<sup>162</sup>Dy(n,γ):E=th, res 1989Sc31,1967Sc05,1986Bo43

|                 | Н                         | istory               |                        |
|-----------------|---------------------------|----------------------|------------------------|
| Туре            | Author                    | Citation             | Literature Cutoff Date |
| Full Evaluation | C. W. Reich, Balraj Singh | NDS 111, 1211 (2010) | 12-Apr-2010            |

#### Additional information 1.

Includes E=th, 2 keV and 24 keV.

1989Sc31: E=th, 2 keV, 24 keV. Measured secondary (at E=th)  $E\gamma$ ,  $I\gamma$  with curved-crystal spectrometers (GAMS1 for 25-500 keV with FWHM=25 eV at 150 keV in the second order of reflection; GAMS2/3 for 100-1800 keV with FWHM=90 eV at 700 keV in the fifth order of reflection). Measured ce for E=th in the range 16-1800 keV using a magnetic spectrometer. Measured primary  $E\gamma$ ,  $I\gamma$  for E=th, 2 keV and 24 keV (ARC data) with a pair spectrometer. Measured  $\gamma\gamma$  for E=th with two Ge detectors. Deduced S(n)= 6271.04 keV 9.

1967Sc05: E=th. Measured secondary E $\gamma$ , I $\gamma$  with a curved-crystal spectrometer between 30– 1200 keV; ce with a mag spectrometer from 113– 950 keV; primary  $\gamma$ 's with a Ge(Li) detector.

1986Bo43, 1988Bo19: E=th. Measured E $\gamma$ ,  $\gamma\gamma$  coin, I $\gamma$  (intensities of two-quanta  $\gamma$  cascades using sum coin spectra with Ge detectors).

1982Is05 (also 1983Is05,1984Pr03): E=th. Measured primary Ey of nine transitions. Deduced S(n)= 6270.98 11.

Others:

1999Vo02: E=3- 225 keV. Measured capture cross sections.

1999Mi27: E=10– 90 keV, 550 keV. Measured E $\gamma$ , I $\gamma$ .

1999Su03, 1999Bo14, 1997Su29: analyzed 2-quantum cascade data for E=th.

1995Be37: E=th. Measured  $E\gamma$ ,  $I\gamma$ ,  $\gamma\gamma$ . Deduced two-step cascades and transition strengths.

1968Na21: measured  $T_{1/2}$  from  $\gamma\gamma(t)$ .

1967Bo48: measured E(ce), I(ce).

1966Ne06: measured  $\gamma$ .

From the analysis of data from two-step  $\gamma$  cascades following thermal- and 90-100-keV neutron capture, 2004Kr08 and 2006KrZZ propose the existence of M1 scissors-mode structures built on the excited states (As well As the ground state) of <sup>163</sup>Dy.

| E(level) <sup>†</sup>           | J <sup>π‡</sup> | E(level) <sup>†</sup>     | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>   | $J^{\pi \ddagger}$ |
|---------------------------------|-----------------|---------------------------|--------------------|-------------------------|--------------------|
| 0.0 <sup>b</sup>                | 5/2-            | 793.3941 <sup>e</sup> 20  | $(1/2)^{-}$        | 1208.0 <sup>#</sup> 7   | $(5/2^{-})^{\#}$   |
| 73.4448 <sup>b</sup> 4          | $7/2^{-}$       | 801.312 <sup>j</sup> 7    | $(7/2)^{-}$        | 1253.160 7              | $(3/2^+)$          |
| 167.3452 <sup>b</sup> 12        | 9/2-            | 820.7956 <sup>e</sup> 18  | $(3/2)^{-}$        | 1258.214 <sup>m</sup> 5 | 5/2-               |
| 250.8895 <sup>f</sup> 12        | 5/2+            | 851.124 <sup>g</sup> 3    | $(7/2^+)$          | 1277.172 6              | $(5/2^+)$          |
| 281.5717 <sup>b</sup> 21        | $11/2^{-}$      | 859.287 <sup>h</sup> 3    | $(3/2)^+$          | 1299.7 <sup>#</sup> 4   | $(5/2^{-})^{\#}$   |
| 285.5955 <sup>ƒ</sup> 9         | 7/2+            | 883.0139 <sup>e</sup> 20  | (5/2)-             | 1430.239 7              | $(3/2^+)$          |
| 336.5441 <sup><i>f</i></sup> 24 | $(9/2)^+$       | 884.2945 <sup>1</sup> 17  | $1/2^{+}$          | 1439.054 8              | $(1/2^-, 3/2^-)$   |
| 351.1497 <sup>°</sup> 10        | $(1/2)^{-}$     | 915.6575 <sup>h</sup> 24  | 5/2+               | 1483.263 19             | $(5/2^{-})$        |
| 389.7532 <sup>°</sup> 11        | 3/2-            | 935.142 <sup>1</sup> 5    | $(3/2)^+$          | 1489.104 8              | $(3/2^{-})$        |
| 412.382 <sup><i>f</i></sup> 5   | $(11/2^+)$      | 946.003 <sup>e</sup> 4    | $(7/2)^{-}$        | 1501.665 5              | $(5/2^+)$          |
| 421.8440 <sup>d</sup> 11        | $(3/2)^{-}$     | 949.3369 <sup>1</sup> 23  | $(5/2)^+$          | 1529.326 11             | $(1/2^-, 3/2^-)$   |
| 427.6801 <sup>°</sup> 9         | $(5/2)^{-}$     | 1049.0725 <sup>k</sup> 16 | 3/2-               | 1585.250 6              | 1/2+,3/2+          |
| 475.3884 <sup>d</sup> 10        | $(5/2)^{-}$     | 1055.7577 <sup>k</sup> 23 | $(1/2)^{-}$        | 1615.113 5              | 1/2-,3/2-          |
| 514.5522 <sup>°</sup> 12        | 7/2-            | 1058.4675 <sup>i</sup> 18 | $1/2^{+}$          | 1692.675 6              | $(3/2)^{-}$        |
| 553.0197 <sup>d</sup> 14        | 7/2-            | 1084.349 <sup>i</sup> 3   | $(3/2)^+$          | 1834.9                  | 5/2+               |
| 587.9293 <sup>°</sup> 25        | $(9/2)^{-}$     | 1129.759 <sup>1</sup> 4   | 5/2+               | 1874.13 7               | $(5/2^-, 7/2^-)$   |
| 646.249 <sup>d</sup> 4          | 9/2-            | 1135.494 <sup>k</sup> 3   | $(5/2)^{-}$        | 1950.771 6              | 3/2-               |
| 711.4718 <sup>j</sup> 21        | 5/2-            | 1147.455 <sup>n</sup> 3   | 3/2+               | 2109.4                  |                    |
| 737.6586 <sup>8</sup> 15        | $1/2^{+}$       | 1160.547 <sup>m</sup> 6   | $(1/2)^{-}$        | 2135.1                  |                    |
| 766.20758 18                    | $(3/2)^+$       | $1196.051^m$ 3            | $(3/2)^{-}$        | 2197.0                  | $(3/2^{-})$        |
| /81.09948 13                    | 5/21            | 1202.529** 0              | $(3/2)^{-1}$       | 2222.0                  |                    |

<sup>163</sup>Dy Levels

Continued on next page (footnotes at end of table)

| <sup>162</sup> <b>Dy</b> ( $\mathbf{n},\gamma$ ): <b>E=th</b> , res | 1989Sc31,1967Sc05,1986Bo43 | (continued) |
|---------------------------------------------------------------------|----------------------------|-------------|
|---------------------------------------------------------------------|----------------------------|-------------|

| E(level) <sup>†</sup> | J <i>π</i> ‡ | E(level) <sup>†</sup> | Jπ‡              | E(level) <sup>†</sup> | Jπ‡              | E(level) <sup>†</sup>    | J <sup>π</sup> ‡ |
|-----------------------|--------------|-----------------------|------------------|-----------------------|------------------|--------------------------|------------------|
| 2242.9                |              | 2583.3                |                  | 2996.9                |                  | 3497.2                   |                  |
| 2270.1                | $(3/2^+)$    | 2606.9                | $(5/2^{-})$      | 3048.0                |                  | 3612.8                   |                  |
| 2339.2                |              | 2615.6                |                  | 3067.1                |                  | 3737.9                   |                  |
| 2349.5                |              | 2627.7                |                  | 3104.7                |                  | 3884.3                   |                  |
| 2361.2                |              | 2648.0                | $(3/2^{-})$      | 3119.1                |                  | 4740.1                   |                  |
| 2432.5                |              | 2728.4                |                  | 3182.2                |                  | 4928.2                   |                  |
| 2459.8                |              | 2755.3                |                  | 3217.2                |                  | (6271.01 <sup>@</sup> 5) | $1/2^{+}$        |
| 2471.6                |              | 2835.4                | $(3/2, 5/2^{-})$ | 3230.6                |                  | $S(n)+2^{\&}$            |                  |
| 2475.4                |              | 2872.1                |                  | 3314.7                |                  | $S(n)+24^{a}$            |                  |
| 2525.3                |              | 2912.0                |                  | 3335.0                |                  |                          |                  |
| 2562.2                |              | 2978.1                |                  | 3353.0                | $(3/2, 5/2^{-})$ |                          |                  |

#### <sup>163</sup>Dy Levels (continued)

<sup>†</sup> From least-squares adjustment to  $E\gamma$ 's.

<sup>±</sup> From Adopted Levels, except as noted. Many assignments are based on resonance-averaged n capture data (1989Sc31).

- <sup>#</sup> From resonance-averaged n capture (1989Sc31).
- <sup>@</sup> S(n) value (from 2009AuZZ,2003Au03).
- <sup>&</sup> S(n)=6271.01, E(n)= 2 keV.
- <sup>a</sup> S(n)=6271.01, E(n)= 24 keV resonance.
- <sup>b</sup> Band(A): 5/2[523] g.s. band.
- <sup>c</sup> Band(B): mixed  $1/2[521]+(5/2[523]-Q_{22})$ ,  $K^{\pi}=1/2^{-}$  band.
- <sup>d</sup> Band(C): 3/2[521] band.
- <sup>*e*</sup> Band(D): mixed  $(5/2[523]-Q_{22})+1/2[521]$ ,  $K^{\pi}=1/2^{-}$  band.
- <sup>f</sup> Band(E): 5/2[642] band.
- $^g$  Band(F): K-2  $\gamma$  vibration built on the 5/2[523] g.s..
- $^{h}$  Band(G): 3/2[402] band.
- <sup>*i*</sup> Band(H): 1/2[400] band.
- <sup>j</sup> Band(I): 5/2[512] band.
- <sup>k</sup> Band(J): 1/2[530] band.
- <sup>*l*</sup> Band(K):  $K^{\pi}=2^{-}$  octupole vibration built on the 5/2[523] g.s..
- <sup>m</sup> Band(L): 1/2[510] band.
- <sup>n</sup> Band(M): 3/2[651] band.

| $ \frac{\mathbf{r}_{1}^{1/5}}{\frac{\mathbf{r}_{1}^{1/5}}{\frac{\mathbf{r}_{1}^{1/5}}{10025 g}} = \frac{\mathbf{r}_{1}^{1/5}}{\frac{\mathbf{r}_{1}^{1/5}}{10025 g}} = \frac{\mathbf{r}_{1}^{1/5}}{\mathbf{r}_{1}^{1/5}} = \frac{\mathbf{r}_{1}}{\mathbf{r}_{1}^{1/5}} = \frac{\mathbf{r}_{1}}{\mathbf{r}_{1}} = \frac{\mathbf{r}_{1$ |                                    |                           |                        | 162                                     | <sup>162</sup> <b>Dy</b> ( $\mathbf{n},\gamma$ ): <b>E=th</b> , res |                        | 1989Sc31,1967Sc05,1986Bo43 (continued) |             |                                                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|------------------------|-----------------------------------------|---------------------------------------------------------------------|------------------------|----------------------------------------|-------------|--------------------------------------------------------------------------|--|--|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                           |                        |                                         |                                                                     |                        | $\gamma$ ( <sup>163</sup> D            | y)          |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $E_{\gamma}^{\dagger}$             | $I_{\gamma}^{\ddagger s}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                    | $E_f$                                                               | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>#</sup>                     | δ#          | Comments                                                                 |  |  |
| $ \begin{array}{c} -3.9,000 \ d1 \\ 57.9,027 \ d2 \\ 73.9,009 \ d2 \\ 73.9,009 \ d2 \\ 73.9,009 \ d2 \\ 73.9,009 \ d2 \\ 73.9,019 \ d2 \\ 74.010 \ d0 \\ 74.0100 \ d0 \\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x33.8728 15                        | 0.025 9                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *35.9630 21                        | 0.044 <i>13</i>           |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x37.9227 16                        | 0.02                      |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *38.3069 22                        | 0.026 8                   | 280 7522               | 2/2-                                    | 251 1407                                                            | $(1/2)^{-}$            |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.003/12                          | 0.08712                   | 589.7552<br>514 5522   | 3/2<br>7/2-                             | 351.1497                                                            | (1/2)<br>$(5/2)^{-}$   |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x39 4199 22                        | 0.023 8                   | 514.5522               | 112                                     | 475.5884                                                            | (3/2)                  |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x42.511 5                          | 0.030 10                  |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 43.010 3              | 0.032 9                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.7071 8                          | 0.076 7                   | 475.3884               | $(5/2)^{-}$                             | 427.6801                                                            | $(5/2)^{-}$            |                                        |             |                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>x</sup> 50.170 4              | 0.047 24                  |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.942 4                           | 0.011 5                   | 336.5441               | $(9/2)^+$                               | 285.5955                                                            | 7/2+                   |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 51.386 4              | 0.029 9                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *56.888 4                          | 0.028 6                   | 421 0440               | $\langle 2 \rangle \langle 2 \rangle =$ | 251 1407                                                            | (1/2) =                | 52                                     |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /0.6950 9                          | 0.089 5                   | 421.8440               | (3/2)                                   | 351.1497                                                            | (1/2)                  | E2                                     |             | $\alpha(K)\exp=2.11$ 3.                                                  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73 4448 4                          | 0.0278                    | 73 1118                | 7/2-                                    | 0.0                                                                 | 5/2-                   | E2 + M1                                | 1 08 10     | $\delta$ : from L subshall ratios (1080Sc21) $\alpha(K)$ as $n = 1.05.8$ |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x74 304 7                          | 0.039.9                   | /3.4440                | 112                                     | 0.0                                                                 | 5/2                    | L2+1 <b>v</b> 11                       | 1.98 10     | 0. from E-subsidim ratios (19695051). $u(R)exp = 1.95$ 0.                |  |  |
| 77.6298 21       0.054 6       553.0197 $7/2^{-1}$ 475.3884 $(5/2)^{-1}$ M1(+E2)       0.23 + 12 - 23 $\delta$ : from L-subshell ratios (1989Sc31). $\alpha$ (K)exp=3.4 4 gives 0.8 3.         *77.879 12       0.038 12       83.573 9       0.027 7       1585.250 $1/2^+, 3/2^+$ 1501.665 $(5/2^+)$ $N$ <td>76.5268 15</td> <td>0.087 11</td> <td>427.6801</td> <td><math>(5/2)^{-}</math></td> <td>351.1497</td> <td><math>(1/2)^{-}</math></td> <td>E2</td> <td></td> <td><math>\alpha(\mathbf{K}) \exp = 2.0 \ 3.</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.5268 15                         | 0.087 11                  | 427.6801               | $(5/2)^{-}$                             | 351.1497                                                            | $(1/2)^{-}$            | E2                                     |             | $\alpha(\mathbf{K}) \exp = 2.0 \ 3.$                                     |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77.6298 21                         | 0.054 6                   | 553.0197               | 7/2-                                    | 475.3884                                                            | $(5/2)^{-}$            | M1(+E2)                                | 0.23 +12-23 | δ: from L-subshell ratios (1989Sc31). α(K)exp=3.4 4 gives 0.8 3.         |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>x</sup> 77.879 12             | 0.038 12                  |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.573 9                           | 0.027 7                   | 1585.250               | $1/2^+, 3/2^+$                          | 1501.665                                                            | $(5/2^+)$              |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 86.239 11             | 0.010 5                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| 88.8/5/5       0.033       514.5522 $1/2^-$ 427.0801 $(5/2)^-$ M1,E2 $\alpha$ (K)exp= 1.55/20.         93.902       0.262/25       167.3452 $9/2^-$ 73.4448 $7/2^-$ E2+M1       1.93 $\delta$ : from L-subshell ratios (1989Sc31). $\alpha$ (K)exp= 1.20 11.         *94.654       0.0076       0       99.738       0.023/3       1049.0725 $3/2^-$ 949.3369 $(5/2)^+$ *99.756       0.014/7       7       7       949.3369 $(5/2)^+$ $\delta$ : from L-subshell ratios (1989Sc31). $\alpha$ (K)exp= 1.20 11.         *103.774       13       0.021/5       7 $3/2^-$ 949.3369 $(5/2)^+$ *104.105       0.017/3       7 $3/2^-$ 949.3369 $(5/2)^+$ $\delta$ : from L-subshell ratios (1989Sc31). $\alpha$ (K)exp= 1.20 11.         *1104.105       0.017/3 $3/2^-$ 949.3369 $(5/2)^+$ $3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/2^ 3/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *86.338 14                         | 0.014 5                   | 514 5500               |                                         | 105 (001                                                            | (5.10) -               |                                        |             |                                                                          |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.875 3                           | 0.033 4                   | 514.5522               | 7/2-                                    | 427.6801                                                            | $(5/2)^{-}$            | MI,E2                                  | 10.2        | $\alpha(K)\exp=1.55\ 20.$                                                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93.902 3<br>X04 654 0              | 0.262 23                  | 167.3452               | 9/2                                     | /3.4448                                                             | 1/2                    | E2+M1                                  | 1.9.3       | o: from L-subshell ratios (1989Sc31). $\alpha$ (K)exp= 1.20 11.          |  |  |
| $x99.756$ $0.014$ 7 $x103.774$ $13$ $0.021$ 5 $x104.088$ $10$ $0.027$ 5 $x104.110$ 5 $0.017$ 3 $x108.904$ $13$ $0.019$ 4 $x111.017$ $7$ $0.012$ 5 $x114.22^{b}$ 6 $0.004^{b}$ $x115.150$ $23$ $0.017$ 6 $118.062$ 9 $0.051$ 7 $884.2945$ $1/2^+$ $766.2075$ $(3/2)^+$ $118.2518$ $19$ $0.211$ 7 $285.5955$ $7/2^+$ $167.3452$ $9/2^ x^119.428$ $22$ $0.009$ 3 $120.55$ 3 $0.012$ 5 $1055.7577$ $(1/2)^ 935.142$ $(3/2)^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 738 /                           | 0.070 20                  | 10/10/0725             | 3/2-                                    | 0/0 3360                                                            | $(5/2)^+$              |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x99 756 8                          | 0.023 3                   | 1049.0725              | 5/2                                     | 949.3309                                                            | (3/2)                  |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 103.774 <i>13</i>     | 0.021.5                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 104.088 10            | 0.027 5                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 104.110 5             | 0.017 3                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 108.904 13            | 0.019 4                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 110.62 3              | 0.006 3                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 111.017 17            | 0.012 5                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>x</sup> 114.22 <sup>b</sup> 6 | 0.004 <sup>0</sup>        |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x115.150 23                        | 0.017 6                   |                        |                                         |                                                                     |                        |                                        |             |                                                                          |  |  |
| 118.2518       19       0.211       7       285.5955 $7/2^+$ 167.3452 $9/2^-$ *119.428       22       0.009       3       935.142 $(3/2)^+$ 120.55       3       0.012       5       1055.7577 $(1/2)^-$ 935.142 $(3/2)^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.062 9                          | 0.051 7                   | 884.2945               | 1/2+                                    | 766.2075                                                            | $(3/2)^+$              |                                        |             |                                                                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.2518 <i>19</i>                 | 0.211 7                   | 285.5955               | 7/2+                                    | 167.3452                                                            | 9/2-                   |                                        |             |                                                                          |  |  |
| $120.55 \ 5 \qquad 0.012 \ 5 \qquad 1055.7577  (1/2) \qquad 935.142  (3/2)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ^119.428 22                        | 0.009 3                   | 1055 7577              | (1/2) =                                 | 025 142                                                             | $(2/2)^{+}$            |                                        |             |                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.33 3                           | 0.012 3                   | 1055./5//              | (1/2)                                   | 955.142                                                             | $(3/2)^{-1}$           |                                        |             |                                                                          |  |  |

