8 320.057 18 403.989 10	0.3 <i>I</i> 97 <i>4</i> 100.0 <i>20</i> 6.8 <i>3</i> 23.1 <i>6</i>	345.62 1/2 ⁻ 164.42 5/2 ⁻ 104.32 3/2 ⁻ 83.96 7/2 ⁻ 0.0 5/2 ⁻	M1+E2 M1+E2 M1+E2 E2 E2	0.73 <i>17</i> 0.21 <i>3</i> 0.21 <i>6</i>	18 8 0.241 0.1310 25 0.0568 0.0291	5.4 9	α : near threshold for $\alpha(K)$.
411.9	(15/2+)	165.01 20 212.69 20	41 2 100 5	247.0 $(13/2^+)$ 199.3 $11/2^+$	M1+E2 ^{<i>a</i>} (E2) ^{&}		0.59 <i>11</i> 0.205		
439.54	5/2-	35.56 <i>3</i> 93.88 <i>f 3</i> 190.006 <i>6</i> 275.125 <i>8</i> 335.219 <i>12</i> 355.624 <i>13</i> 439.575 <i>17</i>	0.8 53.3 11 100 3 22.1 6 17.8 5 13.8 12	404.00 3/2 ⁻ 345.62 1/2 ⁻ 249.53 7/2 ⁻ 164.42 5/2 ⁻ 104.32 3/2 ⁻ 83.96 7/2 ⁻ 0.0 5/2 ⁻	M1+E2 [E2] M1+E2 M1+E2 M1+E2 M1 M1	0.090 <i>11</i> 0.18 <i>3</i> 0.31 <i>7</i> 0.66 <i>14</i>	11.5 6 3.74 0.458 0.161 4 0.084 5 0.0848 0.0487	3.7 7	
445.5	(11/2 ⁻)	125.8 [@] 198.5 [@] f 246.2 [@] 255.8 [@] 325.1 [@]	37 61 96 100 ≈172	319.7 (11/2 ⁻) 247.0 (13/2 ⁺) 199.3 11/2 ⁺ 189.7 9/2 ⁻ 120.35 9/2 ⁺	[M1,E2] [E1] [E1] (M1) ^{<i>a</i>}		1.37 <i>11</i> 0.0530 0.0304 0.205		B(E1)(W.u.)= 5.6×10^{-9} 14 B(E1)(W.u.)= 4.6×10^{-9} 11 B(M1)(W.u.)= 4.2×10^{-7} 10
462.48	3/2+	297.87 [#] 3 358.174 10 371.07 9 393.261 11	34.9 <i>12</i> 53.2 <i>12</i> 3.3 <i>4</i> 100.0 <i>21</i>	$\begin{array}{cccc} 164.42 & 5/2^{-} \\ 104.32 & 3/2^{-} \\ 91.55 & 7/2^{+} \\ 69.23 & 5/2^{+} \end{array}$	[E1] E1 (E2) M1+E2	0.44 7	0.0189 0.01204 0.0369 0.0596 <i>17</i>		Energy-level difference=298.07.
464.0 466.1	(17/2 ⁺) 13/2 ⁻	217.02 20 146.43 22 266.89 21 276 35 20	100 6.9 <i>4</i> 14.2 7 100 <i>4</i>	$\begin{array}{rrrr} 247.0 & (13/2^+) \\ 319.7 & (11/2^-) \\ 199.3 & 11/2^+ \\ 189.7 & 9/2^- \end{array}$	(E2) ^{&} [M1,E2] [E1] F2 ^{&}		0.192 0.85 <i>12</i> 0.0248 0.0889		
496.2	11/2-	136.2 3	88 19	359.8 (9/2 ⁻)			0.0007		

10

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{d}	$I_{(\gamma+ce)}^{\dagger}$	Comments
496.2 526.33	11/2 ⁻ 5/2 ⁺	246.0 <i>4</i> 361.97 <i>4</i> 421.92 <i>3</i> 434 72 <i>3</i>	100 25 14.9 <i>14</i> 31.9 <i>21</i> 100 3	249.53 7/2 ⁻ 164.42 5/2 ⁻ 104.32 3/2 ⁻ 91.55 7/2 ⁺	E1 (E1) M1+F2	0.58.79	0.01174 0.00820 0.043 4		
531.07 540.56	3/2 ⁺ 1/2 ⁺	461.845 <i>12</i> 78.041 <i>24</i> 436.24 <i>6</i> 471 220 <i>17</i>	100 5 100 1.9 3 3.90 23	$\begin{array}{c} 69.23 & 5/2^+ \\ 69.23 & 5/2^+ \\ 462.48 & 3/2^+ \\ 104.32 & 3/2^- \\ 69.23 & 5/2^+ \end{array}$	M1+E2 M1(+E2)	0.90 <i>16</i> ≤0.6	0.0327 22 6.1 <i>3</i>		
574.08	3/2+	471.550 17 324.49 15 409.77 5 469.65 4	4.4 5 13.0 <i>10</i> 37.9 <i>16</i>	09.23 5/2 249.53 7/2 ⁻ 164.42 5/2 ⁻ 104.32 3/2 ⁻	E2		0.00642		
616.5	(13/2-)	504.878 <i>14</i> 170.86 <i>20</i>	100 <i>5</i> 100	$\begin{array}{c} 69.23 & 5/2^+ \\ 445.5 & (11/2^-) \end{array}$	M1+E2 (M1+E2) ^a	0.8 5	0.027 <i>6</i> 0.53 <i>10</i>		
619.36	3/2+	78.93 ^ƒ 2 454.954 <i>17</i>	20.7 7	540.56 1/2 ⁺ 164.42 5/2 ⁻	(M1,E2)		6.5 9	≈3.9	
		515.012 <i>16</i> 528.18 <i>14</i> 550.154 <i>16</i> 619.44 <i>10</i>	54 3 9.9 14 100.0 26 4.2 6	$\begin{array}{cccc} 104.32 & 3/2^{-} \\ 91.55 & 7/2^{+} \\ 69.23 & 5/2^{+} \\ 0.0 & 5/2^{-} \end{array}$	E1+M2 [E2] M1(+E2) E1+M2	0.186 <i>18</i> ≤0.27 0.17 8	0.0084 7 0.01430 0.0268 7 0.0051 17		
639.6	(15/2 ⁻)	173.5 <i>4</i> 319.90 <i>21</i>	11 2 100 9	$\begin{array}{rrrr} 466.1 & 13/2^{-} \\ 319.7 & (11/2^{-}) \\ 247.0 & (12/2^{+}) \end{array}$	(E2) ^{&}		0.0569		
655.3	(13/2 ⁻)	158.8 <i>3</i> 295.84 22	24 2 100 11	$496.2 11/2^{-}$ $359.8 (9/2^{-})$					
664.86	5/2+	415.15 6 500.51 2	31 <i>3</i> 50 8	$\begin{array}{c} 339.8 \\ 249.53 \\ 7/2^{-} \\ 164.42 \\ 5/2^{-} \end{array}$	E1		0.00851		
		560.51 5 573.23 4 595.35 5	44 <i>11</i> 100 <i>4</i> 85 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	E1+M2 M1(+E2) E2	0.27 9 ≤0.6	0.009 <i>4</i> 0.0229 <i>18</i> 0.01064		
683.75	(1/2)-	338.28 8 520.1 2 579.510 <i>13</i>	8.4 6 3.3 7 100.0 22	345.62 1/2 ⁻ 164.42 5/2 ⁻ 104.32 3/2 ⁻	M1 E2 M1(+E2)	≤0.5	0.0968 0.01487 0.0227 <i>13</i>		$\delta(\text{E2/M1})$ >1.7 but ΔJ^{π} requires E2.
717.39	3/2-	683.87 <i>3</i> 552.948 <i>23</i> 613.054 <i>18</i> 633 77 9	31.2 20 100 4 97.6 24 21 1 79	$\begin{array}{cccc} 0.0 & 5/2^- \\ 164.42 & 5/2^- \\ 104.32 & 3/2^- \\ 83.96 & 7/2^- \end{array}$	(E2) M1 M1+E2	0.39 16	0.00767 0.0270 0.0193 <i>12</i>		
735.0	(19/2+)	717.42 <i>3</i> 271.02 <i>20</i>	24.9 22 20.1 7	$\begin{array}{c} 0.0 & 5/2^{-} \\ 464.0 & (17/2^{+}) \end{array}$	M1+E2 (M1+E2) ^{<i>a</i>}	1.5 4	0.0091 <i>11</i> 0.13 <i>4</i>		
735.38	1/2+,3/2+	323.10 20 161.31 3 331.355 19	100 <i>3</i> 7.8 <i>6</i> 11.3 <i>4</i>	411.9 (15/2 ⁺) 574.08 3/2 ⁺ 404.00 3/2 ⁻	(E2) ^{&} [M1,E2] E1		0.0553 0.63 <i>11</i> 0.01452		