ω

From ENSDF

|                                                                                         |                                                                                                                              |                                                | <sup>162</sup> Dy                                                              | $(\mathbf{n},\gamma)$ :E=th,                 | res 1                                                                            | 989Sc31,19             | 67Sc05,1986Bo43 (continued)                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                         |                                                                                                                              |                                                |                                                                                |                                              | $\gamma(^1$                                                                      | <sup>63</sup> Dy) (con | tinued)                                                                                                                                                                                                |
| ${\rm E_{\gamma}}^{\dagger}$                                                            | $I_{\gamma}^{\ddagger s}$                                                                                                    | E <sub>i</sub> (level)                         | $\mathbf{J}_i^{\pi}$                                                           | $E_f$                                        | $\mathbf{J}_f^{\pi}$                                                             | Mult. <sup>#</sup>     | Comments                                                                                                                                                                                               |
| 124.237 <i>3</i><br><i>x</i> 124.681 <i>13</i><br><i>x</i> 124.767 <i>8</i>             | 0.0239 24<br>0.025 4<br>0.054 18                                                                                             | 475.3884                                       | (5/2)-                                                                         | 351.1497                                     | (1/2) <sup>-</sup>                                                               | E2                     | Mult.: from $\alpha$ (L3)exp (1989Sc31). $\alpha$ (K)exp=0.24 4 gives $\delta$ =0.57 12.                                                                                                               |
| 124.7985 <i>12</i><br>125.217 <i>13</i>                                                 | 0.189 9<br>0.013 4                                                                                                           | 514.5522<br>946.003                            | 7/2 <sup>-</sup><br>(7/2) <sup>-</sup>                                         | 389.7532<br>820.7956                         | 3/2 <sup>-</sup><br>(3/2) <sup>-</sup>                                           | E2                     | $\alpha(K)\exp=0.69 \ 3.$                                                                                                                                                                              |
| x130.83 <sup>-</sup> 4<br>131.178 4<br>x132.395 11<br>x133.272 19                       | 0.003 <sup>2</sup><br>0.0228 20<br>0.011 4<br>0.019 4                                                                        | 553.0197                                       | 7/2-                                                                           | 421.8440                                     | (3/2)-                                                                           | E2<br>(M1)             | $\alpha$ (K)exp= 0.55 5.<br>$\alpha$ (K)exp= 2.0 7.                                                                                                                                                    |
| x137.48 <sup>0</sup> 4<br>142.0861 20<br>x143.797 15<br>x143.967 22                     | 0.005 <sup>0</sup><br>0.0254 21<br>0.012 3<br>0.008 3                                                                        | 427.6801                                       | (5/2)-                                                                         | 285.5955                                     | 7/2+                                                                             | E1                     | $\alpha$ (K)exp= 0.13 <i>3</i> .                                                                                                                                                                       |
| 146.6342 25<br>x150.484 8<br>$x154 019^{b} 6$                                           | $0.0185 \ 17$<br>$0.012 \ 3$<br>$0.054^{b} \ 8$                                                                              | 884.2945                                       | 1/2+                                                                           | 737.6586                                     | 1/2+                                                                             | M1                     | $\alpha$ (K)exp= 0.68 9 gives M1(+E2), $\Delta J^{\pi}$ allows only M1.                                                                                                                                |
| x160.14 3<br>160.244 3<br>163.269 7<br>164.774 3<br>166.063 4<br>x166 83 <sup>b</sup> 6 | $\begin{array}{c} 0.034 & 0 \\ 0.015 & 3 \\ 0.0855 & 18 \\ 0.0097 & 13 \\ 0.025 & 3 \\ 0.0285 & 10 \\ 0.003^{b} \end{array}$ | 587.9293<br>553.0197<br>1049.0725<br>1049.0725 | (9/2) <sup>-</sup><br>7/2 <sup>-</sup><br>3/2 <sup>-</sup><br>3/2 <sup>-</sup> | 427.6801<br>389.7532<br>884.2945<br>883.0139 | (5/2) <sup>-</sup><br>3/2 <sup>-</sup><br>1/2 <sup>+</sup><br>(5/2) <sup>-</sup> | E2                     | $\alpha(K)\exp=0.27~6.$                                                                                                                                                                                |
| 167.345 <i>4</i>                                                                        | 1.32 <i>3</i>                                                                                                                | 167.3452                                       | 9/2-                                                                           | 0.0                                          | 5/2-                                                                             | E2                     | $\alpha$ (K)exp= 0.275 8.<br>Additional information 3.                                                                                                                                                 |
| <sup>x</sup> 168.24 <sup>0</sup> 6<br>169.203 4                                         | 0.003                                                                                                                        | 336.5441                                       | $(9/2)^+$                                                                      | 167.3452                                     | 9/2-                                                                             | E1                     | $\alpha(K) \exp = 0.079 \ 17.$                                                                                                                                                                         |
| $170.901^{f}$ 10<br>170.947 15<br>171.464 4<br>$x172.37^{b}$ 6<br>x175.564.5            | 0.0113 <i>12</i><br>0.009 <i>3</i><br>0.0294 <i>19</i><br>0.0050 <sup>b</sup> <i>15</i><br>0.0330 <i>19</i>                  | 646.249<br>421.8440<br>1055.7577               | 9/2 <sup>-</sup><br>(3/2) <sup>-</sup><br>(1/2) <sup>-</sup>                   | 475.3884<br>250.8895<br>884.2945             | (5/2) <sup>-</sup><br>5/2 <sup>+</sup><br>1/2 <sup>+</sup>                       |                        | Level-energy difference=170.861.                                                                                                                                                                       |
| 175.304 <i>5</i><br>176.790 <i>9</i><br>177.106 <i>16</i><br>177.4481 <i>21</i>         | 0.0141 <i>18</i><br>0.0091 <i>23</i><br>1.14 <i>3</i>                                                                        | 427.6801<br>1430.239<br>250.8895               | $(5/2)^-$<br>$(3/2^+)$<br>$5/2^+$                                              | 250.8895<br>1253.160<br>73.4448              | 5/2+<br>(3/2+)<br>7/2 <sup>-</sup>                                               | (M1,E2)<br>E1          | $\alpha$ (K)exp=0.70 <i>10</i> gives (M1) in conflict with E1 from adopted $\Delta J^{\pi}$ .<br>$\alpha$ (K)exp= 0.32 <i>12</i> .<br>$\alpha$ (K)exp= 0.0535 <i>16</i> .<br>Additional information 4. |
| x177.964 16<br>177.964 16<br>178.009 10<br>185.875 18                                   | 0.013 <i>4</i><br>0.013 <i>4</i><br>0.0091 <i>11</i><br>0.019 <i>3</i>                                                       | 915.6575<br>514.5522<br>1439.054               | 5/2 <sup>+</sup><br>7/2 <sup>-</sup><br>(1/2 <sup>-</sup> ,3/2 <sup>-</sup> )  | 737.6586<br>336.5441<br>1253.160             | $1/2^+$<br>(9/2)^+<br>(3/2^+)                                                    |                        |                                                                                                                                                                                                        |
| 186.03 7<br><sup>x</sup> 188.64 <sup>b</sup> 7                                          | 0.014 <i>3</i><br>0.0025 <sup>b</sup>                                                                                        | 1135.494                                       | (5/2)-                                                                         | 949.3369                                     | $(5/2)^+$                                                                        |                        | $\alpha$ (K)exp= 0.25 5 gives (M1,E2) in conflict with E1 from adopted $\Delta J^{\pi}$ .                                                                                                              |

 $^{163}_{66}\mathrm{Dy}_{97}$ -4

From ENSDF

|                                    | $162$ Dy(n, $\gamma$ ):E=th, res 1989Sc31,1967Sc05,1986Bo43 (continued) |                        |                          |           |             |                        |                                                |  |  |  |  |
|------------------------------------|-------------------------------------------------------------------------|------------------------|--------------------------|-----------|-------------|------------------------|------------------------------------------------|--|--|--|--|
|                                    |                                                                         |                        |                          |           | $\gamma(^1$ | <sup>.63</sup> Dy) (co | ntinued)                                       |  |  |  |  |
| ${\rm E_{\gamma}}^{\dagger}$       | $I_{\gamma}^{\ddagger s}$                                               | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$     | $E_f$     | $J_f^{\pi}$ | Mult. <sup>#</sup>     | Comments                                       |  |  |  |  |
| x189.83 <sup>b</sup> 7             | 0.003 <sup>b</sup>                                                      |                        |                          |           |             |                        |                                                |  |  |  |  |
| $x_{100} 24^{b} 7$                 | $0.005^{b}$                                                             |                        |                          |           |             |                        |                                                |  |  |  |  |
| x105.00.3                          | 0.003<br>0.0044.17                                                      |                        |                          |           |             |                        |                                                |  |  |  |  |
| x106 45 5                          | 0.004417                                                                |                        |                          |           |             |                        |                                                |  |  |  |  |
| 190.45° 5                          | 0.005°                                                                  |                        |                          |           |             |                        |                                                |  |  |  |  |
| x200.21° 10                        | 0.0015                                                                  |                        |                          |           |             |                        |                                                |  |  |  |  |
| ~203.141 21                        | 0.014 4                                                                 | 001 5717               | 11/0-                    | 72 4449   | 7/0-        | <b>F</b> 2             | $(K)_{max} = 0.145.7$                          |  |  |  |  |
| 208.1230 24                        | 0.113 3                                                                 | 281.3717               | 11/2<br>5/2 <sup>-</sup> | /3.4448   | 1/2<br>2/2- | E2                     | $\alpha(\mathbf{K})\exp=0.145$ /.              |  |  |  |  |
| x210.017.15                        | 0.018 4                                                                 | 1236.214               | 5/2                      | 1049.0723 | 5/2         |                        |                                                |  |  |  |  |
| 210.917 13                         | 1 71 4                                                                  | 285 5955               | 7/2+                     | 73 4448   | 7/2-        | F1                     | $\alpha(K) \exp = 0.0554.22$                   |  |  |  |  |
| 212.1195 15                        | 1.71 7                                                                  | 203.5755               | 1/2                      | /3.1110   | 1/2         | LI                     | Additional information 6.                      |  |  |  |  |
| 224 516 5                          | 0.063.3                                                                 | 475 3884               | $(5/2)^{-}$              | 250 8895  | 5/2+        |                        | Level-energy difference-224 499                |  |  |  |  |
| 224.510 5                          | 0.005 5                                                                 | +75.500+               | (3/2)                    | 250.0075  | 5/2         |                        | Placement from 1967Sc05, unplaced in 1989Sc31. |  |  |  |  |
| 228 074 <sup>t</sup> 14            | $0.0200^{t}$ 16                                                         | 781 0994               | 5/2+                     | 553 0197  | $7/2^{-}$   |                        |                                                |  |  |  |  |
| $228.074^{t}$ 14                   | $0.0200^{t}$ 16                                                         | 1277 172               | $(5/2^+)$                | 1049 0725 | 3/2-        |                        |                                                |  |  |  |  |
| x228.480 13                        | 0.057 10                                                                | 12//.1/2               | (3/2)                    | 1019.0725 | 5/2         |                        |                                                |  |  |  |  |
| 228.960 13                         | 0.0158 16                                                               | 514.5522               | 7/2-                     | 285.5955  | $7/2^{+}$   |                        |                                                |  |  |  |  |
| 232.980 4                          | 0.0598 18                                                               | 514.5522               | 7/2-                     | 281.5717  | $11/2^{-}$  | E2                     | $\alpha(K) \exp = 0.110 \ 8.$                  |  |  |  |  |
| <sup>x</sup> 233.96 <i>3</i>       | 0.016 5                                                                 |                        |                          |           | -           |                        |                                                |  |  |  |  |
| <sup>x</sup> 234.02 4              | 0.011 5                                                                 |                        |                          |           |             |                        |                                                |  |  |  |  |
| <sup>x</sup> 234.100 10            | 0.060 3                                                                 |                        |                          |           |             |                        |                                                |  |  |  |  |
| 234.42 6                           | 0.006 3                                                                 | 946.003                | $(7/2)^{-}$              | 711.4718  | 5/2-        |                        |                                                |  |  |  |  |
| *234.838 25                        | 0.017 5                                                                 | 1055 3533              | (1/2)-                   | 000 7056  | (2/2) =     | 1.61                   |                                                |  |  |  |  |
| 234.965 8                          | 0.0267 19                                                               | 1055.7577              | $(1/2)^{-}$              | 820.7956  | $(3/2)^{-}$ | MI                     | $\alpha(K)\exp=0.180\ 18.$                     |  |  |  |  |
| 237.708 14<br>x238 10 4            | 0.078 4                                                                 | 1058.4075              | 1/2                      | 820.7950  | (3/2)       |                        |                                                |  |  |  |  |
| x230.10 4                          | 0.008 5                                                                 |                        |                          |           |             |                        |                                                |  |  |  |  |
| 245 036 4                          | 0.0260.23                                                               | 412 382                | $(11/2^+)$               | 167 3452  | $9/2^{-}$   |                        |                                                |  |  |  |  |
| $246.75^{t}$ 6                     | $0.0260^{t} 21$                                                         | 1129 759               | 5/2+                     | 883 0139  | $(5/2)^{-}$ |                        |                                                |  |  |  |  |
| $246.75^{t} 6$                     | $0.0060^{t} 21$                                                         | 1196.051               | $(3/2)^{-}$              | 949 3369  | $(5/2)^+$   |                        |                                                |  |  |  |  |
| x246.87 3                          | 0.023 3                                                                 | 11/0.051               | (3/2)                    | 747.5507  | (3/2)       |                        |                                                |  |  |  |  |
| x247.03 3                          | 0.012 7                                                                 |                        |                          |           |             |                        |                                                |  |  |  |  |
| x247.288 17                        | 0.062 3                                                                 |                        |                          |           |             |                        |                                                |  |  |  |  |
| <sup>x</sup> 247.559 11            | 0.0317 22                                                               |                        |                          |           |             |                        |                                                |  |  |  |  |
| 247.75 7                           | 0.0105 22                                                               | 1049.0725              | 3/2-                     | 801.312   | $(7/2)^{-}$ |                        |                                                |  |  |  |  |
| 248.42 <sup>t</sup> 6              | 0.0122 <sup>t</sup> 23                                                  | 801.312                | $(7/2)^{-}$              | 553.0197  | $7/2^{-}$   |                        |                                                |  |  |  |  |
| 248.42 <sup>t</sup> 6              | 0.0122 <sup>t</sup> 23                                                  | 1501.665               | $(5/2^+)$                | 1253.160  | $(3/2^+)$   |                        |                                                |  |  |  |  |
| 250.8865 22                        | 10.37 21                                                                | 250.8895               | 5/2+                     | 0.0       | 5/2-        | E1                     | $\alpha(K)\exp=0.0205\ 4.$                     |  |  |  |  |
|                                    |                                                                         |                        |                          |           |             |                        | Additional information 5.                      |  |  |  |  |
| 252.128 20                         | 0.0103 25                                                               | 1529.326               | $(1/2^{-}, 3/2^{-})$     | 1277.172  | $(5/2^+)$   |                        |                                                |  |  |  |  |
| 255.6797 22                        | 0.074 3                                                                 | 1049.0725              | 3/2-                     | 793.3941  | $(1/2)^{-}$ | M1                     | $\alpha(K)\exp=0.133\ 8.$                      |  |  |  |  |
| <sup>x</sup> 258.55 <sup>b</sup> 6 | 0.030 <sup>b</sup> 6                                                    |                        |                          |           |             |                        |                                                |  |  |  |  |