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{d}
735.38	$1/2^+, 3/2^+$	389.59 <i>3</i>	14.9 10	345.62 1/2-	E1		0.00987
		666.178 <i>19</i>	100.0 23	69.23 5/2+	(E2)		0.00815
777.1	$(21/2^+)$	313.10 20	100	464.0 (17/2 ⁺)	(E2) ^{&}		0.0607
779.63	5/2-	529.75 7	100 11	249.53 7/2-	M1+E2	0.8 4	0.024 4
		615.18 <i>3</i>	100 7	164.42 5/2-	M1+E2	0.56 21	0.0180 15
		675.20 11	51 5	104.32 3/2-	M1+E2	0.8 4	0.0130 22
		688.12 <i>11</i>	61 6	91.55 7/2+	(E1)		0.00283
		695.81 <i>12</i>	39 5	83.96 7/2-	M1+E2	0.7 4	0.0126 19
	(1 - 1 -)	710.81 77	29 3	69.23 5/2+			
809.7	$(15/2^{-})$	193.17 20	100 4	$616.5 (13/2^{-})$	(M1+E2) ⁴		0.36 8
820 ((17/0-)	364.38 22	33 2	445.5 (11/2)	[E2]		0.0389
820.6	(1/2)	181.0 3	2.8 3	639.6 (15/2)			
		334.32 20	100.4	400.1 15/2			
840.5	$(15/2^{-})$	408.7721	23.2 11	(13/2) 655.3 $(13/2^{-})$			
840.5	(15/2)	344.01.23	100.8	(15/2)			
856 22	$(3/2)^{-}$	606.4.2	19.8.73	249 53 7/2-	[F2]		0.01018
030.22	(3/2)	691 736 22	100 4	$164.42.5/2^{-1}$	M1		0.01532
		752.04.5	62.3	$104.32 \ 3/2^{-1}$	M1 ^C		0.01244
963.29	$(3/2)^+$	798.74 9	48.3	$164.42 \ 5/2^{-1}$			0101211
	(-,-)	858.72 6	100 7	104.32 3/2-	(E1)		0.00183
		894.26 ^e 11	73 ^e 37	69.23 5/2+			
985.67	$5/2^{-}$	411.66 7	48 4	574.08 3/2+			
		640.4 2	36 6	345.62 1/2-			
		735.97 10	55 7	249.53 7/2-	E2(+M1)	≥2.5	0.0069 5
		821.3 2	33 9	164.42 5/2-			
		881.4 <i>3</i>	23 6	104.32 3/2-	(M1)		0.00840
		894.26 ^e 11	64 ^e 64	91.55 7/2+			
		902.18 14	50 12	83.96 7/2-	M1+E2	0.9 7	0.0062 16
		916.81 9	100 10	69.23 5/2+	E1		
1023.9	$(17/2^{-})$	214.13 21	100 5	809.7 (15/2 ⁻)	[M1,E2]		0.27 7
1000 0	(10/2-)	407.3 3	40 3	$616.5 (13/2^{-})$			
1032.3	(19/2)	211.76	14 2	820.6 (17/2)			
		392.61 <i>21</i>	100 0	639.6 (15/2)			
1040.6	$(17/2^{-})$	100.0.3	314	404.0 (17/2) 840.5 (15/2)			
1040.0	(1//2)	385 31 22	100 7	(13/2)			
1059 75	3/2-	375 87 5	19517	$(15/2)^{-}$	M1+F2	113	0.053.6
1057.15	5/2	655,760,20	100.0 24	404.00 3/2-	M1(+E2)	<0.38	0.0169 7
		714.04 10	9.6 10	345.62 1/2-	M1	_0.50	0.0115
		991.0 4	7.3.21	69.23 5/2+	(E1)		1.39×10^{-3}
		>> 1.0 I		07.20 0/2	()		1.02/110

12

$\gamma(^{163}\text{Er})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^d	Comments
1077.3	$(17/2^+)$	342.1 3	90 16	735.0 (19/2 ⁺)				
		613.3 4	79 <i>21</i>	464.0 (17/2 ⁺)				
	(22)(2)	665.5 5	100 26	$411.9 (15/2^+)$			0.051.10	
1163.1	$(23/2^+)$	386.06 20	13.5 5	777.1 $(21/2^+)$	[M1,E2]		0.051 18	
		428.25 20	100 3	735.0 (19/2 ⁺)	(E2) ^{&}		0.0248	
1184.8	$(25/2^+)$	407.66 20	100	777.1 (21/2 ⁺)	(E2) ^{&}		0.0284	
1214.3	$(17/2^+)$	749.8 8	100 50	$464.0 (17/2^+)$				
1010 0	(21/2-)	801.9 9	100 50	$411.9 (15/2^+)$				
1242.8	$(21/2^{-})$	210.76	0.75 25	$1032.3 (19/2^{-})$	8r			
		422.37 20	100 3	$820.6 (17/2^{-})$	(Q) ^{&}			
1050 2	(10/2-)	507.70 23	17.6 8	$(19/2^{+})$				
1258.3	(19/2)	234.25 22	63 5 100 5	1023.9 (17/2)				
1270.6	$(19/2^{-})$	229.6.3	25 8 15	$1040.6 (17/2^{-})$				
1270.0	(1)/2)	430.08 24	100 6	$840.5 (15/2^{-})$				
1281-16	$1/2^+$ $3/2^+$	598 $12^{\#}$ 3	52.3	$683.75 (1/2)^{-1}$	(E1)		0.00379	Level-energy difference=597.41
1201.10	1/2 ,5/2	$1176.09^{\#}$ 3	100 6	$104.32 3/2^{-1}$	(E1) F1		1.03×10^{-3}	Level energy difference 1176.83
1298.0	$(15/2^{-})$	681 3 4	34 5	$6165 (13/2^{-})$	LI		1.05×10	Lever-energy unreferee=1170.85.
1290.0	(15/2)	852.2 4	100 15	$445.5 (11/2^{-})$				
1352.8	$(19/2^+)$	889.0 5	100	464.0 (17/2 ⁺)				
1369.46	3/2+	406.06 15	1.00 22	963.29 (3/2)+	E2(+M1)	≥2.0	0.032 4	
		589.13 [#] 11	1.33 22	779.63 5/2-				Level-energy difference=589.84.
		749.6 <i>3</i>	1.2 3	619.36 3/2+				
		828.8 <i>3</i>	1.12 18	540.56 1/2+	M1		0.00978	
		844.69 [#] 13	1.6 4	526.33 5/2+				Level-energy difference=843.15.
		1205.019 24	47.2 10	164.42 5/2-	E1			
		1265.116 25	100.0 18	$104.32 \ 3/2^{-}$	El M1 · E2	104	0.0027.2	
1472.0	$(21/2^{-})$	1300.41 0	10.0 0	$09.23 \ 5/2'$	MIT+E2	1.0 4	0.002/3	
14/3.9	(21/2)	202.8 S 433 45 23	30 3 100 7	1270.0 (19/2) $1040.6 (17/2^{-})$				
1476.3	$(21/2^{+})$	313.11 22	100 8	$1163.1 (23/2^+)$				
1 17 012	(=1/=)	398.8 3	32 5	$1077.3 (17/2^+)$				
		699.0 5	29 6	777.1 (21/2+)				
		741.5 4	41 6	735.0 (19/2 ⁺)				
1479.8	$(23/2^{-})$	447.44 21	100 7	1032.3 (19/2 ⁻)				
	(1 - 1 -)	702.6 3	72 7	777.1 $(21/2^+)$				
1510.3	$(17/2^{-})$	212.30 20	21 10	$1298.0 (15/2^{-})$				
		/00.9 4	80 / 100 7	809.7 (15/2)				
1511.2	$(21/2^{-})$	094.0 4 252 83 22	53 4	$1258.3 (10/2^{-})$				
1.511.2	(21/2)	232.03 22	55 +	1230.3 (17/2)				