From ENSDF

|                                                                   |                                                                                       |                                              | <sup>162</sup> Dy                                              | $y(\mathbf{n}, \gamma)$ :E=th,              | res 1                                    | 989Sc31,19                 | 67Sc05,1986Bo43 (continued)                                                                                                      |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                                                   |                                                                                       |                                              |                                                                |                                             | $\gamma(1)$                              | <sup>163</sup> Dy) (con    | tinued)                                                                                                                          |
| ${\rm E}_{\gamma}^{\dagger}$                                      | $I_{\gamma}^{\ddagger s}$                                                             | E <sub>i</sub> (level)                       | $\mathbf{J}_i^\pi$                                             | $E_f$                                       | $\mathbf{J}_f^{\pi}$                     | Mult. <sup>#</sup>         | Comments                                                                                                                         |
| 260.3291 <sup><i>f</i></sup> 17                                   | 1.073 20                                                                              | 427.6801                                     | (5/2) <sup>-</sup>                                             | 167.3452                                    | 9/2-                                     | E2                         | Level-energy difference=260.3344.<br>$\alpha$ (K)exp= 0.0657 13.<br>Additional information 13                                    |
| 262.366 8<br>263.109 6                                            | 0.053 <i>4</i><br>0.456 <i>21</i>                                                     | 1055.7577<br>336.5441                        | $(1/2)^-$<br>$(9/2)^+$                                         | 793.3941<br>73.4448                         | (1/2) <sup>-</sup><br>7/2 <sup>-</sup>   | M1<br>E1                   | $\alpha(K)exp=0.122 \ 12.$<br>$\alpha(K)exp=0.0228 \ 18.$<br>Additional information 8.                                           |
| 263.190 <i>5</i><br>266.548 <i>3</i>                              | 0.155 <i>11</i><br>0.979 <i>24</i>                                                    | 851.124<br>781.0994                          | (7/2 <sup>+</sup> )<br>5/2 <sup>+</sup>                        | 587.9293<br>514.5522                        | (9/2) <sup>-</sup><br>7/2 <sup>-</sup>   | E1                         | $\alpha$ (K)exp= 0.0161 6.<br>Additional information 27.                                                                         |
| 267.421 <i>18</i><br>267.968 <i>3</i>                             | 0.0159 22<br>1.26 <i>3</i>                                                            | 553.0197<br>1049.0725                        | 7/2 <sup>-</sup><br>3/2 <sup>-</sup>                           | 285.5955<br>781.0994                        | 7/2 <sup>+</sup><br>5/2 <sup>+</sup>     | E1                         | $\alpha$ (K)exp= 0.0176 7.<br>Additional information 43.                                                                         |
| 276.231 <i>11</i><br>276.30 $^{t}$ 4                              | $0.0283 \ 25$<br>$0.021^t \ 5$                                                        | 1135.494<br>1160.547                         | $(5/2)^{-}$<br>$(1/2)^{-}$                                     | 859.287<br>884.2945                         | $(3/2)^+$<br>$1/2^+$                     |                            |                                                                                                                                  |
| $276.30^{i} 4$<br>$x 278.8^{b} 2$<br>x 281.218 11<br>x 281.41 - 3 | $0.021^{t} 5$<br>$0.010^{b}$<br>0.060 4<br>0.012 3                                    | 1529.326                                     | (1/2 <sup>-</sup> ,3/2 <sup>-</sup> )                          | 1253.160                                    | (3/2+)                                   | $(\mathbf{M}1\mathbf{E}2)$ | Level-energy difference= $276.17$ .                                                                                              |
| x282.863 3<br>284.372 3                                           | 0.351 7<br>0.372 <i>10</i>                                                            | 1135.494                                     | (5/2)-                                                         | 851.124                                     | (7/2+)                                   | (M1,E2)<br>E2<br>E1        | $\alpha(K)\exp = 0.0443 \ I8.$<br>$\alpha(K)\exp = 0.0443 \ I8.$<br>$\alpha(K)\exp = 0.0141 \ I3.$<br>Additional information 48. |
| 285.5931 18                                                       | 1.74 3                                                                                | 285.5955                                     | 7/2+                                                           | 0.0                                         | 5/2-                                     | E1                         | $\alpha$ (K)exp= 0.0151 <i>3</i> .<br>Additional information 7.                                                                  |
| 289.547 4                                                         | 1.34 3                                                                                | 1055.7577                                    | $(1/2)^{-}$                                                    | 766.2075                                    | (3/2)+                                   | E1                         | $\alpha$ (K)exp= 0.0190 <i>6</i> .<br>Additional information 45.                                                                 |
| 290.795 20<br>291.625 10<br>292.250 8<br>299.73 3                 | $\begin{array}{c} 0.0210 \ 20 \\ 0.0353 \ 21 \\ 0.041 \ 5 \\ 0.0203 \ 15 \end{array}$ | 766.2075<br>1439.054<br>1058.4675<br>946.003 | $(3/2)^{+}$<br>$(1/2^{-},3/2^{-})$<br>$1/2^{+}$<br>$(7/2)^{-}$ | 475.3884<br>1147.455<br>766.2075<br>646.249 | (5/2)<br>$3/2^+$<br>$(3/2)^+$<br>$9/2^-$ | M1,E2                      | $\alpha(K) \exp = 0.074 \ 14.$                                                                                                   |
| x302.0 <sup>b</sup> 3<br>305.710 10<br>306.316 14                 | 0.03 <sup>b</sup><br>0.042 5<br>0.047 6                                               | 781.0994<br>587.9293                         | 5/2 <sup>+</sup><br>(9/2) <sup>-</sup>                         | 475.3884<br>281.5717                        | $(5/2)^{-}$<br>11/2 <sup>-</sup>         | M1                         | $\alpha(K)\exp=0.120\ 22.$                                                                                                       |
| x309.167 7<br>311.413 3                                           | 0.119 8<br>1.07 <i>5</i>                                                              | 1049.0725                                    | 3/2-                                                           | 737.6586                                    | 1/2+                                     | E1                         | $\alpha(K)\exp=0.0136 9.$                                                                                                        |
| 313.056 <i>14</i><br>x313.614 <i>21</i>                           | 0.031 <i>5</i><br>0.047 <i>9</i>                                                      | 1196.051                                     | (3/2)-                                                         | 883.0139                                    | (5/2)-                                   | M1,E2                      | $\alpha(K)\exp=0.068 \ 18.$                                                                                                      |
| 314.698 <i>12</i><br>316.311 <i>3</i>                             | 0.027 <i>4</i><br>5.89 <i>13</i>                                                      | 1135.494<br>389.7532                         | (5/2) <sup>-</sup><br>3/2 <sup>-</sup>                         | 820.7956<br>73.4448                         | (3/2) <sup>-</sup><br>7/2 <sup>-</sup>   | M1,E2<br>E2                | $\alpha$ (K)exp= 0.063 <i>16</i> .<br>K/L= 4.4 <i>14</i> (1967Sc05). $\alpha$ (K)exp= 0.0397 <i>12</i> .                         |
| 318.103 4                                                         | 0.96 <i>3</i>                                                                         | 1055.7577                                    | (1/2)-                                                         | 737.6586                                    | 1/2+                                     | E1                         | $\alpha$ (K)exp= 0.0164 7.<br>Additional information 46.                                                                         |
| 320.822 11                                                        | 0.047 5                                                                               | 1058.4675                                    | $1/2^{+}$                                                      | 737.6586                                    | $1/2^{+}$                                | M1                         | $\alpha$ (K)exp= 0.086 <i>13</i> .                                                                                               |

 $^{163}_{66}\mathrm{Dy}_{97}$ -6

From ENSDF

|                                     | $162$ Dy(n, $\gamma$ ):E=th, res 1989Sc31,1967Sc05,1986Bo43 (continued) |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------|------------------------|------------------|----------|--------------------|----------------------------|------------------------------------------------------------------|--|--|--|--|
|                                     |                                                                         |                        |                  |          | <u> </u>           | v( <sup>163</sup> Dy) (cor | ntinued)                                                         |  |  |  |  |
| $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\ddagger s}$                                               | E <sub>i</sub> (level) | $J_i^\pi$        | $E_f$    | $\mathrm{J}_f^\pi$ | Mult.#                     | Comments                                                         |  |  |  |  |
| <sup>x</sup> 322.94 <sup>b</sup> 20 | 0.015 <sup>b</sup> 5                                                    |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
| x325.764 23                         | 0.017 6                                                                 |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
| 326.72 <sup>1</sup> 4               | 0.016 <sup>1</sup> 3                                                    | 1147.455               | 3/2+             | 820.7956 | $(3/2)^{-}$        |                            |                                                                  |  |  |  |  |
| 326.72 <sup>t</sup> 4               | $0.016^t$ 3                                                             | 1529.326               | $(1/2^-, 3/2^-)$ | 1202.529 | $(5/2)^+$          |                            |                                                                  |  |  |  |  |
| <sup>x</sup> 329.885 25             | 0.21 5                                                                  |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
| 330.012 7                           | 0.265 7                                                                 | 883.0139               | $(5/2)^{-}$      | 553.0197 | 7/2-               | M1                         | $\alpha$ (K)exp= 0.0803 24.<br>Additional information 35.        |  |  |  |  |
| 332.10 4                            | 0.021 5                                                                 | 1585.250               | $1/2^+, 3/2^+$   | 1253.160 | $(3/2^+)$          | M1(+E2)                    | $\alpha(\mathbf{K})\exp=0.11\ \mathcal{3}.$                      |  |  |  |  |
| <sup>x</sup> 336.49 7               | 0.010 3                                                                 |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
| 338.523 3                           | 2.96 9                                                                  | 766.2075               | $(3/2)^+$        | 427.6801 | (5/2)-             | E1                         | $\alpha$ (K)exp= 0.0107 <i>3</i> .<br>Additional information 24. |  |  |  |  |
| <sup>x</sup> 341.74 <sup>b</sup> 4  | 0.055 <sup>b</sup> 11                                                   |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
| <sup>x</sup> 343.45 3               | 0.032 4                                                                 |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
| 344.392 17                          | 0.043 7                                                                 | 766.2075               | $(3/2)^+$        | 421.8440 | $(3/2)^{-}$        |                            |                                                                  |  |  |  |  |
| 345.405 4                           | 1.36 4                                                                  | 820.7956               | $(3/2)^{-}$      | 475.3884 | $(5/2)^{-}$        | M1                         | $\alpha(K)\exp=0.0648$ 19.                                       |  |  |  |  |
|                                     |                                                                         |                        |                  |          |                    |                            | Additional information 30.                                       |  |  |  |  |
| 347.216 5                           | 0.84 <i>3</i>                                                           | 514.5522               | 7/2-             | 167.3452 | 9/2-               | M1,E2                      | $\alpha(K)\exp=0.0460\ I8.$                                      |  |  |  |  |
| 247.005.5                           | 2 ( 1 10                                                                | 727 (50)               | 1./0+            | 200 7522 | 2/2-               | <b>F1</b>                  | Additional information 18.                                       |  |  |  |  |
| 347.905 5                           | 3.64 10                                                                 | /3/.0580               | 1/2              | 389.7532 | 3/2                | EI                         | $\alpha(\mathbf{K})\exp=0.0094$ 3.                               |  |  |  |  |
| x240 57h 15                         | o oph                                                                   |                        |                  |          |                    |                            | Additional information 22.                                       |  |  |  |  |
| *349.57° IS                         | 0.02                                                                    | 251 1407               | $(1/2)^{-}$      | 0.0      | 5/2-               | E2                         | V/L/M = 100.5/22.4/4.0.12.(10678-05) = c(V) = 0.0207.6           |  |  |  |  |
| 551.144 5                           | 21.4 3                                                                  | 551.1497               | (1/2)            | 0.0      | 5/2                | E2                         | $A/L/M = 100 5/22 4/4.0 12 (190/SC05). \alpha(K)exp=0.0507 0.$   |  |  |  |  |
| 353 434 22                          | 0.095.15                                                                | 781 0994               | 5/2+             | 427 6801 | $(5/2)^{-}$        |                            | Additional information 9.                                        |  |  |  |  |
| 354.227 3                           | 6.21 22                                                                 | 427.6801               | $(5/2)^{-}$      | 73.4448  | $7/2^{-1}$         | E2                         | $\alpha(K) \exp = 0.0365$ 15.                                    |  |  |  |  |
|                                     |                                                                         |                        | (-1-)            |          | • , =              |                            | Additional information 14.                                       |  |  |  |  |
| 358.05 <i>3</i>                     | 0.054 7                                                                 | 946.003                | $(7/2)^{-}$      | 587.9293 | $(9/2)^{-}$        | M1,E2                      | $\alpha(K)\exp=0.040\ 8.$                                        |  |  |  |  |
| 359.255 12                          | 0.082 10                                                                | 781.0994               | 5/2+             | 421.8440 | $(3/2)^{-}$        | ,                          |                                                                  |  |  |  |  |
| <sup>x</sup> 361.708 12             | 0.115 7                                                                 |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
| 362.650 20                          | 0.045 6                                                                 | 915.6575               | 5/2+             | 553.0197 | $7/2^{-}$          |                            |                                                                  |  |  |  |  |
| 363.47 13                           | 0.012 5                                                                 | 1129.759               | 5/2+             | 766.2075 | $(3/2)^+$          |                            |                                                                  |  |  |  |  |
| 364.71 8                            | 0.020 5                                                                 | 646.249                | 9/2-             | 281.5717 | $11/2^{-}$         |                            |                                                                  |  |  |  |  |
| <sup>x</sup> 364.99 5               | 0.038 7                                                                 |                        |                  |          |                    |                            |                                                                  |  |  |  |  |
| 367.14 3                            | 0.040 6                                                                 | 1160.547               | $(1/2)^{-}$      | 793.3941 | $(1/2)^{-}$        | M1                         | $\alpha(K)\exp=0.074\ I3.$                                       |  |  |  |  |
| 368.42 3                            | 0.063 10                                                                | 883.0139               | $(5/2)^{-}$      | 514.5522 | $\frac{1}{2}$      | (M1)                       | $\alpha(K)\exp=0.143$ .                                          |  |  |  |  |
| 369.267 9                           | 0.514 21                                                                | 1135.494               | (5/2)            | /66.20/5 | $(3/2)^{+}$        | EI                         | Mult.: from $\alpha$ (K)exp<0.013 (196/Sc05).                    |  |  |  |  |
| 5/1.525 9                           | 1./8 3                                                                  | /95.3941               | (1/2)            | 421.8440 | (3/2)              | IVI I                      | $\kappa/L= 4.6 IJ (190/SCUJ). \alpha(\kappa)exp= 0.0304 II.$     |  |  |  |  |
| 376.463 13                          | 0.46 3                                                                  | 766.2075               | (3/2)+           | 389.7532 | 3/2-               | E1                         | $\alpha(K)\exp=0.0111$ 12.<br>Additional information 25.         |  |  |  |  |
| 381.240 14                          | 0.0176 18                                                               | 1147.455               | 3/2+             | 766.2075 | $(3/2)^+$          |                            |                                                                  |  |  |  |  |
| 383.896 7                           | 0.1137 16                                                               | 859.287                | $(3/2)^+$        | 475.3884 | $(5/2)^{-}$        |                            |                                                                  |  |  |  |  |
| 385.680 7                           | 0.352 14                                                                | 553.0197               | 7/2-             | 167.3452 | 9/2-               | M1,E2                      | $\alpha(K) \exp = 0.0389 \ 16.$                                  |  |  |  |  |