$\gamma(^{163}\text{Er})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments
1511.2	$(21/2^{-})$	487.05 22	100 6	1023.9 (17/2 ⁻)				
1514.61	3/2+	733.6 [#] 2	8.2 7	779.63 5/2-				Level-energy difference=734.98.
	- /	940.62 3	63.6 21	574.08 3/2+	E2		0.00382	
		1075.13 <i>3</i>	100 5	439.54 5/2-	E1		1.20×10^{-3}	
		1168.97 5	54 8	345.62 1/2-	E1		1.04×10^{-3}	
		1350.15 <i>3</i>	53.5 21	164.42 5/2-	E1			
		1410.19 <i>3</i>	57.7 21	104.32 3/2-	E1			
		1514.3 4	7.9 12	0.0 5/2-				
1529.6	$(21/2^+)$	315.19 21	100 29	$1214.3 (17/2^+)$	h			
		753.0 4	57 11	777.1 $(21/2^+)$	D			
		794.2 5	74 11	$735.0 (19/2^+)$				
1520 70	2/2+	1065.6 11	14 6	$464.0 (1^{\prime}/2^{+})$				
1538.79	3/21	4/8.49 14	0.61 19	$1059.75 \ 3/2$ 062.20 (2/2)+	[M1 E2]		0.019.7	
		575.1 5 750 41 0	0.38 17 2 02 17	$903.29 (3/2)^{-1}$	[111,E2]		0.018 /	
		803 469 22	3 36 12	735 38 1/2+ 3/2+	M1		0.01055	
		873.88 17	1.10 17	$664.86 \ 5/2^+$	(E2)		0.00446	
		997.67 19	1.10 21	540.56 1/2+	M1+E2	1.3 9	0.0044 14	
		1099.38 <i>3</i>	6.6 4	439.54 5/2-	E1		1.15×10^{-3}	
		1135.28 9	4.2 4	404.00 3/2-	E1		1.09×10^{-3}	
		1192.34 19	2.01 19	345.62 1/2-	(E1)		1.01×10^{-3}	
		1374.34 <i>3</i>	53.7 14	164.42 5/2-	E1			
		1434.45 3	100.00 24	104.32 3/2-	E1			
		1446.88 13	1.14 14	91.55 7/2+		0 (5 00	0.00006.10	
		1469.42 3	36.4 /	69.23 5/2+	M1+E2	0.65 20	0.00226 12	
1569.80	3/2+	584.86" 9	4.0 3	985.67 5/2-	F 1		0.00215	Level-energy difference=584.13.
		/90.12 0	13.4 9	7/9.63 5/2	EI		0.00215	
		833.96" 4	22.4 8	735.38 1/2+,3/2+	M1+E2	1.2 3	0.0069 7	Level-energy difference=834.42.
		886.06 3	16.3 8	$683.75 (1/2)^{-1}$	EI	-0 (1	1.72×10^{-3}	
		905.6 2	9.4 15	$604.80 \ 5/2^{+}$	$M1(\pm E2)$ $M1\pm E2$	≤ 0.61	0.0074 0	
		995.857	8.40	$574.08 3/2^+$	$M1(\pm E2)$	< 0.43	0.0055.0	
		1029.18 6	6.6.8	540.56 1/2+	E2	20.45	0.00317	
		$1042.66^{\#}$ 9	6.0.10	526 33 5/2 ⁺	M1(+E2)	<1.2	0.0048.8	Level-energy difference=1043.46
		1130.224 23	100.3	439.54 5/2-	E1		1.10×10^{-3}	
		1165.6 2	6.2 10	404.00 3/2-				
		1224.152 24	91.1 24	345.62 1/2-	E1			
		1405.36 <i>3</i>	33.4 11	164.42 5/2-	E1			
		1465.73 [#] 3	83.7 25	104.32 3/2-	E1			Level-energy difference=1465.47.

14

E_i (level)	J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments
1569.80	3/2+	1500.61 <i>4</i> 1569.65 <i>10</i>	16.3 <i>10</i> 3.5 5	$\begin{array}{ccc} 69.23 & 5/2^+ \\ 0.0 & 5/2^- \end{array}$	M1+E2	0.9 4	0.00204 21	
1593.03	3/2+	813.32 <i>10</i> 928.06 <i>11</i> 1052.37 <i>13</i>	14.4 23 13.1 20 9.9 14	779.63 5/2 ⁻ 664.86 5/2 ⁺ 540.56 1/2 ⁺	E1 M1(+E2) (M1)	≤1.0	0.00203 0.0065 <i>9</i> 0.00545	Mult.: large $\alpha(K)$ exp suggests some E0 admixture but this is not allowed by $\Delta I = 1$
1607.5 1653.15	(21/2 ⁺) 3/2 ⁺	1153.45 <i>3</i> 1189.00 ^e <i>13</i> 1247.44 <i>3</i> 1489.04 <i>10</i> 1593.05 <i>11</i> 872.5 <i>3</i> 796.2 <i>2</i> 1033.95 <i>11</i> 1213.52 <i>15</i> 1307.26 <i>11</i>	100 3 7.4 ^e 19 86.3 23 7.3 13 3.9 11 100 16 3 33 6 34 5 44 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	E1 (E1) E1		1.03×10 ⁻³ 1.02×10 ⁻³	admixture out this is not anowed by $\Delta s = 1$.
1681.1	$(29/2^{+})$	1561.60 5 1583.95 4 496.33 20	52 3 100 3 100	91.55 $7/2^+$ 69.23 $5/2^+$ 1184.8 $(25/2^+)$	E2 M1 &		1.49×10 ⁻³ 0.00218	
1685.7	$(27/2^+)$	500.35 21	15.6 7	1184.8 (25/2+)	0			
1717.2	(23/2+)	522.84 20 364.5 5 940.0 5	100 <i>3</i> 45 <i>18</i> 100 <i>45</i>	$\begin{array}{rrrr} 1163.1 & (23/2^+) \\ 1352.8 & (19/2^+) \\ 777.1 & (21/2^+) \end{array}$	æ			
1719.2	(25/2 ⁻)	476.45 20 556.24 20	100 <i>3</i> 30.4 <i>11</i>	$\begin{array}{rrr} 1242.8 & (21/2^{-}) \\ 1163.1 & (23/2^{+}) \end{array}$	&			
1722.39	3/2+	662.67 <i>11</i> 987.74 <i>10</i> 1005.01 <i>9</i> 1037.1 <i>4</i>	17.2 20 16.0 13 12.5 18 8.1 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1+E2 E1	1.1 4	0.0048 7 1.36×10 ⁻³	Level-energy difference=987.01.
		1181.94 <i>16</i> 1318.34 <i>3</i> 1376.79 <i>10</i> 1618.20 <i>19</i> 1631 4 <i>4</i>	9.8 <i>14</i> 100.0 <i>21</i> 22.1 <i>22</i> 2.3 <i>9</i> 1.9 6	540.56 1/2 ⁺ 404.00 3/2 ⁻ 345.62 1/2 ⁻ 104.32 3/2 ⁻ 91 55 7/2 ⁺	(E2) (E1)		0.00240	
1776.0	(23/2 ⁻)	301.2 6	6.4 <i>13</i>	1473.9 (21/2 ⁻) 1270.6 (19/2 ⁻)				
1781.4	(23/2 ⁻)	270.07 25 523.1 3	63 7 100 10	1270.0 (19/2) $1511.2 (21/2^{-})$ $1258.3 (19/2^{-})$				
1801.56	3/2+	433.2 <i>3</i> 837.94 <i>13</i>	1.3 <i>3</i> 0.8 <i>3</i>	$\begin{array}{c} 1369.46 \\ 963.29 \\ (3/2)^{+} \end{array}$	M1+E2 (M1)	1.1 8	0.036 <i>13</i> 0.00951	

From ENSDF

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments
1801.56	$3/2^{+}$	945.27 3	12.3.3	856.22	$(3/2)^{-}$	E1		1.52×10^{-3}	
	-/-	1066.49 8	2.80 24	735.38	$1/2^+.3/2^+$	M1+E2	1.0 4	0.0041 6	
		1261.20 8	3.4 4	540.56	$1/2^+$	$(M1)^{c}$		0.00354	
		1338.62 14	1.3 3	462.48	3/2+	< <i>/</i>			
		1397.52 <i>3</i>	100.0 21	404.00	3/2-	E1			
		1455.94 <i>3</i>	51.6 16	345.62	$1/2^{-}$	E1			
		1637.46 12	1.2 3	164.42	5/2-				
		1697.22 4	6.9 <i>3</i>	104.32	3/2-	E1			
		1732.92 15	2.30 11	69.23	5/2+	(M1)		0.00186	
1826.49	$3/2^{+}$	457.07 5	0.74 7	1369.46	$3/2^{+}$	M1,E2		0.032 12	
		863.2 <i>3</i>	5.0 17	963.29	$(3/2)^+$	M1,E2		0.0067 22	
		1046.9 2	11.8 14	779.63	5/2-				
		1091.01 4	31 3	735.38	$1/2^+, 3/2^+$	M1+E2	1.0 4	0.0039 6	
		1142.51 5	74.3 26	683.75	$(1/2)^{-}$	E1		1.08×10^{-3}	
		1285.82 5	30.9 14	540.56	$1/2^{+}$	M1+E2	0.7 4	0.0029 4	
		1365.6 5	5.8 19	462.48	3/2+	M1 ^C		0.00295	
		1386.99 <i>3</i>	100.0 24	439.54	5/2-	E1			
		1422.58 12	9.9 12	404.00	3/2-				
		1480.94 3	57 4	345.62	1/2-	E1			
		1662.12 5	92.4	164.42	5/2-	EI			
		1/22.3/ 5	48.0 17	104.32	3/2	EI			
		1741.75 # 9	7.7 5	83.96	7/2-				Level-energy difference=1742.52.
		1757.25 14	5.8 5	69.23	5/2+				
1845.2	$(19/2^{-})$	334.96 20	100 5	1510.3	$(17/2^{-})$				
		546.98 21	76 4	1298.0	$(15/2^{-})$				
		821.41 23	412	1023.9	$(1^{-}/2^{-})$				
1052 54	2/0+	1035.7 3	21.2	809.7	(15/2)		-0.04	0.022.5	
1853.54	3/21	484.03 4	25.5 20	1369.40	3/2*	MI(+E2)	≤0.94	0.033 5	
		1089.13 4	33.8 22	104.42	3/2				
		1749.22 5	100 4	104.52	5/2 5/2+			1.28×10^{-3}	
		1/84.29 4	30.7 10	09.23	5/2*	E2		1.28×10 °	
1872 70	$(2/2)^+$	202.06.0	2.70	1560.90	$\frac{3}{2}$	(E2)		0.0670	
10/2.19	(3/2)	303.009	5.50	1309.00	3/2	(E2)		0.0070	I I I'M 000 50
		908.18" 18	16.3	963.29	$(3/2)^{+}$	E2(+M1)	≥2.0	0.0045 4	Level-energy difference=909.50.
		1137.10 10	28.9 16	/35.38	1/2 ,3/2	MI(+E2)	≤0.5/	0.00428 25	
		1189.00° 13	6.0° 16	683.75	(1/2)	(EI)	-0.01	1.02×10^{-5}	
		1332.13 /	10.1 1/	540.56	1/2'	$M1(\pm E2)$	≤0.91	0.0029 3	
		1545.82 19	5.2 10	526.33	5/2'	MI,E2		0.0025 0	
		1709.03" 6	10.5 6	164.42	5/2-	(E1)			Level-energy difference=1708.36.
		1767.65 [#] 10	14.2 7	104.32	3/2-				Level-energy difference=1768.46.

16

$\gamma(^{163}\text{Er})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments
1872.79	$(3/2)^+$	1803.55 5	100 3	69.23	5/2+	E2		1.26×10^{-3}	
1917.48	$(3/2)^+$	380.57 [#] 17	18 <i>4</i>	1538.79	$3/2^+$	(E2)		0.0344	Level-energy difference=378.69.
	(-,-)	547.96 14	44 7	1369.46	$3/2^+$	[M1,E2]		0.020 8	
		1251.90 [#] 10	100 5	664.86	5/2+	E2		0.00215	Level-energy difference=1252.62.
		1753.45 8	73 7	164.42	5/2-				
		1813.60 [#] 7	23.1 19	104.32	3/2-				Level-energy difference=1813.15.
		1825.23 [#] 7	97 4	91.55	7/2+	E2		1.25×10^{-3}	Level-energy difference=1825.92.
		1848.22 9	196	69.23	$5/2^{+}$	(M1)		1.69×10^{-3}	
1931.8	$(25/2^+)$	402.16 23	62 6	1529.6	$(21/2^+)$				
		455.50 22	82 9	1476.3	$(21/2^+)$				
		747.12 25	100 9	1184.8	$(25/2^+)$				
		768.8 5	88 9	1163.1	$(23/2^+)$				
1024.0	(25/2-)	1155.2 5	15.6	777.1	$(21/2^{+})$				
1934.9	(25/2)	401.02 22	100	14/3.9	(21/2) $(21/2^+)$				
1955.0	(23/2)	425.30 23	470 82.8	1329.0	(21/2) $(21/2^+)$				
		767.9.5	41 10	1184.8	$(25/2^+)$				
		790.3 5	100 10	1163.1	$(23/2^+)$				
		1175.6 6	10 4	777.1	$(21/2^+)$				
1957.9	$(27/2^{-})$	478.06 21	42 2	1479.8	$(23/2^{-})$				
		773.17 21	100 5	1184.8	$(25/2^+)$				
1961.5	$(21/2^{-})$	116.40 20	100	1845.2	$(19/2^{-})$				
1982.4	$(19/2^{+})$	137.33 20	100	1845.2	$(19/2^{-})$	(E1)		0.1400	Mult.: from intensity balance (1994Br09) and $\gamma\gamma(\theta)$
2040.68	3/2+	117 90 16	21.5	1503.03	3/2+	[M1 E2]		0.034.13	(1997Ha25).
2040.00	5/2	1323 64 18	25.6	717 39	$3/2^{-}$	(E1)		0.054 15	
		1577.66 15	14.3 15	462.48	$3/2^+$	(21)			
		1876.23 6	61 6	164.42	5/2-	E1			
		1936.38 6	100 3	104.32	3/2-	E1			
		1971.2 2	2.6 7	69.23	5/2+				
		2040.76 16	8.9 13	0.0	5/2-				
2044.1	$(25/2^+)$	436.74 25	49 6	1607.5	$(21/2^+)$				
		881.0 3	100 11	1163.1	$(23/2^{+})$				Mult.: $\gamma\gamma(\theta)$ (DCO) gives $\Delta J=1$ with a large quadrupole (most likely E2) admixture.
2052.50	$3/2^{-}$	1273.17 14	24 5	779.63	$5/2^{-}$	M1(+E2)	≤0.68	0.00324 23	
		1525.97 4	100 5	526.33	$5/2^{+}$	E1			
		1649.3 <i>3</i>	73	404.00	3/2-				
		1888.1 3	2.7 15	164.42	5/2-				
		1948.40 5	8.9 8	104.32	$3/2^{-}$				
		1985.24 8	8./8 2.12.20	69.23	5/2"				
		2052.8 2	2.13 20	0.0	5/2				

17

From ENSDF

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{d}
2066.9	$(25/2^{-})$	285.40 24	40 2	1781.4	$(23/2^{-})$		
	,	555.54 <i>23</i>	100 6	1511.2	$(21/2^{-})$		
2104.3	$(23/2^{-})$	142.72 20	100 4	1961.5	$(21/2^{-})$		
		259.1 <i>3</i>	10.9 8	1845.2	$(19/2^{-})$		
2122.21	$1/2^{(-)}, 3/2$	400.74 17	100 17	1722.39	$3/2^{+}$		
		1957.57 7	83 12	164.42	5/2-		
		2017.96 9	71 5	104.32	$3/2^{-}$		
2144.2	$(21/2^+)$	161.95 20	100 5	1982.4	$(19/2^+)$		
		182.85 <i>21</i>	77 5	1961.5	$(21/2^{-})$		
2167.6	$(27/2^+)$	450.5 5	6.2 31	1717.2	$(23/2^+)$		
		982.9 <i>3</i>	100 13	1184.8	$(25/2^+)$		
2227.9	$(29/2^{-})$	508.78 20	100 <i>3</i>	1719.2	$(25/2^{-})$	~	
		542.33 20	24 1	1685.7	$(27/2^+)$	а	
2243.21	3/2-	961.61 12	100 19	1281.16	$1/2^+, 3/2^+$	E1	1.47×10^{-3}
		2079.0 4	11.8 15	164.42	5/2-		
		2159.98 16	12.8 19	83.96	7/2-		
2258.3	$(33/2^+)$	577.38 20	100	1681.1	$(29/2^+)$	&	
2271.0	$(25/2^{-})$	166.73 20	100 4	2104.3	$(23/2^{-})$		
		309.9 <i>3</i>	13.0 7	1961.5	$(21/2^{-})$		
2274.5	$1/2^{(-)}, 3/2$	2274.5 5	100	0.0	$5/2^{-}$		
2291.4	$(31/2^+)$	606.00 20	100 <i>3</i>	1685.7	$(27/2^+)$	&	
		609.93 <i>23</i>	12.6 7	1681.1	$(29/2^+)$		
2307.8	$(27/2^{-})$	531.5 <i>3</i>	87 6	1776.0	$(23/2^{-})$		
		1123.1 3	100 6	1184.8	$(25/2^+)$	a	
2314.0	$(21/2^+)$	193.66 22	100	2120.3	$(19/2^+)$		
2331.6	$(23/2^+)$	187.54 20	100 5	2144.2	$(21/2^+)$	а	
		227.13 22	54 <i>3</i>	2104.3	$(23/2^{-})$		
		349.0 3	13.9 15	1982.4	$(19/2^+)$		
2368.1	$(27/2^{-})$	300.7 3	29 3	2066.9	$(25/2^{-})$		
04154	(20/2+)	586.50 23	100 7	1781.4	$(23/2^{-})$		
2415.4	$(29/2^+)$	483.64 20	100 5	1931.8	$(25/2^+)$		
		729.5 3	36.3	1685./	$(27/2^{+})$		
		/34.6.5	273	1081.1	$(29/2^+)$		
2419.0	(27/2-)	1230.7 0	12.5	1184.8	$(25/2^{+})$		
2418.0	(27/2)	938.0 3	50 <i>19</i>	14/9.8	(25/2)	а	
2421 7	$(20/2^{-})$	1233.3 0	52 2	1184.8 1024.0	$(25/2^{+})$ $(25/2^{-})$		
2431.7	(29/2)	497.03	52 S	1934.9	$(25/2^{-})$		
		745 76 22	52 S 100 6	1685 7	(23/2)	a	
2448 2	$(20/2^{+})$	145.10 25	100 0	1053.0	(21/2) $(25/2^+)$		
2440.2	(29/2)	495.02 21	100 5	1955.0	(23/2)		