<sup>163</sup><sub>66</sub>Dy<sub>97</sub>-7

From ENSDF

|                               |                           |                        | 16                 | <sup>2</sup> <b>Dy</b> ( <b>n</b> , $\gamma$ ): <b>E</b> =t | h, res                 | 1989Sc31,                | 1967Sc05,1986Bo43 (continued)                                                                               |
|-------------------------------|---------------------------|------------------------|--------------------|-------------------------------------------------------------|------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------|
|                               |                           |                        |                    |                                                             | ź                      | γ( <sup>163</sup> Dy) (c | ontinued)                                                                                                   |
| ${\rm E}_{\gamma}^{\dagger}$  | $I_{\gamma}^{\ddagger s}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_f$                                                       | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>#</sup>       | Comments                                                                                                    |
| $x_{386.04}^{b}$ 10           | $0.40^{b}$ 12             |                        |                    |                                                             |                        | (M1.E2)                  | $\alpha(K) \exp = 0.056.23 (1967 \text{Sc} 05).$                                                            |
| 386.508 3                     | 2.24 4                    | 737.6586               | 1/2+               | 351.1497                                                    | (1/2)-                 | E1                       | $\alpha$ (K)exp= 0.00770 20.<br>Additional information 23.                                                  |
| 389.749 <i>3</i>              | 15.1 5                    | 389.7532               | 3/2-               | 0.0                                                         | 5/2-                   | E2,M1                    | K/L= 6.0 16 (1967Sc05). $\alpha$ (K)exp= 0.0319 13.<br>Additional information 11.                           |
| 391.345 6                     | 1.83 4                    | 781.0994               | 5/2+               | 389.7532                                                    | 3/2-                   | E1                       | $\alpha$ (K)exp= 0.00780 20.<br>Additional information 28.                                                  |
| 392.979 6                     | 0.065 6                   | 946.003                | $(7/2)^{-}$        | 553.0197                                                    | 7/2-                   |                          |                                                                                                             |
| 393.118 <i>3</i>              | 1.40 3                    | 820.7956               | (3/2)-             | 427.6801                                                    | (5/2)-                 | M1                       | $\alpha$ (K)exp= 0.0466 9.<br>Additional information 31.                                                    |
| 394.745 11                    | 0.0212 22                 | 1196.051               | $(3/2)^{-}$        | 801.312                                                     | $(7/2)^{-}$            |                          |                                                                                                             |
| 396.310 5                     | 0.1653 20                 | 949.3369               | $(5/2)^+$          | 553.0197                                                    | $7/2^{-}$              |                          |                                                                                                             |
| <sup>x</sup> 396.646 9        | 0.060 3                   | 820 7056               | (2 0) =            | 401 0440                                                    | (2/2) =                | 3.61                     |                                                                                                             |
| 398.950 4<br>×400.650 13      | 1.57 5                    | 820.7956               | (3/2)              | 421.8440                                                    | (3/2)                  | IVI I                    | $\alpha(K)\exp=0.064779$ . $\alpha(K)\exp=0.0378(19675005)$ is in disagreement.                             |
| 401.952 4                     | 3.20 <i>6</i>             | 475.3884               | (5/2)-             | 73.4448                                                     | 7/2-                   | M1                       | K/L= 5.1 16 (1967Sc05). $\alpha$ (K)exp= 0.0451 9.                                                          |
| 403.653 8                     | 0.093 7                   | 793.3941               | $(1/2)^{-}$        | 389.7532                                                    | $3/2^{-}$              | M1.E2                    | $\alpha(K) \exp = 0.038 \ 10.$                                                                              |
| 407.625 4                     | 0.663 15                  | 883.0139               | $(5/2)^{-}$        | 475.3884                                                    | $(5/2)^{-}$            | M1                       | $\alpha(K) \exp = 0.0471 \ 14.$ Additional information 36.                                                  |
| 409.802 6                     | 0.0680 18                 | 1147.455               | $3/2^{+}$          | 737.6586                                                    | $1/2^{+}$              | M1                       | $\alpha(K)\exp=0.050\ 5.$                                                                                   |
| 412.605 14                    | 0.0139 18                 | 1615.113               | 1/2-,3/2-          | 1202.529                                                    | $(5/2)^+$              |                          |                                                                                                             |
| 415.060 <i>3</i>              | 3.09 8                    | 766.2075               | $(3/2)^+$          | 351.1497                                                    | (1/2)-                 | E1                       | $\alpha$ (K)exp= 0.0111 <i>3</i> .<br>Additional information 26.                                            |
| <sup>x</sup> 418.17 3         | 0.123 20                  |                        |                    |                                                             |                        |                          |                                                                                                             |
| 420.598 5                     | 0.0514 22                 | 587.9293               | $(9/2)^{-}$        | 167.3452                                                    | 9/2-                   |                          |                                                                                                             |
| 421.848 <i>3</i>              | 13.9 3                    | 421.8440               | (3/2)-             | 0.0                                                         | 5/2-                   | M1                       | K/L/M=100 10/19 4/4.4 22 (1967Sc05). $\alpha$ (K)exp=0.0369 7.<br>Additional information 12.                |
| 423.451 4                     | 0.425 11                  | 851.124                | $(7/2^{+})$        | 427.6801                                                    | (5/2)-                 |                          | Mult.: $\alpha$ (K)exp=0.017 6 (1967Sc05) gives (M1,E2) in conflict with E1 from adopted $\Delta J^{\pi}$ . |
| 427.692 <sup><i>f</i></sup> 3 | 3.65 15                   | 427.6801               | (5/2) <sup>-</sup> | 0.0                                                         | 5/2-                   | E2,M1                    | Level-energy difference=427.679.<br>$K/L= 8.5 \ 27 \ (1967Sc05). \ \alpha(K)exp= 0.0265 \ 11.$              |
| 431.045 6                     | 0.56 3                    | 820.7956               | $(3/2)^{-}$        | 389.7532                                                    | 3/2-                   | M1                       | $\alpha(K)\exp=0.038 \ 3.$<br>Additional information 32.                                                    |
| 431.537 <mark>8</mark> 22     | 0.079 19                  | 859.287                | $(3/2)^+$          | 427.6801                                                    | $(5/2)^{-}$            |                          | Level-energy difference=431.606.                                                                            |
| 433.377 12                    | 0.0184 24                 | 1489.104               | $(3/2^{-})$        | 1055.7577                                                   | $(1/2)^{-}$            |                          |                                                                                                             |
| 434.790 6                     | 0.60 4                    | 949.3369               | $(5/2)^+$          | 514.5522                                                    | 7/2-                   |                          | $\alpha$ (K)exp<0.027 (1967Sc05).                                                                           |
| 436.004 22                    | 0.0266 17                 | 1147.455               | $3/2^{+}$          | 711.4718                                                    | 5/2-                   |                          | $\alpha$ (K)exp=0.068 14 gives M1 in conflict with E1 from adopted $\Delta J^{\pi}$ .                       |
| 437.450 4                     | 0.236 14                  | 859.287                | $(3/2)^+$          | 421.8440                                                    | $(3/2)^{-}$            | (E1)                     | $\alpha$ (K)exp= 0.0102 15 gives E2, E1; $\Delta J^{\pi}$ requires E1.                                      |
| 440.225 21                    | 0.0429 17                 | 915.6575               | 5/2+               | 475.3884                                                    | (5/2)-                 |                          |                                                                                                             |
| 441.123 6                     | 1.08 3                    | 514.5522               | 7/2-               | 73.4448                                                     | 1/2-                   | M1,E2                    | $\alpha$ (K)exp= 0.0263 8.<br>Additional information 19.                                                    |

From ENSDF

## $\gamma(^{163}\text{Dy})$ (continued)

| ${\rm E_{\gamma}}^{\dagger}$          | $I_{\gamma}^{\ddagger s}$         | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$       | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | Comments                                                                                                                                                                                |
|---------------------------------------|-----------------------------------|------------------------|----------------------------|----------|----------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 442.249 <i>3</i><br>×444.578 <i>4</i> | 0.545 <i>25</i><br>0.147 <i>7</i> | 793.3941               | (1/2)-                     | 351.1497 | $(1/2)^{-}$          | M1<br>E2(+M1)      | $\alpha$ (K)exp= 0.0318 <i>16</i> .<br>$\alpha$ (K)exp= 0.015 <i>4</i> .                                                                                                                |
| 449.079 <sup>t</sup> 8                | 0.0575 <sup>t</sup> 17            | 1160.547               | $(1/2)^{-}$                | 711.4718 | $5/2^{-}$            |                    |                                                                                                                                                                                         |
| 449.079 <sup>t</sup> 8                | 0.0575 <sup>t</sup> 17            | 1950.771               | 3/2-                       | 1501.665 | $(5/2^+)$            |                    | Level-energy difference=449.105.                                                                                                                                                        |
| 455.341 6                             | 0.054 3                           | 883.0139               | $(5/2)^{-}$                | 427.6801 | $(5/2)^{-}$          | M1                 | $\alpha(K)\exp=0.060$ 7.                                                                                                                                                                |
| <sup>x</sup> 456.035 18               | 0.030 3                           |                        |                            |          |                      |                    |                                                                                                                                                                                         |
| 459.737 <sup><i>u</i></sup> 5         | 0.205 7                           | 935.142                | $(3/2)^+$                  | 475.3884 | (5/2)-               |                    | $\alpha$ (K)exp= 0.0278 <i>17</i> gives M1,E2 in conflict with E1 from adopted $\Delta J^{\pi}$ .<br>Thus, the placement is uncertain, although $\gamma\gamma$ coin is seen (1989Sc31). |
| 460.578 5                             | 0.0481 20                         | 711.4718               | 5/2-                       | 250.8895 | $5/2^{+}$            |                    |                                                                                                                                                                                         |
| 461.169 5<br>x462.203 6               | 0.146 <i>6</i><br>0.220 <i>8</i>  | 883.0139               | (5/2)-                     | 421.8440 | (3/2)-               | M1<br>M1           | $\alpha$ (K)exp= 0.034 3.<br>$\alpha$ (K)exp= 0.0326 16.<br>Additional information 2.                                                                                                   |
| 462.453 5                             | 0.189 7                           | 884.2945               | $1/2^{+}$                  | 421.8440 | $(3/2)^{-}$          |                    |                                                                                                                                                                                         |
| 467.656 4                             | 0.041 3                           | 1615.113               | 1/2-,3/2-                  | 1147.455 | $3/2^{+}$            |                    |                                                                                                                                                                                         |
| <sup>x</sup> 469.623 5                | 0.0417 20                         |                        |                            |          |                      |                    |                                                                                                                                                                                         |
| 470.614 5                             | 0.0354 16                         | 946.003                | $(7/2)^{-}$                | 475.3884 | $(5/2)^{-}$          | M1                 | $\alpha$ (K)exp= 0.056 <i>12</i> .                                                                                                                                                      |
| 472.111 23                            | 0.015 3                           | 1253.160               | $(3/2^{+})$                | 781.0994 | 5/2+                 |                    |                                                                                                                                                                                         |
| ×4/2.55 5<br>×474 284 7               | 0.0125 23                         |                        |                            |          |                      |                    |                                                                                                                                                                                         |
| 4/4.204 /<br>x475.005.0               | 0.032121                          |                        |                            |          |                      |                    |                                                                                                                                                                                         |
| 475.389 4                             | 3.37 14                           | 475.3884               | $(5/2)^{-}$                | 0.0      | $5/2^{-}$            | M1                 | K/L= 12 4 (1967Sc05). $\alpha$ (K)exp= 0.0285 11.                                                                                                                                       |
|                                       |                                   |                        |                            |          | ,                    |                    | Additional information 17.                                                                                                                                                              |
| <sup>x</sup> 478.037 19               | 0.028 5                           |                        |                            |          |                      |                    |                                                                                                                                                                                         |
| 478.923 9                             | 0.034 4                           | 646.249                | 9/2-                       | 167.3452 | 9/2-                 |                    |                                                                                                                                                                                         |
| 479.5749 23                           | 0.615 16                          | 553.0197               | 7/2-                       | 73.4448  | 7/2-                 | M1                 | $\alpha$ (K)exp=0.0301 15. $\alpha$ (K)exp=0.017 4 (1967Sc05) is in disagreement.                                                                                                       |
| 480.596 <sup><i>J</i></sup> 4         | 0.090 3                           | 766.2075               | $(3/2)^+$                  | 285.5955 | 7/2+                 |                    | Level-energy difference=480.611.                                                                                                                                                        |
| <sup>x</sup> 483.034 7                | 0.022 4                           |                        |                            |          | - 12                 |                    |                                                                                                                                                                                         |
| 484.580 4                             | 0.038 4                           | 1196.051               | $(3/2)^{-}$                | 711.4718 | $5/2^{-}$            | (M1,E2)            | $\alpha(K)\exp=0.025\ 8.$                                                                                                                                                               |
| 485.341 15                            | 0.011 3                           | 1015.113               | $\frac{1}{2}, \frac{3}{2}$ | 1129.759 | 5/2*                 |                    | Mult: $\alpha(K) = \alpha(0.007) (10678 \circ 0.05)$                                                                                                                                    |
| x488 84 4                             | 0.392 7                           | 737.0380               | 1/2                        | 230.8893 | 5/2                  |                    | Mult.: $\alpha(\mathbf{K}) \exp(0.027 (19073003))$ .                                                                                                                                    |
| 492 011 13                            | 0.0128 25                         | 1258 214               | 5/2-                       | 766 2075 | $(3/2)^+$            |                    |                                                                                                                                                                                         |
| 493.257 4                             | 0.0614 20                         | 883.0139               | $(5/2)^{-}$                | 389.7532 | $3/2^{-}$            | (M1.E2)            | $\alpha(K) \exp = 0.020.5$                                                                                                                                                              |
| 493.823 7                             | 0.0503 24                         | 915.6575               | 5/2+                       | 421.8440 | $(3/2)^{-}$          | ()                 |                                                                                                                                                                                         |
| 494.546 5                             | 1.75 3                            | 884.2945               | 1/2+                       | 389.7532 | 3/2-                 | E1                 | $\alpha(K)\exp=0.00490\ 10.$                                                                                                                                                            |
|                                       |                                   |                        |                            |          |                      |                    | Additional information 37.                                                                                                                                                              |
| 495.510 6                             | 0.367 5                           | 781.0994               | 5/2+                       | 285.5955 | 7/2+                 | M1,E2              | $\alpha(K)\exp=0.0189 \ 8.$                                                                                                                                                             |
| 496.072 <sup>1</sup> 7                | $0.063^{l}$ 4                     | 1049.0725              | 3/2-                       | 553.0197 | $7/2^{-}$            |                    |                                                                                                                                                                                         |
| 496.072 <sup>t</sup> 7                | $0.063^{t}$ 4                     | 1277.172               | $(5/2^+)$                  | 781.0994 | $5/2^{+}$            |                    |                                                                                                                                                                                         |
| <sup>x</sup> 496.90 <sup>b</sup> 20   | 0.20 <sup>b</sup>                 |                        |                            |          |                      |                    |                                                                                                                                                                                         |
| x498.232 14                           | 0.0168 18                         |                        |                            |          |                      |                    |                                                                                                                                                                                         |
| <sup>x</sup> 499.44 <sup>b</sup> 20   | 0.07 <mark>b</mark>               |                        |                            |          |                      |                    |                                                                                                                                                                                         |
|                                       |                                   |                        |                            |          |                      |                    |                                                                                                                                                                                         |

9

|                                                                                 |                                                                           |                                  | 16                                                           | <sup>2</sup> <b>Dy</b> ( $\mathbf{n}, \gamma$ ): <b>E</b> =t | h, res                                                     | 1989Sc31,1                | 1967Sc05,1986Bo43 (continued)                                                                                                                                                    |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 |                                                                           |                                  |                                                              |                                                              | <u>2</u>                                                   | /( <sup>163</sup> Dy) (co | ontinued)                                                                                                                                                                        |
| ${\rm E_{\gamma}}^{\dagger}$                                                    | $I_{\gamma}^{\ddagger s}$                                                 | E <sub>i</sub> (level)           | $\mathbf{J}_i^{\pi}$                                         | $E_f$                                                        | $\mathbf{J}_f^{\pi}$                                       | Mult. <sup>#</sup>        | Comments                                                                                                                                                                         |
| <sup>x</sup> 501.03 4                                                           | 0.032 4                                                                   |                                  |                                                              |                                                              |                                                            | (M1,E2)                   | $\alpha$ (K)exp= 0.026 9.                                                                                                                                                        |
| 507.454 7                                                                       | 0.0345 <i>19</i><br>0.715 <i>8</i>                                        | 935.142                          | $(3/2)^+$                                                    | 427.6801                                                     | (5/2)-                                                     | E1                        | $\alpha$ (K)exp= 0.0060 7.                                                                                                                                                       |
| 508.132 5<br><sup>x</sup> 509.476 8<br><sup>x</sup> 512.254 <i>13</i>           | 0.058 <i>8</i><br>0.28 <i>3</i><br>0.072 <i>8</i>                         | 859.287                          | (3/2)+                                                       | 351.1497                                                     | (1/2)-                                                     |                           |                                                                                                                                                                                  |
| 514.540 <i>4</i><br>515.349 <i>13</i><br>527.490 <i>4</i><br>*527.877 <i>20</i> | 0.240 <i>4</i><br>0.253 <i>20</i><br>0.0547 <i>14</i><br>0.0133 <i>17</i> | 514.5522<br>766.2075<br>949.3369 | 7/2 <sup>-</sup><br>(3/2) <sup>+</sup><br>(5/2) <sup>+</sup> | 0.0<br>250.8895<br>421.8440                                  | 5/2 <sup>-</sup><br>5/2 <sup>+</sup><br>(3/2) <sup>-</sup> | M1<br>E2                  | $\alpha$ (K)exp= 0.0236 <i>12</i> .<br>$\alpha$ (K)exp= 0.0116 <i>15</i> .                                                                                                       |
| 530.2067 <i>17</i><br>533.142 <i>3</i>                                          | 0.029 7<br>0.1264 24<br>0.634 7                                           | 781.0994<br>884.2945             | 5/2 <sup>+</sup><br>1/2 <sup>+</sup>                         | 250.8895<br>351.1497                                         | 5/2 <sup>+</sup><br>(1/2) <sup>-</sup>                     | M1,E2<br>E1               | $\alpha(K)exp= 0.0148 22.$<br>$\alpha(K)exp= 0.0043 4.$<br>Additional information 38.                                                                                            |
| <sup>x</sup> 538.6 <sup>b</sup> 5<br>545.3772 <sup>u</sup> 19                   | 0.25 <sup>b</sup><br>0.266 8                                              | 935.142                          | (3/2)+                                                       | 389.7532                                                     | 3/2-                                                       |                           | $\alpha$ (K)exp=0.0089 <i>12</i> gives E2 in conflict with E1 from adopted $\Delta J^{\pi}$ . Thus, the placement is uncertain, although $\gamma\gamma$ coin is seen (1989Sc31). |
| <sup>x</sup> 548.45 4<br><sup>x</sup> 548.774 8<br><sup>x</sup> 540.415.10      | 0.0195 <i>19</i><br>0.026 <i>6</i>                                        |                                  |                                                              |                                                              |                                                            | (M1,E2)                   | $\alpha$ (K)exp= 0.037 <i>13</i> .                                                                                                                                               |
| 553.024 <i>5</i><br>x556.796 24                                                 | 0.1540 <i>16</i><br>0.0247 <i>17</i>                                      | 553.0197                         | 7/2-                                                         | 0.0                                                          | 5/2-                                                       | M1                        | $\alpha(K)\exp=0.0205\ 16.$                                                                                                                                                      |
| 559.402 <i>23</i><br>559.568 <i>15</i>                                          | 0.07 <i>3</i><br>0.595 <i>25</i>                                          | 1615.113<br>949.3369             | 1/2 <sup>-</sup> ,3/2 <sup>-</sup><br>(5/2) <sup>+</sup>     | 1055.7577<br>389.7532                                        | $(1/2)^{-}$<br>$3/2^{-}$                                   | E1                        | $\alpha(K)\exp=0.0034$ 6.                                                                                                                                                        |
| 562.900 <i>18</i><br>*563.263 <i>12</i>                                         | 0.011 <i>5</i><br>0.0249 <i>17</i>                                        | 1692.675                         | (3/2)-                                                       | 1129.759                                                     | 5/2+                                                       |                           | Additional information 42.                                                                                                                                                       |
| 566.046 <i>19</i><br><sup>x</sup> 569.643 <i>9</i>                              | 0.0286 <i>16</i><br>0.069 <i>8</i>                                        | 1615.113                         | 1/2-,3/2-                                                    | 1049.0725                                                    | 3/2-                                                       | M1,E2                     | $\alpha(K)\exp=0.021$ 4.                                                                                                                                                         |
| 572.786 <sup><i>f</i></sup> 5<br>*573.666 5                                     | 0.047 6<br>0.175 <i>11</i>                                                | 646.249                          | 9/2-                                                         | 73.4448                                                      | 7/2-                                                       | M1                        | Level-energy difference= $572.803.$<br>$\alpha(K) \exp = 0.0193.23.$                                                                                                             |
| 579.108 <i>13</i><br>x579.272 <i>21</i><br>x579.513 <i>14</i>                   | 0.0217 <i>16</i><br>0.0329 <i>20</i><br>0.0248 <i>11</i>                  | 915.6575                         | 5/2+                                                         | 336.5441                                                     | (9/2)+                                                     |                           |                                                                                                                                                                                  |
| 580.371 <i>11</i><br>583.987 <i>9</i>                                           | 0.0300 <i>11</i><br>1.26 <i>3</i>                                         | 1055.7577<br>935.142             | $(1/2)^-$<br>$(3/2)^+$                                       | 475.3884<br>351.1497                                         | $(5/2)^-$<br>$(1/2)^-$                                     | (E1)                      | $\alpha$ (K)exp= 0.0057 <i>3</i> gives E1, E2; $\Delta J^{\pi}$ requires E1.<br>Additional information 41.                                                                       |
| 585.976 <sup>f</sup> 8                                                          | 0.101 18                                                                  | 1501.665                         | $(5/2^+)$                                                    | 915.6575                                                     | 5/2+                                                       | (M1,E2)                   | Level-energy difference=586.005.<br>$\alpha(K)exp=0.009 \ 3.$                                                                                                                    |
| 597.49 <i>6</i><br>608.401 <i>8</i>                                             | 0.0146 <i>20</i><br>1.32 <i>3</i>                                         | 883.0139<br>859.287              | $(5/2)^-$<br>$(3/2)^+$                                       | 285.5955<br>250.8895                                         | 7/2 <sup>+</sup><br>5/2 <sup>+</sup>                       | M1                        | $\alpha$ (K)exp= 0.0170 5.<br>Additional information 34.                                                                                                                         |

<sup>163</sup><sub>66</sub>Dy<sub>97</sub>-10

<sup>163</sup><sub>66</sub>Dy<sub>97</sub>-10

|                                                                           |                                                                                    |                                  |                                                               | <sup>162</sup> <b>Dy(n,γ):</b> Ι | E=th, res                                                | 1989Sc                    | 31,1967Sc05,1986Bo43 (continued)                                                                                                      |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------|----------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           |                                                                                    |                                  |                                                               |                                  |                                                          | $\gamma(^{163}\text{Dy})$ | (continued)                                                                                                                           |
|                                                                           |                                                                                    |                                  |                                                               |                                  |                                                          |                           |                                                                                                                                       |
| ${\rm E_{\gamma}}^{\dagger}$                                              | $I_{\gamma}^{\ddagger s}$                                                          | $E_i$ (level)                    | $\mathbf{J}_i^{\pi}$                                          | $E_f$                            | $\mathbf{J}_f^{\pi}$                                     | Mult. <sup>#</sup>        | Comments                                                                                                                              |
| 609.462 5<br><sup>x</sup> 611.192 9                                       | 0.072 7<br>0.052 10                                                                | 946.003                          | (7/2)-                                                        | 336.5441                         | (9/2)+                                                   |                           |                                                                                                                                       |
| 615.213 9<br>x617.680 18                                                  | 0.120 5                                                                            | 1129.759                         | 5/2+                                                          | 514.5522                         | 7/2-                                                     |                           |                                                                                                                                       |
| 618.645 9<br>x620.474 23<br>x620.61 3                                     | 0.111 <i>3</i><br>0.0187 <i>19</i><br>0.041 <i>3</i>                               | 1501.665                         | (5/2+)                                                        | 883.0139                         | (5/2)-                                                   |                           |                                                                                                                                       |
| 620.916 <i>18</i><br>621.397 <i>10</i><br><sup>x</sup> 625.20 7           | 0.0292 <i>21</i><br>0.149 <i>9</i><br>0.0118 <i>22</i>                             | 1135.494<br>1049.0725            | (5/2) <sup>-</sup><br>3/2 <sup>-</sup>                        | 514.5522<br>427.6801             | 7/2 <sup>-</sup><br>(5/2) <sup>-</sup>                   | M1                        | $\alpha(K) \exp = 0.025 \ 3.$                                                                                                         |
| 627.242 7<br>630.049 5                                                    | 0.203 <i>5</i><br>0.550 <i>16</i>                                                  | 1049.0725<br>915.6575            | 3/2 <sup>-</sup><br>5/2 <sup>+</sup>                          | 421.8440<br>285.5955             | (3/2) <sup>-</sup><br>7/2 <sup>+</sup>                   | M1<br>M1                  | $\begin{array}{l} \alpha(K) \exp = \ 0.0169 \ 15. \\ \alpha(K) \exp = \ 0.0149 \ 7. \\ \text{Additional information 39.} \end{array}$ |
| x633.452 6<br>633.926 10<br>636.616 4                                     | 0.072 <i>5</i><br>0.340 <i>20</i><br>0.182 <i>5</i>                                | 1055.7577<br>1058.4675           | $(1/2)^{-}$<br>$1/2^{+}$                                      | 421.8440<br>421.8440             | $(3/2)^{-}$<br>$(3/2)^{-}$                               | M1                        | $\alpha(K) \exp = 0.0120 \ 11.$                                                                                                       |
| 636.919 7<br>638.025 <i>3</i>                                             | 0.154 <i>14</i><br>0.374 <i>9</i>                                                  | 1692.675<br>711.4718             | $(3/2)^{-}$<br>$5/2^{-}$                                      | 1055.7577<br>73.4448             | $(1/2)^-$<br>$7/2^-$                                     | M1,E2<br>M1               | $\begin{array}{l} \alpha(K)\exp=0.0139 \ 24.\\ \alpha(K)\exp=0.0140 \ 8.\\ Additional information \ 20 \end{array}$                   |
| <sup>x</sup> 643.290 5                                                    | 0.078 3                                                                            |                                  |                                                               |                                  |                                                          |                           | Additional information 20.                                                                                                            |
| <sup>x</sup> 644.383 24                                                   | 0.025 3                                                                            | 1 420 220                        | (2/2+)                                                        | 701.0004                         | 5/0+                                                     |                           |                                                                                                                                       |
| 649.06 <i>3</i><br>649.488 <i>18</i>                                      | 0.031 6<br>0.137 14                                                                | 1430.239<br>1202.529             | $(3/2^+)$<br>$(5/2)^+$                                        | 781.0994<br>553.0197             | 5/2*<br>7/2 <sup>-</sup>                                 |                           |                                                                                                                                       |
| x653.22 4<br>x654.270 21                                                  | 0.0163 19<br>0.068 9                                                               |                                  |                                                               |                                  |                                                          | (M1.E2)                   | $\alpha(K) \exp = 0.013 4.$                                                                                                           |
| 656.667 <i>4</i><br>660.093 <i>7</i>                                      | 0.191 6<br>0.101 5                                                                 | 1084.349<br>1135.494             | $(3/2)^+$<br>$(5/2)^-$                                        | 427.6801<br>475.3884             | (5/2) <sup>-</sup><br>(5/2) <sup>-</sup>                 | (E1)<br>M1                | $\alpha(K)\exp=0.0045$ 12 gives E1, E2; $\Delta J^{\pi}$ requires E1.<br>$\alpha(K)\exp=0.019$ 3.                                     |
| 662.507 8                                                                 | 0.138 7                                                                            | 1084.349                         | $(3/2)^+$                                                     | 421.8440                         | $(3/2)^{-}$                                              |                           |                                                                                                                                       |
| 663.773 <sup>7</sup> 8<br>664.767 3<br><sup>x</sup> 667 03 3              | 0.059 3<br>0.186 5<br>0.035 4                                                      | 949.3369<br>915.6575             | $(5/2)^{+}$<br>$5/2^{+}$                                      | 285.5955<br>250.8895             | 7/2+<br>5/2+                                             | (M1,E2)                   | Level-energy difference=663.739.<br>$\alpha(K)\exp=0.0084$ 20.                                                                        |
| 668.7126 <i>19</i><br>672.060 <i>4</i><br><sup>x</sup> 673.7765 <i>21</i> | 0.88 <i>3</i><br>0.307 <i>12</i><br>0.178 <i>24</i>                                | 1058.4675<br>1147.455            | 1/2+<br>3/2+                                                  | 389.7532<br>475.3884             | 3/2 <sup>-</sup><br>(5/2) <sup>-</sup>                   |                           | $\alpha$ (K)exp= 0.007 4 (1967Sc05).                                                                                                  |
| 680.88 <i>3</i><br>684.257 <i>7</i><br>×691.504.25                        | $0.014 \ 3$<br>$0.065 \ 3$<br>$0.030 \ 3$                                          | 1501.665<br>935.142              | $(5/2^+)$<br>$(3/2)^+$                                        | 820.7956<br>250.8895             | $(3/2)^{-}$<br>$5/2^{+}$                                 |                           |                                                                                                                                       |
| 692.578 <sup>t</sup> 8<br>692.578 <sup>t</sup> 8<br>694.591 10            | $\begin{array}{c} 0.0937^t \ 19\\ 0.0937^t \ 19\\ 0.107 \ 6\\ 0.022 \ \end{array}$ | 1430.239<br>1950.771<br>1084.349 | (3/2 <sup>+</sup> )<br>3/2 <sup>-</sup><br>(3/2) <sup>+</sup> | 737.6586<br>1258.214<br>389.7532 | 1/2 <sup>+</sup><br>5/2 <sup>-</sup><br>3/2 <sup>-</sup> | (M1,E2)<br>(M1,E2)        | $\alpha(K) \exp = 0.011 \ 4.$                                                                                                         |
| ~694.99 <i>4</i><br>697.924 <i>10</i><br>698.424 <i>15</i>                | $\begin{array}{c} 0.023 \ 4 \\ 0.132 \ 5 \\ 0.033 \ 4 \end{array}$                 | 1049.0725<br>949.3369            | 3/2 <sup>-</sup><br>(5/2) <sup>+</sup>                        | 351.1497<br>250.8895             | $(1/2)^{-}$<br>$5/2^{+}$                                 | (M1,E2)                   | $\alpha(K)\exp=0.014$ 4.                                                                                                              |

| $^{162}$ Dy(n, $\gamma$ ):E=th, res | 1989Sc31,1967Sc05,1986Bo43 | (continued) |
|-------------------------------------|----------------------------|-------------|
|-------------------------------------|----------------------------|-------------|