18

 $^{163}_{68}\mathrm{Er}_{95}$ -18

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]
2448.2	(29/2+)	516.8 5 762.32 22	16 <i>3</i> 53 <i>3</i>	1931.8 1685.7	$(25/2^+)$ $(27/2^+)$		2912.5	$(31/2^+)$	1226.88 <i>10</i> 1231.7 <i>10</i>	100 27 100 27	1685.7 (27 1681.1 (29	$7/2^+)$ $9/2^+)$	
2448.9	(31/2 ⁻)	767.0 5 1263.4 6 491.19 21	15 4 3.0 15 58 2	1681.1 1184.8 1957.9	$(29/2^+)$ $(25/2^+)$ $(27/2^-)$	a	2928.3	(33/2+)	480.25 21 512.65 21 1247.2 6	87 4 100 5 11 4	2448.2 (29 2415.4 (29 1681.1 (29	$\frac{9}{2^+}$ $\frac{9}{2^+}$ $\frac{9}{2^+}$	
2460.0	(25/2-)	767.95 21	100 4	1681.1	$(29/2^+)$	и	2930.8	$(33/2^{-})$	498.94 21	100 5	2431.7 (29	$\theta/2^{-})$	&
2460.9	$(2^{7}/2^{-})$	189.96 20	100 4	2271.0	$(25/2^{-})$		2015 0	(25/2-)	702.95 24	54 3	2227.9 (29	$\theta/2^{-})$	& &
2481.5	(23/2)	356.72 23 1296.7 5 1318 3 6	22 2 100 23 77 23	2104.3 1184.8 1163.1	(23/2) $(25/2^+)$ $(23/2^+)$		2965.0	(35/2)	516.29 20 706.59 21 518 72 21	78 3 100 4 78 5	2448.9 (3) 2258.3 (3) 2448.2 (20	$3/2^+)$	a
2523.7	(23/2 ⁺)	209.8 <i>4</i> 403.4 <i>5</i>	100 75 25 25	2314.0 2120.3	$(23/2^+)$ $(21/2^+)$ $(19/2^+)$		2907.2	(33/2)	551.84 <i>21</i> 1285.8 <i>6</i>	100 6 3.2 16	2415.4 (29 1681.1 (29	$\frac{2}{2}/2^+)$	
2540.9	$(29/2^+)$	496.77 23	82 6	2044.1	$(25/2^+)$		2969.0	$(35/2^+)$	677.60 20	100	2291.4 (31	$1/2^{+})$	&
2542.1	(25/2+)	859.88 22 210.32 20 271.00 22	100 6 100 7 60 4	1681.1 2331.6 2271.0	$(29/2^+)$ $(23/2^+)$ $(25/2^-)$	Ь	2986.9 3009.2	$(27/2^+)$	238.30 <i>21</i> 462.99 <i>23</i> 641 1 <i>3</i>	100 7 67 7	2748.6 (25 2523.7 (23 2368 1 (27	$5/2^+)$ $3/2^+)$ $7/2^-)$	
2672.6	(29/2-)	397.97 24 211.79 20	42 2 100 <i>3</i>	2144.2 2460.9	$(23/2^{+})$ $(21/2^{+})$ $(27/2^{-})$		3022.1	(31/2) $(29/2^+)$	249.37 <i>21</i> 480.12 <i>21</i>	100 <i>3</i> 86 <i>3</i>	2508.1 (27 2772.7 (27 2542.1 (25	$7/2^+)$ $7/2^+)$ $5/2^+)$	
		303.9 <i>3</i> 401.73 <i>22</i> 606 2 6	9.4 9 30 2 6 8 17	2368.1 2271.0 2066.0	$(27/2^{-})$ $(25/2^{-})$ $(25/2^{-})$		3074.0 3157.6	$(33/2^+)$ $(33/2^-)$	533.14 <i>21</i> 252.30 <i>20</i> 485 08 <i>21</i>	100 100 <i>4</i> 65 2	2540.9 (29 2905.2 (31 2672.6 (29	$\frac{9}{2^+}$ $\frac{1}{2^-}$	
2682.7	(29/2 ⁻)	314.6 <i>3</i> 615.79 25	39 6 100 8	2000.9 2368.1 2066.9	$(25/2^{-})$ $(27/2^{-})$ $(25/2^{-})$		3214.4 3236.2	(33/2 ⁺) (29/2 ⁺)	585.1 9 249.41 21	100 100 8	2672.0 (29 2629.3 (29 2986.9 (27	9/2) 9/2 ⁺) 7/2 ⁺)	
2698.7	(31/2+)	531.11 23 1017.63 24	70 7 100 7	2167.6 1681.1	(27/2 ⁺) (29/2 ⁺)	а	3274.5	(37/2 ⁻)	487.65 22 305.56 24	64 8 3.3 2	2748.6 (25 2969.0 (35	5/2 ⁺) 5/2 ⁺)	0.
2741.8	$(33/2^{-})$	450.41 20 513.91 20	22 <i>1</i> 100 <i>3</i> 20 5	2291.4 2227.9	$(31/2^+)$ $(29/2^-)$ $(22/2^+)$		3288.7	(31/2+)	532.73 20 266.53 21 516 10 21	100 <i>3</i> 100 <i>4</i> 78 <i>4</i>	2741.8 (33 3022.1 (29	$\frac{3}{2^{+}}$ $\frac{3}{2^{+}}$	æ
2748.0	(25/2*)	225.4 5 267.06 24 434.5 4	20 5 100 20 10 5	2323.7 2481.5 2314.0	$(23/2^{+})$ (23/2) $(21/2^{+})$		3299.1	(35/2+)	600.53 <i>21</i> 1040.77 <i>22</i>	78 4 96 7 100 7	2772.7 (27) 2698.7 (31) 2258.3 (33)	$\frac{1}{2^+}$ $\frac{1}{2^+}$ $\frac{3}{2^+}$	а
2772.7	(27/2 ⁺)	230.48 20 441.24 22	100 <i>4</i> 47 <i>3</i>	2542.1 2331.6	$(25/2^+)$ $(23/2^+)$		3313.5	(35/2 ⁻)	529.62 <i>21</i> 1055.56 <i>25</i>	100 <i>5</i> 51 <i>4</i>	2783.7 (31 2258.3 (33	1/2 ⁻) 3/2 ⁺)	а
2783.7	(31/2 ⁻)	475.8 <i>3</i> 825.3 <i>3</i>	57 5 82 7	2307.8 1957.9	$(27/2^{-})$ $(27/2^{-})$	&	3339.1 3428.5	(33/2 ⁻) (35/2 ⁻)	656.4 <i>3</i> 270.89 <i>20</i>	100 100 <i>4</i>	2682.7 (29 3157.6 (33	9/2 ⁻) 3/2 ⁻)	
2890.5	(31/2 ⁻)	1102.80 23 472.5 4 932.7 3	100 7 34 7 100 <i>10</i>	1681.1 2418.0 1957.9	$(29/2^+)$ $(27/2^-)$ $(27/2^-)$	u	3430.2	(37/2 ⁺)	523.24 21 462.92 22 501.74 20	83 4 26 2 100 4	2905.2 (31 2967.2 (33 2928.3 (33	$\frac{1}{2^{-}}$ $\frac{3}{2^{+}}$ $\frac{3}{2^{+}}$	
2905.2	$(31/2^{-})$	232.74 20	100 4	2672.6	(29/2 ⁻)	а	3434.6	$(35/2^{-})$	544.14 25	63 6	2890.5 (31	1/2-)	
		444.14 21	57 2	2460.9	$(27/2^{-})$	0			985.77 24	100 9	2448.9 (31	1/2-)	&
2908.7	$(37/2^+)$	650.52 20	100	2258.3	$(33/2^+)$	&	3469.4	$(35/2^+)$	556.9 5	100 17	2912.5 (31	$1/2^{+})$	