# $\gamma(^{163}\text{Dy})$ (continued)

| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\ddagger s}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$      | $E_f$     | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | Comments                                                                   |
|-------------------------|---------------------------|------------------------|---------------------------|-----------|----------------------|--------------------|----------------------------------------------------------------------------|
| 704.616 13              | 0.346 20                  | 1055.7577              | $(1/2)^{-}$               | 351,1497  | $(1/2)^{-}$          | M1                 | $\alpha$ (K)exp= 0.0100 /2 gives M1(+E2). $\Delta J^{\pi}$ allows only M1. |
| 705.141 23              | 0.063 3                   | 1258.214               | 5/2-                      | 553.0197  | $7/2^{-1}$           |                    |                                                                            |
| 707.320 5               | 0.495 16                  | 1058.4675              | $1/2^{+}$                 | 351.1497  | $(1/2)^{-}$          | E1                 | $\alpha(K) \exp = 0.0020$ 7.                                               |
| $707.92^{t}$ 6          | $0.067^{t}$ 5             | 1129 759               | 5/2+                      | 421 8440  | $(3/2)^{-}$          |                    |                                                                            |
| $707.92^{t}$ 6          | $0.067^{t}$ 5             | 1135 494               | $(5/2)^{-}$               | 427 6801  | $(5/2)^{-}$          |                    |                                                                            |
| $707.92^{\circ}$        | $0.067^{t}$ 5             | 1490 104               | (3/2)<br>$(2/2^{-})$      | 781.0004  | (3/2)<br>$5/2^+$     |                    |                                                                            |
| x708 313 0              | 0.007 5                   | 1409.104               | (3/2)                     | /01.0994  | 5/2                  |                    |                                                                            |
| 708.313 9               | 0.105 15                  | 711 4718               | 5/2-                      | 0.0       | 5/2-                 | M1                 | $\alpha(K) \exp - 0.0107.5$                                                |
| /11.400.5               | 1.11 5                    | /11.4/10               | 5/2                       | 0.0       | 5/2                  | 1011               | Additional information 21                                                  |
| x714 003 18             | 0.096.3                   |                        |                           |           |                      |                    | Additional mormation 21.                                                   |
| <sup>x</sup> 715 511 19 | 0.111 17                  |                        |                           |           |                      |                    |                                                                            |
| <sup>x</sup> 718.22.8   | 0.019.3                   |                        |                           |           |                      |                    | $\alpha(K) \exp = 0.036 13$                                                |
| <sup>x</sup> 718.34 6   | 0.014 3                   |                        |                           |           |                      |                    | $\alpha(K) \exp = 0.047 \ 18.$                                             |
| <sup>x</sup> 720.600 7  | 0.079 4                   |                        |                           |           |                      | (M1.E2)            | $\alpha(K) \exp = 0.010 3.$                                                |
| 725.619 6               | 0.531 18                  | 1147.455               | $3/2^{+}$                 | 421.8440  | $(3/2)^{-}$          | E1                 | $\alpha(K) \exp = 0.0014 \ 4.$                                             |
| 727.152 11              | 0.074 5                   | 1202.529               | $(5/2)^+$                 | 475.3884  | $(5/2)^{-}$          |                    |                                                                            |
| 727.864 8               | 0.093 7                   | 801.312                | $(7/2)^{-}$               | 73.4448   | 7/2-                 | M1(+E2)            | $\alpha(K) \exp = 0.012 \ 3.$                                              |
| 733.195 6               | 0.233 8                   | 1084.349               | $(3/2)^+$                 | 351.1497  | $(1/2)^{-}$          | · · · ·            |                                                                            |
| <sup>x</sup> 734.55 12  | 0.044 3                   |                        |                           |           |                      |                    |                                                                            |
| 735.94 <i>3</i>         | 0.028 7                   | 1529.326               | $(1/2^{-}, 3/2^{-})$      | 793.3941  | $(1/2)^{-}$          |                    |                                                                            |
| <sup>x</sup> 737.79 3   | 0.026 3                   |                        |                           |           |                      |                    |                                                                            |
| 738.69 <i>3</i>         | 0.044 4                   | 1160.547               | $(1/2)^{-}$               | 421.8440  | $(3/2)^{-}$          |                    |                                                                            |
| 740.012 8               | 0.180 4                   | 1129.759               | $5/2^+$                   | 389.7532  | $3/2^{-}$            |                    |                                                                            |
| 743.672 9               | 0.256 9                   | 1258.214               | 5/2-                      | 514.5522  | $7/2^{-}$            | M1                 | $\alpha(K)\exp=0.0091$ 9.                                                  |
| 745.743 8               | 0.136 9                   | 1135.494               | $(5/2)^{-}$               | 389.7532  | 3/2-                 | (M1,E2)            | $\alpha$ (K)exp= 0.0086 17.                                                |
| 747.351 4               | 0.433 12                  | 820.7956               | $(3/2)^{-}$               | 73.4448   | $7/2^{-}$            | E2                 | $\alpha$ (K)exp= 0.0049 5.                                                 |
| <sup>x</sup> 751.84 4   | 0.024 8                   |                        |                           |           |                      |                    |                                                                            |
| <sup>x</sup> 753.61 3   | 0.031 3                   |                        |                           |           |                      |                    |                                                                            |
| 757.665 24              | 0.040 8                   | 1147.455               | 3/2+                      | 389.7532  | 3/2-                 |                    |                                                                            |
| <sup>x</sup> 762.79 4   | 0.026 3                   |                        |                           |           |                      |                    |                                                                            |
| x764.500 9              | 0.087 8                   |                        |                           |           |                      |                    |                                                                            |
| 768.363 5               | 0.698 22                  | 1196.051               | $(3/2)^{-}$               | 427.6801  | $(5/2)^{-}$          | M1                 | $\alpha$ (K)exp= 0.0075 5.                                                 |
| 770.771 10              | 0.95 5                    | 1160.547               | $(1/2)^{-}$               | 389.7532  | 3/2-                 | M1                 | $\alpha$ (K)exp= 0.0079 5.                                                 |
| 774.338 4               | 0.028 7                   | 1196.051               | $(3/2)^{-}$               | 421.8440  | $(3/2)^{-}$          |                    | Level-energy difference=774.21.                                            |
| x7/8.49 5               | 0.040 4                   |                        | ( <b>F</b> ( <b>B</b> ) + |           | (2)(2) -             |                    |                                                                            |
| 780.71 4                | 0.152 18                  | 1202.529               | $(5/2)^{+}$               | 421.8440  | $(3/2)^{-}$          |                    |                                                                            |
| *782.394 12             | 0.069 9                   | 1505 050               | 1/2+ 2/2+                 | 702 20 11 | (1 (2) -             |                    |                                                                            |
| /91.88 3                | 0.05/10                   | 1585.250               | $1/2^+, 3/2^+$            | /93.3941  | (1/2)                | F2                 |                                                                            |
| /95.38/8                | 0.770                     | /93.3941               | (1/2)                     | 0.0       | 5/2                  | E2                 | $\alpha(\mathbf{K})\exp=0.0041$ 4.                                         |
| /90.28 3                | 0.03/4                    | 1147.455               | 5/2                       | 331.1497  | (1/2)                |                    |                                                                            |
| "800.20 3<br>801.27 4   | 0.10 3                    | 201 212                | (7/2) =                   | 0.0       | 5/2-                 |                    |                                                                            |
| 801.37 4<br>806.22 5    | 0.080 8                   | 001.312<br>1106.051    | (1/2)                     | 0.0       | 3/2<br>2/2-          | (M1E2)             | a(K)am = 0.0006.20                                                         |
| 806.32 3                | 0.152 12                  | 1190.001               | (3/2)                     | 389.1332  | 3/2                  | (WI1, E2)          | $\alpha(\mathbf{K})\exp = 0.0090 \ 20.$                                    |

|                                            |                           |                        | 1                    | <sup>62</sup> <b>Dy</b> ( <b>n</b> ,γ):Ε= | =th, res             | 1989Sc31                     | ,1967Sc05,1986Bo43 (continued)                                                                                                                                                                            |                                                                 |
|--------------------------------------------|---------------------------|------------------------|----------------------|-------------------------------------------|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                            |                           |                        |                      |                                           |                      | $\gamma(^{163}\text{Dy})$ (c | continued)                                                                                                                                                                                                |                                                                 |
| ${\rm E_{\gamma}}^{\dagger}$               | $I_{\gamma}^{\ddagger s}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$                          | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>           |                                                                                                                                                                                                           | Comments                                                        |
| 807.66 6                                   | 1.12 4                    | 1058.4675              | 1/2+                 | 250.8895                                  | 5/2+                 |                              | E <sub><math>\gamma</math></sub> : from unplaced $\gamma$ 's in (n,n' $\gamma$ ). 19<br>table, but not in the table of E $\gamma$ v<br>L <sub><math>\gamma</math></sub> : from branching ratio (1989Sc31) | <b>989Sc31</b> report this $\gamma$ in the level-scheme values. |
| 809.491 <sup>t</sup> 25                    | 0.454 <sup>t</sup> 12     | 883.0139               | (5/2)-               | 73.4448                                   | 7/2-                 | M1                           | Level-energy difference=809.57.<br>$\alpha(K)exp=0.0061$ 6.                                                                                                                                               |                                                                 |
| 809.491 <sup>t</sup> 25                    | 0.454 <sup>t</sup> 12     | 1160.547               | (1/2)-               | 351.1497                                  | (1/2)-               | M1                           | Level-energy difference=809.40.<br>$\alpha(K) \exp = 0.0061.6$                                                                                                                                            |                                                                 |
| 815.279 14                                 | 0.118 9                   | 1950.771               | $3/2^{-}$            | 1135.494                                  | $(5/2)^{-}$          |                              |                                                                                                                                                                                                           |                                                                 |
| 819.061 <i>13</i><br><sup>x</sup> 820.29 5 | 0.068 8<br>0.19 5         | 1585.250               | 1/2+,3/2+            | 766.2075                                  | $(3/2)^+$            | (M1,E2)                      | $\alpha$ (K)exp= 0.010 <i>3</i> .                                                                                                                                                                         |                                                                 |
| 820.793 6                                  | 0.96 4                    | 820.7956               | $(3/2)^{-}$          | 0.0                                       | 5/2-                 | (E2)                         | $\alpha$ (K)exp= 0.0045 3.                                                                                                                                                                                |                                                                 |
| x831 57 3                                  | 0.045.4                   |                        |                      |                                           |                      |                              | Additional information 55.                                                                                                                                                                                |                                                                 |
| 833.469 9                                  | 0.692 25                  | 1084.349               | $(3/2)^+$            | 250.8895                                  | 5/2+                 | M1                           | $\alpha$ (K)exp= 0.0063 6.<br>Additional information 47.                                                                                                                                                  |                                                                 |
| <sup>x</sup> 839.34 4                      | 0.059 4                   |                        |                      |                                           |                      |                              |                                                                                                                                                                                                           |                                                                 |
| <sup>x</sup> 841.95 6                      | 0.031 5                   |                        |                      |                                           |                      |                              |                                                                                                                                                                                                           |                                                                 |
| <sup>x</sup> 842.616 18                    | 0.134 15                  |                        |                      |                                           |                      |                              |                                                                                                                                                                                                           |                                                                 |
| 844.148 6                                  | 0.285 8                   | 1129.759               | 5/2+                 | 285.5955                                  | $7/2^{+}$            | M1                           | $\alpha$ (K)exp= 0.0072 <i>10</i> .                                                                                                                                                                       |                                                                 |
| 844.898 5                                  | 0.779 12                  | 1196.051               | (3/2)-               | 351.1497                                  | $(1/2)^{-}$          | M1                           | $\alpha$ (K)exp= 0.0065 <i>3</i> .<br>Additional information 49.                                                                                                                                          |                                                                 |
| <sup>x</sup> 845.28 10                     | 0.14 5                    |                        |                      |                                           |                      |                              |                                                                                                                                                                                                           |                                                                 |
| 847.589 9                                  | 0.134 4                   | 1585.250               | $1/2^+, 3/2^+$       | 737.6586                                  | 1/2+                 | M1                           | $\alpha$ (K)exp= 0.0090 15.                                                                                                                                                                               |                                                                 |
| x857.18 3                                  | 0.044 4                   |                        |                      |                                           |                      |                              |                                                                                                                                                                                                           |                                                                 |
| ~860./3 8<br>861.72.6                      | 0.022 4                   | 1147 455               | 2/2+                 | 295 5055                                  | 7/2+                 |                              |                                                                                                                                                                                                           |                                                                 |
| xx62 26 7                                  | 0.027 I3                  | 1147.433               | 5/2                  | 263.3933                                  | 1/2                  |                              |                                                                                                                                                                                                           |                                                                 |
| 863 / 3 3                                  | 0.115<br>0.254            | 1253 160               | $(3/2^{+})$          | 380 7532                                  | 3/2-                 |                              |                                                                                                                                                                                                           |                                                                 |
| <sup>x</sup> 863 716 24                    | 0.060.5                   | 1255.100               | (3/2)                | 567.1552                                  | 5/2                  |                              |                                                                                                                                                                                                           |                                                                 |
| 866.43 3                                   | 0.095 4                   | 1950.771               | $3/2^{-}$            | 1084.349                                  | $(3/2)^+$            |                              | $\alpha(K) \exp = 0.0043 \ 21.$                                                                                                                                                                           |                                                                 |
| 868.462 8                                  | 0.244 13                  | 1258.214               | 5/2-                 | 389.7532                                  | $3/2^{-}$            | M1                           | $\alpha(\mathbf{K}) \exp = 0.0067 \ 9.$                                                                                                                                                                   |                                                                 |
| <sup>x</sup> 869.110 <i>13</i>             | 0.148 6                   |                        | ,                    |                                           | ,                    |                              |                                                                                                                                                                                                           |                                                                 |
| 871.79 8                                   | 0.024 5                   | 1692.675               | $(3/2)^{-}$          | 820.7956                                  | $(3/2)^{-}$          |                              |                                                                                                                                                                                                           |                                                                 |
| 872.54 5                                   | 0.066 9                   | 946.003                | $(7/2)^{-}$          | 73.4448                                   | $7/2^{-}$            |                              |                                                                                                                                                                                                           |                                                                 |
| 878.886 18                                 | 0.177 4                   | 1129.759               | 5/2+                 | 250.8895                                  | $5/2^{+}$            |                              |                                                                                                                                                                                                           |                                                                 |
| 883.00 <i>3</i>                            | 0.175 7                   | 883.0139               | $(5/2)^{-}$          | 0.0                                       | $5/2^{-}$            | (M1,E2)                      | $\alpha$ (K)exp= 0.0040 <i>12</i> .                                                                                                                                                                       |                                                                 |
| 896.568 12                                 | 0.83 <i>3</i>             | 1147.455               | 3/2+                 | 250.8895                                  | $5/2^{+}$            | M1                           | $\alpha$ (K)exp= 0.0059 <i>3</i> .                                                                                                                                                                        |                                                                 |
| 902.016 15                                 | 0.217 8                   | 1253.160               | $(3/2^+)$            | 351.1497                                  | $(1/2)^{-}$          |                              | $\alpha$ (K)exp= 0.0049 <i>10</i> gives M1,E2 in                                                                                                                                                          | n conflict with E1 from adopted $\Delta J^{\pi}$ .              |
| <sup>x</sup> 904.92 4                      | 0.110 10                  |                        |                      |                                           |                      | (M1,E2)                      | $\alpha$ (K)exp= 0.0058 <i>19</i> .                                                                                                                                                                       |                                                                 |
| ×908.83 8                                  | 0.071 4                   |                        |                      |                                           |                      |                              |                                                                                                                                                                                                           |                                                                 |
| ^910.49 <i>3</i>                           | 0.034 15                  |                        |                      |                                           |                      |                              |                                                                                                                                                                                                           |                                                                 |
| ^914.62 <i>11</i>                          | 0.017 5                   |                        |                      |                                           |                      |                              |                                                                                                                                                                                                           |                                                                 |
| ~915.89 <i>3</i>                           | 0.072.5                   | 1000 500               | $(5/2)^+$            | 205 5055                                  | 7/2+                 | EQUATE                       | · (K) 0.0022.4                                                                                                                                                                                            |                                                                 |
| 916.950 11                                 | 0.506 11                  | 1202.529               | $(5/2)^{+}$          | 285.5955                                  | 1/2                  | E2(+M1)                      | $\alpha(\mathbf{K})\exp=0.0032$ 4.                                                                                                                                                                        |                                                                 |

|                                                |                                           |                        | 162                  | $^{2}$ <b>Dy</b> ( <b>n</b> , $\gamma$ ): <b>E</b> =1 | th, res        | 1989Sc31,                 | 1967Sc05,1986Bo43 (continued)                                                        |                                               |
|------------------------------------------------|-------------------------------------------|------------------------|----------------------|-------------------------------------------------------|----------------|---------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                |                                           |                        |                      |                                                       |                | γ( <sup>163</sup> Dy) (co | ontinued)                                                                            |                                               |
| ${\rm E_{\gamma}}^{\dagger}$                   | $I_{\gamma}^{\ddagger s}$                 | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$                                      | ${ m J}_f^\pi$ | Mult. <sup>#</sup>        |                                                                                      | Comments                                      |
| <sup>x</sup> 918.11 8<br><sup>x</sup> 920.06 5 | 0.23 <i>5</i><br>0.15 <i>4</i>            |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| $x^{x}920.56\ 10$                              | 0.023 4                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| 922.31 4                                       | 0.055 5                                   | 1692 675               | $(3/2)^{-}$          | 766 2075                                              | $(3/2)^+$      |                           |                                                                                      |                                               |
| x936.87 5                                      | 0.022 23                                  | 10/2.075               | (3/2)                | 100.2015                                              | (3/2)          |                           |                                                                                      |                                               |
| <sup>x</sup> 937.99 11                         | 0.12 4                                    |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| 951.574 <mark>8</mark> 19                      | 0.164 6                                   | 1202.529               | $(5/2)^+$            | 250.8895                                              | 5/2+           |                           | Level-energy difference=951.636.                                                     |                                               |
| <sup>x</sup> 952.48 11                         | 0.025 6                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| x955.44 4                                      | 0.122 7                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| ×962.76 3                                      | 0.061 5                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| 967 54 10                                      | 0.041.0                                   | 1253 160               | $(3/2^{+})$          | 285 5955                                              | 7/2+           |                           |                                                                                      |                                               |
| x967.73 10                                     | 0.24 6                                    | 1255.100               | (3/2)                | 205.5755                                              | 1/2            |                           |                                                                                      |                                               |
| 968.50 10                                      | 0.026 7                                   | 1483.263               | $(5/2^{-})$          | 514.5522                                              | $7/2^{-}$      |                           |                                                                                      |                                               |
| <sup>x</sup> 970.22 11                         | 0.024 6                                   |                        | ., ,                 |                                                       |                |                           |                                                                                      |                                               |
| <sup>x</sup> 971.39 5                          | 0.053 6                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| 975.58 4                                       | 0.056 6                                   | 1049.0725              | 3/2-                 | 73.4448                                               | 7/2-           |                           |                                                                                      |                                               |
| x980.206 22                                    | 0.153 7                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| *982.58 5<br>X082.07 2                         | 0.094 9                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| x083.36.8                                      | 0.103 13                                  |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| x986 98 10                                     | 0.000 8                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| x989.23 14                                     | 0.14 6                                    |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| <sup>x</sup> 989.97 7                          | 0.039 6                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| x990.58 12                                     | 0.18 6                                    |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| <sup>x</sup> 991.723 11                        | 0.373 8                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| x993.02 3                                      | 0.097 7                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| ×1001 21 4                                     | 0.045 13                                  |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| 1001.21 4                                      | 0.204 9                                   | 1253 160               | $(3/2^{+})$          | 250 8895                                              | 5/2+           | M1 F2                     | $\alpha(\mathbf{K})$ exp= 0.00400.20                                                 |                                               |
| 1002.201 12                                    | 1.07 5                                    | 1233.100               | (3/2)                | 230.0075                                              | 5/2            | 1111,122                  | Additional information 50.                                                           |                                               |
| 1008.21 8                                      | 0.038 5                                   | 1430.239               | $(3/2^+)$            | 421.8440                                              | $(3/2)^{-}$    |                           |                                                                                      |                                               |
| <sup>x</sup> 1010.29 11                        | 0.035 6                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| 1011.35 11                                     | 0.034 6                                   | 1439.054               | $(1/2^{-}, 3/2^{-})$ | 427.6801                                              | $(5/2)^{-}$    |                           |                                                                                      |                                               |
| 1013.0 <sup>@</sup> u                          |                                           | 1489.104               | $(3/2^{-})$          | 475.3884                                              | $(5/2)^{-}$    |                           |                                                                                      |                                               |
| 1017.22 3                                      | 0.118 7                                   | 1439.054               | $(1/2^{-}, 3/2^{-})$ | 421.8440                                              | $(3/2)^{-}$    |                           |                                                                                      |                                               |
| <sup>x</sup> 1019.46 8                         | 0.043 6                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| ~1022.51 4<br>×1022.69 11                      | 0.103 7                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |
| 1023.08 II<br>1026.22t A                       | 0.0430                                    | 1277 172               | $(5/2^{+})$          | 250 0005                                              | 5/2+           | (M1E2)                    | $\alpha(K) = 0.0021.8$                                                               |                                               |
| $1020.35^{\circ} 4$<br>$1026.32^{\circ} 4$     | $0.240^{\circ}$ 9<br>0.240 <sup>t</sup> 0 | 12/7.172               | (3/2)<br>$(5/2^+)$   | 230.0093                                              | $\frac{5}{2}$  | (WII, E2)                 | $u(\mathbf{K})\exp = 0.0031$ 0.<br>$u(\mathbf{K})\exp = 0.0031$ 9 since (M1 E2) :    | a conflict with E1 from adopted $\Lambda \pi$ |
| x1037 82 6                                     | 0.248 9                                   | 1301.003               | (3/2)                | 4/3.3864                                              | (3/2)          |                           | $\alpha(\mathbf{K}) = 0.0051 \text{ o gives } (\mathbf{M}1, \mathbf{E}2) \text{ li}$ | $\Delta J^{-}$ .                              |
| 1037.02 0                                      | 0.000 /                                   |                        |                      |                                                       |                |                           |                                                                                      |                                               |

 $^{163}_{66}\mathrm{Dy}_{97}$ -14

From ENSDF

|                                                                                                                                |                                                                                                       |                        | 16                                                           | <sup>2</sup> <b>Dy</b> ( $\mathbf{n},\gamma$ ): <b>E</b> = | th, res                                  | <b>1989Sc3</b> 1               | 1,1967Sc05,1986Bo43 (continued)                              |          |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|--------------------------------|--------------------------------------------------------------|----------|
|                                                                                                                                |                                                                                                       |                        |                                                              |                                                            |                                          | $\gamma$ <sup>(163</sup> Dy) ( | continued)                                                   |          |
| ${\rm E_{\gamma}}^{\dagger}$                                                                                                   | $I_{\gamma}^{\ddagger s}$                                                                             | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                           | $E_f$                                                      | $\mathbf{J}_f^{\pi}$                     | Mult. <sup>#</sup>             |                                                              | Comments |
| 1040.47 <i>3</i><br><sup>x</sup> 1041.99 7<br><sup>x</sup> 1047.40 <i>4</i>                                                    | 0.467 8<br>0.052 7                                                                                    | 1430.239               | (3/2+)                                                       | 389.7532                                                   | 3/2-                                     |                                |                                                              |          |
| 1047.49 <i>4</i><br>1049.239 <i>8</i> 18                                                                                       | 0.315 20                                                                                              | 1439.054               | (1/2 <sup>-</sup> ,3/2 <sup>-</sup> )                        | 389.7532                                                   | 3/2-                                     | (M1,E2)                        | Level-energy difference=1049.296. $\alpha$ (K)exp= 0.0030 9. |          |
| <sup>x</sup> 1050.45 7<br>1055.70 <sup>g</sup> 4<br><sup>x</sup> 1058.16 7                                                     | 0.060 7<br>0.100 7<br>0.140 9                                                                         | 1483.263               | (5/2-)                                                       | 427.6801                                                   | (5/2)-                                   |                                | Level-energy difference=1055.58.                             |          |
| 1061.398 <sup>t</sup> 21<br>1061.398 <sup>t</sup> 21<br><sup>x</sup> 1067.02 3<br><sup>x</sup> 1069.26.8                       | $\begin{array}{c} 0.246^t \ 7 \\ 0.246^t \ 7 \\ 0.128 \ 8 \\ 0.051 \ 7 \end{array}$                   | 1483.263<br>1489.104   | (5/2 <sup>-</sup> )<br>(3/2 <sup>-</sup> )                   | 421.8440<br>427.6801                                       | (3/2) <sup>-</sup><br>(5/2) <sup>-</sup> |                                |                                                              |          |
| 1073.95 3<br>1079.22 6<br>×1080.25 9                                                                                           | 0.194 <i>10</i><br>0.36 <i>4</i><br>0.079 <i>9</i>                                                    | 1501.665<br>1430.239   | (5/2 <sup>+</sup> )<br>(3/2 <sup>+</sup> )                   | 427.6801<br>351.1497                                       | $(5/2)^-$<br>$(1/2)^-$                   | (E1)                           | $\alpha(K)$ exp= 0.0015 6.                                   |          |
| 1087.891 <i>18</i><br>*1095.87 <i>8</i>                                                                                        | 0.402 8<br>0.155 7                                                                                    | 1439.054               | $(1/2^-, 3/2^-)$                                             | 351.1497                                                   | (1/2)-                                   | (M1,E2)<br>(M1,E2)             | $\alpha$ (K)exp= 0.0025 6.<br>$\alpha$ (K)exp= 0.0052 16.    |          |
| 1099.316 <i>14</i><br><i>x</i> 1101.09 <i>6</i><br><i>x</i> 1103.87 <i>11</i>                                                  | 0.285 <i>21</i><br>0.083 <i>7</i><br>0.040 <i>8</i>                                                   | 1489.104               | (3/2 <sup>-</sup> )                                          | 389.7532                                                   | 3/2-                                     |                                | $\alpha(K)\exp = 0.0018$ 7.<br>$\alpha(K)\exp = 0.06$ 3.     |          |
| 1107.450 22<br>*1110.31 5<br>*1113.32 8<br>*1116.98 14<br>*1119.27 13<br>*1120.31 24<br>*1121.71 6<br>*1124.84 8<br>*1125.87 8 | 0.197 21<br>0.099 8<br>0.062 8<br>0.036 9<br>0.076 15<br>0.051 15<br>0.114 10<br>0.106 13<br>0.118 13 | 1529.326               | (1/2 <sup>-</sup> ,3/2 <sup>-</sup> )                        | 421.8440                                                   | (3/2)-                                   |                                |                                                              |          |
| <sup>x</sup> 1129.46 5<br><sup>x</sup> 1134.54 7                                                                               | 0.268 <i>22</i><br>0.19 <i>5</i>                                                                      |                        |                                                              |                                                            |                                          |                                | $\alpha(K) \exp = 0.0017$ 7.                                 |          |
| x1136.96 6<br>1137.99 4<br>1139.54 5<br>x1141.45 6<br>x1146.89 7                                                               | 0.39 <i>4</i><br>0.399 20<br>0.272 23<br>0.169 9<br>0.170 10                                          | 1489.104<br>1529.326   | (3/2 <sup>-</sup> )<br>(1/2 <sup>-</sup> ,3/2 <sup>-</sup> ) | 351.1497<br>389.7532                                       | (1/2) <sup>-</sup><br>3/2 <sup>-</sup>   | (M1,E2)                        | α(K)exp= 0.0021 5.                                           |          |
| 1150.50 4<br>*1158.68 12<br>*1158.68 12<br>*1164.34 6<br>*1167.16 10<br>*1168.97 15<br>*1173.77 6                              | 0.134 25<br>0.046 8<br>0.101 8<br>0.056 8<br>0.042 9<br>0.088 9                                       | 1501.665               | (5/2+)                                                       | 351.1497                                                   | (1/2)-                                   |                                |                                                              |          |
| 1178.25 3                                                                                                                      | 0.219 16                                                                                              | 1529.326               | $(1/2^-, 3/2^-)$                                             | 351.1497                                                   | (1/2)-                                   |                                |                                                              |          |

<sup>163</sup><sub>66</sub>Dy<sub>97</sub>-15

<sup>163</sup><sub>66</sub>Dy<sub>97</sub>-15

Т

|                                  |                           |                        |                    | <sup>162</sup> <b>Dy</b> ( $\mathbf{n},\gamma$ ): | E=th, re             | s 1989Sc              | 31,1967Sc05,1986Bo43 (continued)    |
|----------------------------------|---------------------------|------------------------|--------------------|---------------------------------------------------|----------------------|-----------------------|-------------------------------------|
|                                  |                           |                        |                    |                                                   |                      | γ( <sup>163</sup> Dy) | (continued)                         |
| $E_{\gamma}^{\dagger}$           | $I_{\gamma}^{\ddagger s}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_f$                                             | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>    | Comments                            |
| 1184.49 <sup>t</sup> 11          | $0.094^{t}$ 15            | 1258.214               | $5/2^{-}$          | 73,4448                                           | 7/2-                 |                       |                                     |
| 1184.49 <sup>t</sup> 11          | $0.094^{t}$ 15            | 1950.771               | $3/2^{-}$          | 766.2075                                          | $(3/2)^+$            |                       |                                     |
| x1185.69 15                      | 0.097 15                  |                        | -/-                |                                                   | (-/-)                |                       |                                     |
| 1187.39 7                        | 0.115 12                  | 1615.113               | $1/2^{-}, 3/2^{-}$ | 427.6801                                          | $(5/2)^{-}$          | (M1,E2)               | $\alpha$ (K)exp= 0.0059 <i>19</i> . |
| <sup>x</sup> 1191.11 <i>10</i>   | 0.30 8                    |                        |                    |                                                   |                      |                       |                                     |
| 1193.33 7                        | 0.095 10                  | 1615.113               | 1/2-,3/2-          | 421.8440                                          | $(3/2)^{-}$          |                       |                                     |
| 1195.44 6                        | 0.30 3                    | 1585.250               | $1/2^+, 3/2^+$     | 389.7532                                          | 3/2-                 |                       |                                     |
| 1197.11 20                       | 0.039 10                  | 1483.263               | $(5/2^{-})$        | 285.5955                                          | 7/2+                 |                       |                                     |
| 1202.55 <i>10</i>                | 0.062 9                   | 1202.529               | $(5/2)^{+}$        | 0.0                                               | 5/2-                 |                       |                                     |
| ×1205.05 9                       | 0.072 9                   |                        |                    |                                                   |                      |                       |                                     |
| x1211.23 3                       | 0.21779<br>0.108.10       |                        |                    |                                                   |                      |                       |                                     |
| 1214.00 0                        | 0.108 10                  | 1602 675               | $(3/2)^{-}$        | 175 3881                                          | $(5/2)^{-}$          |                       |                                     |
| x1219.04 17                      | 0.182 10                  | 1092.075               | (3/2)              | +75.500+                                          | (3/2)                |                       |                                     |
| x1220.29 10                      | 0.162 19                  |                        |                    |                                                   |                      |                       |                                     |
| <sup>x</sup> 1221.91 <i>14</i>   | 0.079 10                  |                        |                    |                                                   |                      |                       |                                     |
| <sup>x</sup> 1223.56 5           | 0.233 12                  |                        |                    |                                                   |                      |                       |                                     |
| <sup>x</sup> 1227.45 5           | 0.188 10                  |                        |                    |                                                   |                      |                       |                                     |
| <sup>x</sup> 1229.97 9           | 0.094 9                   |                        |                    |                                                   |                      |                       |                                     |
| 1233.92 18                       | 0.050 10                  | 1585.250               | $1/2^+, 3/2^+$     | 351.1497                                          | $(1/2)^{-}$          |                       |                                     |
| <sup>x</sup> 1238.9 <sup>@</sup> |                           |                        |                    |                                                   |                      |                       |                                     |
| 1238.9 <sup>@</sup>              |                           | 1489.104               | $(3/2^{-})$        | 250.8895                                          | $5/2^{+}$            |                       |                                     |
| $x_{1246.0}^{a}$                 |                           |                        |                    |                                                   |                      |                       |                                     |
| <sup>x</sup> 1249.23 4           | 0.156 11                  |                        |                    |                                                   |                      |                       |                                     |
| 1253.12 7                        | 0.108 10                  | 1253.160               | $(3/2^+)$          | 0.0                                               | $5/2^{-}$            |                       |                                     |
| x1260.37 11                      | 0.055 14                  |                        |                    |                                                   |                      |                       |                                     |
| 1265.06 11                       | 0.075 10                  | 1692.675               | $(3/2)^{-}$        | 427.6801                                          | $(5/2)^{-}$          |                       |                                     |
| 1270.831 12                      | 0.521 22                  | 1692.675               | $(3/2)^{-}$        | 421.8440                                          | $(3/2)^{-}$          | M1(+E2)               | $\alpha(K)\exp=0.0029\ 4.$          |
| x1275.38 <i>13</i>               | 0.091 11                  |                        |                    |                                                   |                      |                       |                                     |
| x1275.71 18                      | 0.064 10                  |                        |                    |                                                   |                      |                       |                                     |
| 1277.35 <sup>8</sup> 6           | 0.13 3                    | 1277.172               | $(5/2^+)$          | 0.0                                               | 5/2-                 |                       | Level-energy difference=1277.167.   |
| *1280.77 4                       | 0.167 24                  |                        |                    |                                                   |                      |                       |                                     |
| ×1285.72 9<br>×1202 15 15        | 0.106 10                  |                        |                    |                                                   |                      |                       |                                     |
| x1292.13 13                      | 0.002 11<br>0.076 11      |                        |                    |                                                   |                      |                       |                                     |
| 1302.94.3                        | 0.31.3                    | 1692.675               | $(3/2)^{-}$        | 389 7532                                          | $3/2^{-}$            | M1(+E2)               | $\alpha(K) \exp = 0.0032.7$         |
| x1304.92 12                      | 0.094 12                  | 10/2.015               | (J/L)              | 507.1552                                          | 5/2                  | (+122)                |                                     |
| <sup>x</sup> 1308.37 7           | 0.150 11                  |                        |                    |                                                   |                      |                       |                                     |
| <sup>x</sup> 1312.23 7           | 0.146 11                  |                        |                    |                                                   |                      |                       |                                     |
| 1315.89 18                       | 0.063 11                  | 1483.263               | $(5/2^{-})$        | 167.3452                                          | 9/2-                 |                       |                                     |
| <sup>x</sup> 1324.75 <i>13</i>   | 0.081 11                  |                        |                    |                                                   |                      |                       |                                     |
| x1334.10 6                       | 0.149 25                  |                        |                    |                                                   |                      |                       |                                     |
| <sup>x</sup> 1338.24 7           | 0.146 11                  |                        |                    |                                                   |                      |                       |                                     |
|                                  |                           |                        |                    |                                                   |                      |                       |                                     |