19

	E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]
	3469.4	$(35/2^+)$	1211.1 6	≈60	2258.3	$(33/2^+)$		4292.5	$(37/2^+)$	267.7 3	62 4	4024.8	$(35/2^+)$	
	3494.5	$(31/2^+)$	258.42 21	100 6	3236.2	$(29/2^+)$				534.14 22	100 7	3758.3	$(33/2^+)$	
			507.28 23	94 <i>6</i>	2986.9	$(27/2^+)$		4336.0	$(41/2^+)$	655.58 21	100	3680.5	$(37/2^+)$	
	3511.9	$(37/2^{-})$	581.10 21	100 4	2930.8	$(33/2^{-})$		4346.5	$(41/2^{-})$	322.80 21	80 <i>3</i>	4023.7	$(39/2^{-})$	
			770.4 5	25 2	2741.8	$(33/2^{-})$				628.90 21	100 5	3717.8	$(37/2^{-})$	
	3530.4	$(37/2^+)$	563.08 21	100 4	2967.2	$(33/2^+)$		4395.1	$(45/2^+)$	771.12 20	100	3624.2	$(41/2^+)$	
			602.22 23	34 <i>3</i>	2928.3	$(33/2^+)$		4438.6	$(41/2^+)$	629.0 5	100	3809.6	$(3'/2^+)$	0
			1272.2 6	52 6	2258.3	$(33/2^+)$	0	4494.4	$(43/2^+)$	786.49 21	100	3707.8	$(39/2^+)$	æ
	3530.6	$(39/2^{-})$	565.65 20	100 3	2965.0	$(35/2^{-})$	&	4496.0	$(39/2^+)$	319.7 <i>3</i>	25 2	4175.9	$(37/2^+)$	
			621.85 20	46 2	2908.7	$(37/2^+)$	а			629.11 22	100 5	3867.1	$(35/2^+)$	
	3570.7	$(33/2^+)$	281.85 21	56 4	3288.7	$(31/2^+)$		4505.3	$(45/2^{-})$	647.09 20	100	3858.2	$(41/2^{-})$	&
			548.61 21	100 5	3022.1	$(29/2^+)$		4529.5	$(43/2^{-})$	636.50 21	100	3893.0	$(39/2^{-})$	
	3624.2	$(41/2^+)$	715.59 20	100	2908.7	$(37/2^+)$		4564.3	$(39/2^+)$	271.72 22	100 8	4292.5	$(37/2^+)$	
	3680.5	$(37/2^+)$	606.52 22	100	3074.0	$(33/2^+)$				539.50 24	68 8	4024.8	$(35/2^+)$	
	3707.8	$(39/2^+)$	738.78 21	100	2969.0	$(35/2^+)$		4588.5	$(45/2^+)$	619.64 <i>21</i>	100 6	3968.7	$(41/2^+)$	
	3717.8	$(37/2^{-})$	289.05 20	81 <i>3</i>	3428.5	$(35/2^{-})$				964.5 <i>3</i>	26 2	3624.2	$(41/2^+)$	
			560.30 21	100 4	3157.6	$(33/2^{-})$		4643.1	$(43/2^+)$	691.15 22	100	3952.0	$(39/2^+)$	
	3758.3	$(33/2^+)$	263.70 21	100 5	3494.5	$(31/2^+)$		4683.5	$(43/2^{-})$	337.14 <i>21</i>	70 4	4346.5	$(41/2^{-})$	
			522.3 <i>3</i>	87 5	3236.2	$(29/2^+)$				659.67 22	100 4	4023.7	$(39/2^{-})$	
	3809.6	$(37/2^+)$	595.2 5	100	3214.4	$(33/2^+)$	0	4686.1	$(43/2^{-})$	649.35 22	100	4036.9	$(39/2^{-})$	
	3858.2	$(41/2^{-})$	583.65 20	100	3274.5	$(37/2^{-})$	&	4700.1	$(43/2^+)$	632.50 21	100	4067.6	$(39/2^+)$	
	3867.1	$(35/2^+)$	296.32 21	49 <i>3</i>	3570.7	$(33/2^+)$		4821.4	$(41/2^+)$	256.97 21	60 11	4564.3	$(39/2^+)$	
			578.56 <i>21</i>	100 5	3288.7	$(31/2^+)$				325.54 25	30 2	4496.0	$(39/2^+)$	
	3893.0	$(39/2^{-})$	579.47 20	100 5	3313.5	$(35/2^{-})$				645.42 <i>23</i>	100 4	4175.9	$(37/2^+)$	
			983.1 8	11 2	2908.7	$(37/2^+)$		4825.1	$(45/2^+)$	675.06 21	100	4149.9	$(41/2^+)$	
	3952.0	$(39/2^+)$	652.88 20	100	3299.1	$(35/2^+)$		4850.6	$(41/2^{+})$	286.06 23	52 4	4564.3	$(39/2^+)$	
	3968.7	$(41/2^{+})$	538.34 20	100	3430.2	$(37/2^{+})$				558.3 3	5/4	4292.5	$(37/2^{+})$	
	4023.7	(39/2)	305.66 21	69 3	3/17.8	(37/2)		4056 4	(47/0-)	6/4./1 23	100 9	4175.9	$(37/2^{+})$	
	4024.9	$(25/2^{+})$	595.13 21	100 4	3428.5	(35/2)		4856.4	(47/2)	697.07 20	100	4159.3	(43/2)	
	4024.8	$(33/2^{+})$	200.29 23	04 J 100 Z	3/38.3	$(33/2^{+})$		4804.0	(45/2)	(0/.1/21)	100	4150.9	(41/2)	
	4026.0	$(20/2^{-})$	530.45 22	100 /	3494.3	$(31/2^{-})$		5017.1	$(45/2^{-})$	081.11 21	25.2	4330.0	$(41/2^{-})$ $(42/2^{-})$	
	4030.9	(39/2)	508 23 21	100	3454.0	(35/2)		5057.9	(43/2)	554.18 25 601 38 21	100 5	4065.5	(43/2)	
	4007.0	$(37/2^{-})$	731.0 /	100	3330 1	$(33/2^{-})$		5089.0	$(45/2^{+})$	650 4 6	24 10	4340.3	$(41/2^+)$	
	4070.1	(37/2) $(41/2^+)$	619 37 21	100 5	3530.4	(35/2) $(37/2^+)$		5089.0	(45/2)	030.40	100 14	44,58.0	$(41/2^+)$	
	+1+).)	(+1/2)	124166	100 5	2908.7	$(37/2^+)$		5123.9	$(43/2^+)$	273 37 21	100 14	4850.6	$(41/2^+)$	
	4156.9	$(41/2^{-})$	644 96 21	100	3511.9	$(37/2^{-})$		5125.7	(-1)/2)	302 08 24	32 17	4821.4	$(41/2^+)$	
	4159.3	$(43/2^{-})$	535.10.22	13 /	3624.2	$(41/2^+)$				559.72.24	50.3	4564.3	$(39/2^+)$	
	110710	(, _)	628 87 20	100 1	3530.6	$(30/2^{-})$	&			627.6.3	25 17	1496.0	$(30/2^+)$	
	4175 9	$(37/2^{+})$	308 81 22	96 <i>A</i>	3867.1	$(35/2^+)$	а	5182.8	$(43/2^+)$	361.0.3	25 17 46 4	4821 /	(3)/2) $(41/2^+)$	
1	71/3.2	(31/2)	605 05 22	100 6	3570.7	$(33/2^+)$		5102.0	(75/2)	686.9.3	100 8	4496.0	$(39/2^+)$	
			005.05 22	100 0	5570.7	(35/2)		l		500.7 5	100.0	1170.0	(37/2)	
1														

From ENSDF

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.‡	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.‡
5205.2	$(49/2^+)$	810.01 20	100	4395.1	$(45/2^+)$	&	6146.4	$(51/2^+)$	774.21 21	100 6	5372.2	$(47/2^+)$	
5218.9	$(49/2^{-})$	713.63 20	100	4505.3	$(45/2^{-})$	&			841.4 <i>3</i>	38 <i>3</i>	5305.0	$(47/2^+)$	
5228.3	$(47/2^{-})$	698.77 <i>21</i>	100	4529.5	$(43/2^{-})$		6158.2	$(53/2^+)$	846.0 <i>4</i>	100 7	5312.6	$(49/2^+)$	&
5305.0	$(47/2^+)$	810.57 22	100	4494.4	$(43/2^+)$			(==)	952.7 3	48 5	5205.2	$(49/2^+)$	
5312.6	$(49/2^+)$	724.03 21	100 5	4588.5	$(45/2^+)$		6174.1	$(51/2^{-})$	390.3 <i>3</i>	41 4	5783.6	$(49/2^{-})$	
		918.0 <i>3</i>	40 3	4395.1	$(45/2^+)$				770.8 <i>3</i>	100 7	5403.5	$(47/2^{-})$	
5372.2	$(47/2^+)$	672.1 <i>3</i>	37 <i>3</i>	4700.1	$(43/2^+)$		6188.9	$(51/2^+)$	781.6 <i>3</i>	100	5407.3	$(47/2^+)$	
		729.15 22	100 5	4643.1	$(43/2^+)$		6287.8	$(49/2^+)$	382.4 4	56 6	5905.6	$(47/2^+)$	
		877.7 <i>3</i>	45 5	4494.4	$(43/2^+)$				750.4 4	100 13	5537.2	$(45/2^+)$	
5387.2	$(47/2^{-})$	701.14 22	100 7	4686.1	$(43/2^{-})$	0	6336.6	$(53/2^+)$	783.31 22	100	5553.3	$(49/2^+)$	
		703.6 <i>3</i>	39 2	4683.5	$(43/2^{-})$	&	6426.6	$(51/2^+)$	349.52 21	100 5	6077.0	$(49/2^+)$	
5403.5	$(47/2^{-})$	365.4 4	42 2	5037.9	$(45/2^{-})$				681.79 <i>23</i>	97 5	5744.9	$(47/2^+)$	
		720.15 23	100 5	4683.5	$(43/2^{-})$		6455.9	$(55/2^{-})$	833.63 21	100	5622.3	$(51/2^{-})$	&
5407.3	$(47/2^+)$	707.2 3	100 12	4700.1	$(43/2^+)$		6463.2	$(53/2^{-})$	829.73 <i>23</i>	100	5633.4	$(49/2^{-})$	
		764.3 <i>3</i>	100 12	4643.1	$(43/2^+)$		6520.8	$(53/2^+)$	782.78 22	100	5738.0	$(49/2^+)$	
5427.7	$(45/2^+)$	303.68 21	100 4	5123.9	$(43/2^+)$		6562.4	$(53/2^+)$	759.7 4	100 17	5802.7	$(49/2^+)$	
		577.2 5	37 4	4850.6	$(41/2^+)$				1009.1 4	83 11	5553.3	$(49/2^+)$	
	(17/2)	606.53 25	65 4	4821.4	$(41/2^+)$		6572.6	$(53/2^{-})$	398.4 <i>3</i>	32 3	6174.1	$(51/2^{-})$	
5537.2	$(45/2^+)$	354.21 25	39.6	5182.8	$(43/2^+)$		((00.4	(51/0+)	789.01 25	100 7	5783.6	$(49/2^{-})$	
		686.4 <i>4</i>	100 11	4850.6	$(41/2^+)$		6682.4	$(51/2^{+})$	394.5 4	86 /	6287.8	$(49/2^{+})$	
5552 2	$(40/2^{+})$	710.9 5	85 17 100	4021.4	$(41/2^{+})$ $(45/2^{+})$		6702.0	$(52/2^{+})$	770.94	67.5	5905.0	$(47/2^{+})$ $(51/2^{+})$	
56223	(49/2) $(51/2^{-})$	765 01 20	100	4023.1	(43/2) $(47/2^{-})$		0792.0	(33/2)	715 13 25	100 7	6077.0	(31/2) $(40/2^+)$	
5633.4	$(31/2^{-})$ $(49/2^{-})$	769.40 22	100	4864.0	$(47/2^{-})$		6807.3	$(55/2^{-})$	819.05 22	100 /	5988.2	$(\frac{49}{2})$ $(51/2^{-})$	
5738.0	$(10/2^+)$	720.00.21	100	5017.1	$(15/2^+)$		6848.0	$(57/2^{-})$	848 23 21	100	5000.2	$(51/2^{-})$	&
5744 9	(49/2) $(47/2^+)$	317 08 21	96 <i>4</i>	5427.7	$(45/2^+)$		6914 3	$(57/2^+)$	879 59 21	100	6034.7	$(53/2^+)$	
5711.2	(17/2)	621.03.22	100 5	5123.9	$(13/2^+)$ $(43/2^+)$		6935.7	$(57/2^{-})$	791 03 24	100	6144 7	$(53/2^{-})$ $(51/2^{-})$	
5783.6	$(49/2^{-})$	380.10 25	30 2	5403.5	$(47/2^{-})$		6947.0	$(55/2^+)$	838.5 4	100	6108.5	$(51/2^+)$	
		745.65 22	100 4	5037.9	$(45/2^{-})$		6977.5	$(55/2^+)$	831.13 22	100	6146.4	$(51/2^+)$	
5802.7	$(49/2^+)$	713.7 3	100 11	5089.0	$(45/2^+)$		6988.6	$(55/2^{-})$	415.9 4	38 6	6572.6	$(53/2^{-})$	
		977.7 5	33 6	4825.1	$(45/2^+)$				814.6 4	100 13	6174.1	$(51/2^{-})$	
5905.6	$(47/2^+)$	368.40 25	45 5	5537.2	$(45/2^+)$		7020.8	$(55/2^+)$	831.8 <i>3</i>	100	6188.9	$(51/2^+)$	
		722.8 <i>3</i>	100 10	5182.8	$(43/2^+)$		7088.2	$(57/2^+)$	930.02 24	100	6158.2	$(53/2^+)$	
5988.2	$(51/2^{-})$	759.84 21	100	5228.3	$(47/2^{-})$		7090.4	$(53/2^+)$	802.6 5	100	6287.8	$(49/2^+)$	
5999.8	$(53/2^{-})$	780.90 20	100	5218.9	$(49/2^{-})$		7173.5	$(55/2^+)$	381.42 22	87 3	6792.0	$(53/2^+)$	
6034.7	$(53/2^+)$	829.51 21	100	5205.2	$(49/2^+)$		717 (0	(57.12+)	746.92 25	100 7	6426.6	$(51/2^+)$	
6077.0	(49/2+)	331.86 21	100 4	5/44.9	$(4^{-}/2^{+})$		7176.0	$(57/2^{+})$	839.26 23	100	6336.6	$(53/2^{+})$	
6109 5	(51/0+)	049.41 23	8/4 100 6	5272.2	$(43/2^{\circ})$		1522.9	$(31/2^{+})$	/60.5 5	100 11	6520.9	$(33/2^{+})$	
0108.5	$(31/2^{+})$	130.34 24	61 1	5305.0	$(47/2^+)$		73/8 8	$(57/2^{+})$	802.3 0 828 0 3	22 4 100	6520.8	$(33/2^{+})$ $(53/2^{+})$	
6144 7	$(51/2^{-})$	757 56 24	100	5387.2	(+1/2) $(47/2^{-})$		7351.8	$(57/2^{-})$	820.0 J	100	6463.2	$(53/2^{-})$	
0177./	(31/2)	131.30 24	100	5501.2	(1/2)		1551.0	(31/2)	000.0 5	100	0-03.2	(35/2)	

21

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$
7356.5 7413.5 7518.0 7573.9	(59/2 ⁻) (57/2 ⁻) (55/2 ⁺) (57/2 ⁺)	900.59 <i>21</i> 840.9 <i>5</i> 835.6 <i>5</i> 400.0 <i>3</i>	100 100 100 31 <i>3</i>	6455.9 6572.6 6682.4 7173.5	(55/2 ⁻) (53/2 ⁻) (51/2 ⁺) (55/2 ⁺)	&	9440.6 9607.8 9630.0 9779.6	(67/2 ⁻) (67/2 ⁻) (67/2 ⁻) (69/2 ⁻)	888.9 <i>3</i> 910.0 <i>5</i> 993.1 <i>4</i> 1034.5 <i>3</i>	100 100 100 100	8551.7 8697.8 8636.8 8745.1	(63/2 ⁻) (63/2 ⁻) (63/2 ⁻) (65/2 ⁻)
7681.2 7733.7	(59/2 ⁻) (59/2 ⁻)	781.90 25 873.8 <i>3</i> 798.1 <i>3</i>	100 <i>5</i> 100 100	6792.0 6807.3 6935.7	(53/2 ⁺) (55/2 ⁻) (55/2 ⁻)		9806.5 9816.1 9845.9	(67/2 ⁺) (69/2 ⁻) (69/2 ⁺)	939.7 5 1071.0 3 998.2 8	100 100 100	8866.8 8745.1 8847.7	(63/2 ⁺) (65/2 ⁻) (65/2 ⁺)
7763.4 7831.9 7845.5	(61/2 ⁻) (59/2 ⁻) (59/2 ⁺)	915.38 22 843.3 4 898.5 6	100 100 100	6848.0 6988.6 6947.0	(57/2 ⁻) (55/2 ⁻) (55/2 ⁺)	&	9909.4 10076.3	(69/2 ⁺) (69/2 ⁺)	922.4 <i>4</i> 1061.8 <i>3</i> 970.3 <i>4</i>	93 <i>13</i> 100 7 100	8986.9 8847.7 9106.0	$(65/2^+)$ $(65/2^+)$ $(65/2^+)$
7856.7 7954.6 7988.3	$(61/2^+) (57/2^+) (59/2^+)$	942.7 5 864.2 5 414.13 22	100 100 100 <i>4</i>	6914.3 7090.4 7573.9	$(57/2^+)$ $(53/2^+)$ $(57/2^+)$		10183.2 10229.2 10299.9	$(69/2^{-})$ $(69/2^{+})$ $(69/2^{+})$ $(71/2^{-})$	970.3 6 1101.0 5 969.6 6	100 100 100	9212.9 9128.2 9330.3	$(65/2^{-})$ $(65/2^{+})$ $(65/2^{+})$ $(65/2^{-})$
8067.7 8080.2	$(61/2^+)$ $(61/2^+)$ $((1/2^+)$	815.0 3 891.6 3 992.0 3	78 7 100 100	7173.5 7176.0 7088.2	$(55/2^+)$ $(57/2^+)$ $(57/2^+)$ $(57/2^+)$		10380.0	$(71/2^{-})$ $(71/2^{-})$ $(71/2^{-})$	939.4 <i>4</i> 1027.6 <i>5</i> 1087.8 <i>3</i>	100 <i>17</i> 75 8 100	9440.6 9352.3 9352.3	$(67/2^{-})$ $(67/2^{-})$ $(67/2^{-})$ $(67/2^{-})$
8127.9 8195.9 8277.9 8306.3	$(61/2^{+})$ $(61/2^{+})$ $(61/2^{-})$ $(61/2^{-})$	805.05 847.13 926.15 892.85	100 100 100	7348.8 7351.8 7413 5	$(57/2^+)$ $(57/2^-)$ $(57/2^-)$		10509.8 10732.0	$(71/2^{-})$ $(73/2^{-})$ $(71/2^{+})$	915.9 5 952.4 5	100 7 33 7 100	9007.8 9816.1 9779.6 9806.5	$(67/2^{-})$ $(69/2^{-})$ $(67/2^{+})$
8322.9 8420.1	$(61/2^{-})$ $(63/2^{-})$ $(61/2^{+})$	966.42 22 431.61 22 846.6 3	100 100 6 81 6	7356.5 7988.3 7573.9	$(59/2^{-})$ $(59/2^{+})$ $(57/2^{+})$		10800.7 10824.9 10903.6	$(73/2^+)$ $(73/2^-)$	979.0 8 1087.5 5 1124.0 5	100 100 <i>33</i> 100 <i>33</i>	9845.9 9816.1 9779.6	$(69/2^+)$ $(69/2^-)$ $(69/2^-)$
8551.7 8636.8	(63/2 ⁻) (63/2 ⁻)	817.9 <i>3</i> 870.5 <i>3</i> 903.5 <i>5</i>	78 <i>11</i> 100 <i>11</i> 67 <i>10</i>	7733.7 7681.2 7733.7	(59/2 ⁻) (59/2 ⁻) (59/2 ⁻)		10909.0 11325.0 11377.5	(73/2 ⁺) (73/2 ⁺) (75/2 ⁻)	999.6 <i>3</i> 1025.1 <i>6</i> 997.5 <i>5</i>	100 100 100	9909.4 10299.9 10380.0	$(69/2^+)$ $(69/2^+)$ $(71/2^-)$
8697.8 8745.1	(63/2 ⁻) (65/2 ⁻)	955.4 <i>4</i> 865.9 <i>5</i> 981.63 <i>24</i>	100 <i>10</i> 100 100	7681.2 7831.9 7763.4	(59/2 ⁻) (59/2 ⁻) (61/2 ⁻)		11548.4 11713.7	(75/2 ⁻) (77/2 ⁻)	1108.4 <i>3</i> 1168.3 <i>6</i> 981.7 <i>8</i>	100 <i>10</i> 90 <i>20</i> 100	10440.1 10380.0 10732.0	$(71/2^{-})$ $(71/2^{-})$ $(73/2^{-})$
8794.5 8847.7 8866.8	$(63/2^+) (65/2^+) (63/2^+)$	949.0 7 991.1 4 446.6 3	100 100 50 4	7845.5 7856.7 8420.1	$(59/2^+)$ $(61/2^+)$ $(61/2^+)$ $(52/2^+)$		11830.9 11870.0 12049.6	$(77/2^+)$ $(75/2^+)$ $(77/2^-)$	1006.0 <i>10</i> 1061.3 <i>6</i> 1146.0 <i>5</i>	100 100 100	10824.9 10808.7 10903.6	$(73/2^+)$ $(71/2^+)$ $(73/2^-)$
8986.9 9002.2	(65/2 ⁺) (65/2 ⁺)	878.65 858.84 874.54 93424	100 7 100 100 20 100 13	7988.3 8127.9 8127.9 8067.7	$(59/2^+)$ $(61/2^+)$ $(61/2^+)$ $(61/2^+)$		12699.4 12758.7 12881.5 13864 7	$(79/2^{-})$ $(81/2^{-})$ $(81/2^{+})$ $(85/2^{-})$	1151.0 <i>4</i> 1045.0 <i>5</i> 1050.6 <i>10</i> 1106.0 <i>6</i>	100 100 100 100	11548.4 11713.7 11830.9 12758 7	$(75/2^{-})$ $(77/2^{-})$ $(77/2^{+})$ $(81/2^{-})$
9106.0 9128.2 9212.9	$(65/2^+)$ $(65/2^+)$ $(65/2^-)$	910.1 <i>3</i> 1048.0 <i>5</i> 935.0 <i>4</i>	100 15 100 100 100	8195.9 8080.2 8277.9	$(61/2^+)$ $(61/2^+)$ $(61/2^-)$		612.0+x 1076.5+x 1624.0+x	(33/2) (29/2) (33/2) (37/2)	612.0 8 464.5 5 547.5 3	100 100 100	x 612.0+x 1076.5+x	(31/2) (25/2) (29/2) (33/2)
9330.3 9352.3	$(65/2^+)$ $(67/2^-)$	910.2 <i>5</i> 1029.4 <i>3</i>	100 100	8420.1 8322.9	(61/2 ⁺) (63/2 ⁻)		2236.0+x 2565.4+x	(41/2) (43/2)	612.0 8 329.5 <i>3</i>	100 20 <i>4</i>	1624.0+x 2236.0+x	(37/2) (41/2)

22

γ ⁽¹⁶³Er) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π
2565.4+x	(43/2)	637.4 5 679.8 3 718.3 4	100 <i>36</i> 100 <i>18</i> 100 <i>22</i>	$\begin{array}{c c} \hline 1927.9+x & \hline (39/2) \\ 2236.0+x & (41/2) \\ 2565.4+x & (43/2) \\ \end{array}$	4075.6+x 4495.4+x 4930.7+x	(51/2) (53/2) (55/2)	791.8 <i>4</i> 824.0 <i>5</i> 855.1 <i>5</i>	100 100 100	3283.8+x 3671.4+x 4075.6+x	(47/2) (49/2) (51/2)
3671.4+x	(49/2)	755.5 3	100	2915.9+x (45/2)	5393.7+x 5866.5+x 6357.7+x	(57/2) (59/2) (61/2)	898.3 6 935.8 5 964.0 6	100 100 100	4495.4+x 4930.7+x 5393.7+x	(53/2) (55/2) (57/2)

[†] From (¹⁸O,5n γ) for high-spin (J>7/2) levels and from ε decay for low-spin (J<9/2) levels, except as noted. The uncertainties of E γ 's quoted here (taken from

1982Vy07) are too low to give an acceptable least-squares fit to $E\gamma'$ s. In the opinion of evaluators, these should be at least doubled.

[‡] From $\alpha(\exp)$'s and subshell ratios in ε decay, except as noted.

[#] Poor fit. E_{γ} deviates from results of least-squares adjustment by >2 σ 's.

[@] From level-energy difference. γ ray near this energy is reported in $(\alpha, 2n\gamma)$.

[&] γγ(θ)(DCO) (1997Ha23) and/or γ(θ) in (α,2nγ) consistent with $\Delta J=2$, stretched quadrupole (most likely E2 from RUL).

^{*a*} $\gamma\gamma(\theta)$ (DCO) (1997Ha23) and/or $\gamma(\theta)$ in (α ,2n γ) consistent with Δ J=1, stretched dipole or D+Q (most likely M1+E2 from RUL).

^{*b*} From $\gamma\gamma(\theta)$ (DCO), (1997Ha23) interpret this transition as $\Delta J=0$ (most likely dipole).

^c Large value of $\alpha(K)$ exp in ε decay suggests possibility of some E0 admixture.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with intensity suitably divided.

12

^f Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Jo 9.

Level Scheme (continued)

Intensities: Relative photon branching from each level

0 75.0 min 4

Level Scheme (continued)

Intensities: Relative photon branching from each level

0 75.0 min 4

 $^{163}_{68}\mathrm{Er}_{95}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

0 75.0 min 4

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

0.0 75.0 min 4

Level Scheme (continued)

Intensities: Relative photon branching from each level

75.0 min 4

¹⁶³₆₈Er₉₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶³₆₈Er₉₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

75.0 min 4

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{163}_{68}\mathrm{Er}_{95}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{163}_{68}{\rm Er}_{95}$

¹⁶³₆₈Er₉₅

41

From ENSDF

 $^{163}_{68}\mathrm{Er}_{95}\text{-}42$

43

 $^{163}_{68}\mathrm{Er}_{95}\text{--}43$

 $^{163}_{68}\mathrm{Er}_{95}$ -43

From ENSDF

			Band(d): v5 (5/2[512] band ?)			
			<u>(9/2</u> ⁻)	≈805_		Band(vib	(f): K-2γ ration
						5/2-	779.63
						3/2-	717.39
			(7/2 ⁻)	698			
					Band(e): v3/2[651] band	(1/2)-	683.75
Band(a):	v1/2[521] band				5/2+ 664.86		
9/2-	636						
			(5/2 ⁻)	610	<u>3/2+ 619.36</u>		
7/2-	573						
		Band(C): v1/2[400] band Band(b): v3/2[402] band	nd				
		$\frac{5/2^+}{526.33}$	-				
		3/2+ 462.48					
5/2-	439.54						
3	5						
3/2-	404.00						
58	94 						
1/2-	345.62						

Band(h):	v1/2[510] band (?)
9/2-	1395

7/2- 1245

5/2- 1183

3/2- 1098

(1/2⁻) 1075

Band(g): v1/2[530] band

(7/2⁻) 973

(5/2⁻) 877

 $(3/2)^{-}$

856.22

Adopted Levels, Gammas (continued)

¹⁶³₆₈Er₉₅

¹⁶³₆₈Er₉₅

 $^{163}_{68}{\rm Er}_{95}$

Band(T): Band X,Y + γ vibration

$(17/2^{-})$	1510.3		
(15/2 ⁻)	212	1298.0	

 $^{163}_{68}\mathrm{Er}_{95}$

¹⁶³₆₈Er₉₅