|                                                                                                                                                            |                                                                          |                        | 1                                     | $^{62}$ <b>Dy</b> ( <b>n</b> , $\gamma$ ): <b>E</b> | =th, res                                 | 1989Sc31,1967S                                                                    | c05,1986Bo4                      | 3 (continue                                      | d)                                                                           |                                                         |                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------|---------------------------------------|-----------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                                                                            |                                                                          |                        |                                       |                                                     |                                          | $\gamma$ ( <sup>163</sup> Dy) (continue                                           | ed)                              |                                                  |                                                                              |                                                         |                                                                                  |
| $E_{\gamma}^{\dagger}$                                                                                                                                     | $I_{\gamma}^{\ddagger s}$                                                | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                  | $E_f$                                               | $\mathbf{J}_{f}^{\pi}$                   | $E_{\gamma}^{\dagger}$                                                            | $I_{\gamma}^{\ddagger s}$        | E <sub>i</sub> (level)                           | $\mathbf{J}_i^{\pi}$                                                         | $E_f$                                                   | $\mathbf{J}_{f}^{\pi}$                                                           |
| 1342.6 <sup>@</sup><br><sup>x</sup> 1342.88 <i>13</i><br><sup>x</sup> 1360.32 <i>14</i><br><sup>x</sup> 1367.04 <i>16</i><br><sup>x</sup> 1371.98 <i>7</i> | 0.085 <i>11</i><br>0.084 <i>12</i><br>0.074 <i>12</i><br>0.210 <i>12</i> | (6271.01)              | 1/2+                                  | 4928.2                                              |                                          | 1599.66 <i>15</i><br>1614.87 <i>10</i><br>1620.6<br>1634.8<br><sup>x</sup> 1653.9 | 0.154 <i>20</i><br>0.34 <i>4</i> | 1950.771<br>1615.113<br>1692.675<br>2109.4       | 3/2 <sup>-</sup><br>1/2 <sup>-</sup> ,3/2 <sup>-</sup><br>(3/2) <sup>-</sup> | 351.1497<br>0.0<br>73.4448<br>475.3884                  | (1/2) <sup>-</sup><br>5/2 <sup>-</sup><br>7/2 <sup>-</sup><br>(5/2) <sup>-</sup> |
| <sup>x</sup> 1374.29 9<br><sup>x</sup> 1382.55 12<br><sup>x</sup> 1391.94 5                                                                                | 0.148 <i>12</i><br>0.115 <i>12</i><br>0.288 <i>14</i>                    |                        |                                       |                                                     |                                          | 1686.6<br><sup>x</sup> 1722.8 <sup>n</sup><br><sup>x</sup> 1740.7                 |                                  | 2109.4                                           |                                                                              | 421.8440                                                | (3/2)-                                                                           |
| <sup>x</sup> 1398.75 7<br>1398.75 <sup>p</sup> 7<br><sup>x</sup> 1402 21 9                                                                                 | 0.192 <i>14</i><br>0.192 <i>14</i><br>0.151 <i>13</i>                    | 1874.13                | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 475.3884                                            | (5/2)-                                   | 1748.0<br>1759.5<br>×1773 7 <i>j</i>                                              |                                  | 2222.0<br>1834.9                                 | 5/2+                                                                         | 475.3884<br>73.4448                                     | (5/2) <sup>-</sup><br>7/2 <sup>-</sup>                                           |
| <sup>x</sup> 1407.8 <sup>@</sup><br>1411.8 <sup>@</sup>                                                                                                    | 0.151 15                                                                 | 1834.9                 | 5/2+                                  | 421.8440                                            | $(3/2)^{-}$                              | $1775.07^{\& pu} 13$<br>$x_{1782.8^{j}}$                                          | 0.41 <sup>&amp;</sup> 5          | 2197.0                                           | (3/2 <sup>-</sup> )                                                          | 421.8440                                                | (3/2)-                                                                           |
| 1416.1 <sup>@</sup><br><sup>x</sup> 1423.41 6<br><sup>x</sup> 1428.9 3<br><sup>x</sup> 1433.35 9                                                           | 0.271 <i>14</i><br>0.049 <i>13</i><br>0.161 <i>16</i>                    | 1489.104               | (3/2 <sup>-</sup> )                   | 73.4448                                             | 7/2-                                     | x1800.3 <sup>n</sup><br>1808.7<br>1819.5<br>x1823.3 <sup>j</sup>                  |                                  | 2197.0<br>2242.9                                 | (3/2 <sup>-</sup> )                                                          | 389.7532<br>421.8440                                    | 3/2 <sup>-</sup><br>(3/2) <sup>-</sup>                                           |
| <sup>x</sup> 1448.68 6                                                                                                                                     | 0.24 6                                                                   |                        |                                       |                                                     |                                          | 1837.9 <sup>hu</sup>                                                              |                                  | 1834.9                                           | 5/2+                                                                         | 0.0                                                     | 5/2-                                                                             |
| 1449.8 <sup>@</sup> <i>u</i><br><sup>x</sup> 1454.63 <i>10</i><br><sup>x</sup> 1458.30 8<br><sup>x</sup> 1462.05 <i>11</i><br><sup>x</sup> 1464.90 6       | 0.122 <i>13</i><br>0.199 <i>14</i><br>0.154 <i>14</i><br>0.39 5          | 1874.13                | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 421.8440                                            | (3/2)-                                   | 1843.1<br>1846.2<br>1851.1<br>1869.8<br>1875.2                                    |                                  | 2270.1<br>2197.0<br>2242.9<br>2222.0<br>1950.771 | $(3/2^+)$<br>$(3/2^-)$<br>$3/2^-$                                            | 427.6801<br>351.1497<br>389.7532<br>351.1497<br>73.4448 | $(5/2)^{-}$<br>$(1/2)^{-}$<br>$3/2^{-}$<br>$(1/2)^{-}$<br>$7/2^{-}$              |
| 1474.2 <sup>@</sup>                                                                                                                                        | 0 151 20                                                                 | 1950.771               | 3/2-                                  | 475.3884                                            | (5/2)-                                   | 1879.5<br>1894 6 <sup>hu</sup>                                                    |                                  | 2270.1<br>2242 9                                 | $(3/2^+)$                                                                    | 389.7532<br>351 1497                                    | $3/2^{-}$<br>(1/2) <sup>-</sup>                                                  |
| x1476.39 <i>18</i><br>1489.09 <i>3</i>                                                                                                                     | 0.101 20<br>0.204 20<br>0.488 16                                         | 1489.104               | (3/2 <sup>-</sup> )                   | 0.0                                                 | 5/2-                                     | <sup>x</sup> 1906.4<br>1912.8                                                     |                                  | 2339.2                                           |                                                                              | 427.6801                                                | $(1/2)^{-}$                                                                      |
| x1494.02 <i>13</i><br>1501.43 <i>13</i><br>x1503 39 24                                                                                                     | 0.157 <i>14</i><br>0.214 <i>23</i><br>0.118 <i>21</i>                    | 1501.665               | (5/2+)                                | 0.0                                                 | 5/2-                                     | 1919.7<br>1922.8<br>×1936.20                                                      |                                  | 2270.1<br>2349.5                                 | (3/2 <sup>+</sup> )                                                          | 351.1497<br>427.6801                                    | $(1/2)^-$<br>$(5/2)^-$                                                           |
| 1523.02 <i>5</i><br>1528.99 <i>4</i>                                                                                                                       | 0.36 <i>5</i><br>0.49 <i>6</i>                                           | 1950.771<br>1950.771   | 3/2 <sup>-</sup><br>3/2 <sup>-</sup>  | 427.6801<br>421.8440                                | (5/2) <sup>-</sup><br>(3/2) <sup>-</sup> | 1939.0<br>1944.5                                                                  |                                  | 2361.2<br>2197.0                                 | (3/2 <sup>-</sup> )                                                          | 421.8440<br>250.8895                                    | (3/2) <sup>-</sup><br>5/2 <sup>+</sup>                                           |
| x1532.18 5                                                                                                                                                 | 0.44 5                                                                   | ((051.01)              | 1 /2+                                 | 15 10 1                                             |                                          | 1953.9 <sup>mu</sup>                                                              |                                  | 1950.771                                         | 3/2-                                                                         | 0.0                                                     | 5/2-                                                                             |
| 1532.3 <b>4</b><br>x1535.75 5<br>x1541.25 6<br>x1543.2 4<br>x1568.01 9                                                                                     | 0.31 7<br>0.36 6<br>0.09 3<br>0.238 20                                   | (6271.01)              | 1/2+                                  | 4740.1                                              |                                          | <sup>1979.9</sup><br>1987.2<br>2001.7<br>2009.7<br>2051.6                         |                                  | 2339.2<br>2475.4<br>2361.2<br>2475.4             |                                                                              | 351.1497<br>475.3884<br>351.1497<br>421.8440            | $(1/2)^{-}$<br>$(5/2)^{-}$<br>$(1/2)^{-}$<br>$(3/2)^{-}$                         |
| <sup>x</sup> 1574.8 <sup>@</sup>                                                                                                                           |                                                                          |                        |                                       |                                                     |                                          | 2060.8                                                                            |                                  | 2135.1                                           |                                                                              | 73.4448                                                 | 7/2-                                                                             |
| <sup>x</sup> 1580.4 <sup>w</sup><br><sup>x</sup> 1590.8 3<br><sup>x</sup> 1595.47 21                                                                       | 0.081 <i>18</i><br>0.105 <i>17</i>                                       |                        |                                       |                                                     |                                          | 2080.5<br>*2081.7<br>2081.7                                                       |                                  | 2432.5<br>2471.6                                 |                                                                              | 351.1497<br>389.7532                                    | $(1/2)^{-}$<br>$3/2^{-}$                                                         |

From ENSDF

|                                  |                        |                      |          |                              | <sup>162</sup> <b>Dy</b> ( $\mathbf{n},\gamma$ ):E: | =th, res 1             | 989Sc31,196               | 7Sc05,1986B | o43 (continued)         |
|----------------------------------|------------------------|----------------------|----------|------------------------------|-----------------------------------------------------|------------------------|---------------------------|-------------|-------------------------|
|                                  |                        |                      |          |                              |                                                     | $\gamma(1)$            | <sup>63</sup> Dy) (contin | nued)       |                         |
| $E_{\gamma}^{\dagger}$           | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_f^{\pi}$         | $E_{\gamma}^{\dagger}$                              | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$      | $E_f$       | $J_f^{\pi}$             |
| 2086.0                           | 2562.2                 |                      | 475.3884 | $(5/2)^{-}$                  | 2387.0                                              | (6271.01)              | $1/2^{+}$                 | 3884.3      |                         |
| x2098.3 <sup>1</sup>             |                        |                      |          | (-1)                         | 2405.9                                              | 2755.3                 | 7                         | 351,1497    | $(1/2)^{-}$             |
| 2101.7                           | 2525.3                 |                      | 421.8440 | $(3/2)^{-}$                  | 2411.7                                              | 2835.4                 | $(3/2, 5/2^{-})$          | 421.8440    | $(3/2)^{-}$             |
| 2108.3                           | 2583.3                 |                      | 475.3884 | $(5/2)^{-}$                  | <sup>x</sup> 2432.6 <sup>k</sup>                    |                        |                           |             |                         |
| 2120.5                           | 2471.6                 |                      | 351.1497 | $(1/2)^{-}$                  | 2433.5                                              | 2432.5                 |                           | 0.0         | 5/2-                    |
| <sup>x</sup> 2130.1 <sup>0</sup> |                        |                      |          |                              | <sup>x</sup> 2434.6 <sup>l</sup>                    |                        |                           |             |                         |
| <sup>x</sup> 2132.1 <sup>i</sup> |                        |                      |          |                              | <sup>x</sup> 2437.5 <sup>i</sup>                    |                        |                           |             |                         |
| 2136.1                           | 2135.1                 |                      | 0.0      | $5/2^{-}$                    | <sup>x</sup> 2453.8 <sup>i</sup>                    |                        |                           |             |                         |
| 2141.5                           | 2562.2                 |                      | 421.8440 | $(3/2)^{-}$                  | 2460.3                                              | 2459.8                 |                           | 0.0         | 5/2-                    |
| 2152.9                           | 2627.7                 |                      | 475.3884 | $(5/2)^{-}$                  | <sup>x</sup> 2467.7 <sup>k</sup>                    |                        |                           |             |                         |
| <sup>x</sup> 2153.7 <sup>i</sup> |                        |                      |          |                              | 2476.1                                              | 2728.4                 |                           | 250.8895    | 5/2+                    |
| 2161.8                           | 2583.3                 |                      | 421.8440 | $(3/2)^{-}$                  | 2484.1                                              | 2835.4                 | $(3/2, 5/2^{-})$          | 351.1497    | $(1/2)^{-}$             |
| <sup>x</sup> 2165.1 <sup>0</sup> |                        |                      |          |                              | <sup>x</sup> 2487.4 <sup>k</sup>                    |                        |                           |             |                         |
| 2175.2                           | 2525.3                 |                      | 351.1497 | $(1/2)^{-}$                  | 2489.3                                              | 2912.0                 |                           | 421.8440    | $(3/2)^{-}$             |
| 2189.0                           | 2615.6                 |                      | 427.6801 | $(5/2)^{-}$                  | <sup>x</sup> 2507.6 <sup>k</sup>                    |                        |                           |             |                         |
| 2190.9 <sup>hu</sup>             | 2583.3                 |                      | 389.7532 | $3/2^{-}$                    | <sup>x</sup> 2511.5 <sup>0</sup>                    |                        |                           |             |                         |
| <sup>x</sup> 2191.2 <sup>0</sup> |                        |                      |          |                              | <sup>x</sup> 2515.6 <sup>n</sup>                    |                        |                           |             |                         |
| 2196.8                           | 2197.0                 | $(3/2^{-})$          | 0.0      | 5/2-                         | 2522.0                                              | 2872.1                 |                           | 351.1497    | $(1/2)^{-}$             |
| <sup>x</sup> 2197.1 <sup>k</sup> |                        |                      |          |                              | 2533.5                                              | (6271.01)              | $1/2^{+}$                 | 3737.9      |                         |
| 2199.7                           | 2627.7                 |                      | 427.6801 | $(5/2)^{-}$                  | <sup>x</sup> 2551.6 <sup>o</sup>                    |                        |                           |             |                         |
| 2208.5                           | 2459.8                 |                      | 250.8895 | $5/2^{+}$                    | <sup>x</sup> 2556.3 <sup>l</sup>                    |                        |                           |             |                         |
| 2210.4                           | 2562.2                 |                      | 351.1497 | $(1/2)^{-}$                  | <sup>x</sup> 2557.4 <sup>J</sup>                    |                        |                           |             |                         |
| 2216.8                           | 2606.9                 | $(5/2^{-})$          | 389.7532 | 3/2-                         | 2560.9                                              | 2912.0                 |                           | 351.1497    | $(1/2)^{-}$             |
| 2224.2                           | 2648.0                 | $(3/2^{-})$          | 421.8440 | $(3/2)^{-}$                  | *2573.20                                            | 2006.0                 |                           | 401 0440    | (2/2) =                 |
| ~2237.4°                         | 2627 7                 |                      | 280 7522 | 2/2-                         | 2573.8                                              | 2996.9                 | $(2/2^{-})$               | 421.8440    | (3/2)                   |
| 2254.8                           | 2027.7                 |                      | 475 3884 | $\frac{3}{2}$<br>$(5/2)^{-}$ | 2585.2                                              | 2583 3                 | (3/2)                     | 0.0         | 7/2<br>5/2 <sup>-</sup> |
| 2255.8                           | 2606.9                 | $(5/2^{-})$          | 351.1497 | $(1/2)^{-}$                  | 2586.3                                              | 2835.4                 | $(3/2, 5/2^{-})$          | 250.8895    | $5/2^+$                 |
| 2264.4                           | 2615.6                 | (-1 )                | 351.1497 | $(1/2)^{-}$                  | 2627.9                                              | 2627.7                 |                           | 0.0         | 5/2-                    |
| 2278.7                           | 2755.3                 |                      | 475.3884 | $(5/2)^{-}$                  | 2628.3                                              | 2978.1                 |                           | 351.1497    | $(1/2)^{-}$             |
| <sup>x</sup> 2302.8 <sup>m</sup> |                        |                      |          |                              | <sup>x</sup> 2630.0 <sup>m</sup>                    |                        |                           |             |                         |
| <sup>x</sup> 2324.1 <sup>l</sup> |                        |                      |          |                              | 2630.2                                              | 3104.7                 |                           | 475.3884    | $(5/2)^{-}$             |
| 2332.7                           | 2755.3                 |                      | 421.8440 | $(3/2)^{-}$                  | 2658.7                                              | (6271.01)              | $1/2^{+}$                 | 3612.8      |                         |
| x2338.6 <sup>l</sup>             |                        |                      |          |                              | 2676.4                                              | 3067.1                 |                           | 389.7532    | 3/2-                    |
| 2339.6                           | 2339.2                 |                      | 0.0      | 5/2-                         | 2678.1                                              | 3104.7                 |                           | 427.6801    | $(5/2)^{-}$             |
| <sup>x</sup> 2341.7 <sup>K</sup> |                        |                      |          |                              | <sup>x</sup> 2681.6 <sup>0</sup>                    |                        |                           |             |                         |
| ^2343.2°                         |                        |                      |          |                              | 2693.1                                              | 3119.1                 |                           | 427.6801    | (5/2)-                  |
| <sup>x</sup> 2344.1 <sup>t</sup> | 2240 5                 |                      | 0.0      | 5/0-                         | 2698.3                                              | 3048.0                 |                           | 351.1497    | $(1/2)^{-}$             |
| 2349.9                           | 2349.5                 |                      | 0.0      | 5/2                          | 2/15.9                                              | 3067.1                 |                           | 351.1497    | (1/2)                   |
| ~2353.2 <b>'</b>                 |                        |                      |          |                              | 2724.1"                                             | 2978.1                 |                           | 250.8895    | 5/2*                    |
| <sup>x</sup> 2382.0 <sup>J</sup> |                        |                      |          |                              | 2729.1                                              | 3119.1                 |                           | 389.7532    | 3/2-                    |

|                                                                |                               |                         |                                  | $^{162}$ Dy(n, $\gamma$                     | ):E=th, res                                                          | 1989Sc31,1                    | 967Sc05,198                                 | 6Bo43 (cont                   | inued)                                 |
|----------------------------------------------------------------|-------------------------------|-------------------------|----------------------------------|---------------------------------------------|----------------------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------|----------------------------------------|
|                                                                |                               |                         |                                  |                                             |                                                                      | γ( <sup>163</sup> Dy) (co     | ontinued)                                   |                               |                                        |
| ${\rm E_{\gamma}}^{\dagger}$                                   | E <sub>i</sub> (level)        | $\mathbf{J}_i^{\pi}$    | $E_f$                            | $\mathbf{J}_f^{\pi}$                        | $E_{\gamma}^{\dagger}$                                               | E <sub>i</sub> (level)        | $\mathbf{J}_i^{\pi}$                        | $E_f$                         | ${ m J}_f^\pi$                         |
| $x_{2732.8}^{j}$<br>$x_{2746.8}^{x}$<br>$x_{2748.0}^{i}$       |                               |                         |                                  |                                             | 3067.6<br>3074.6<br><sup>x</sup> 3077.8 <sup>n</sup>                 | 3067.1<br>3497.2              |                                             | 0.0<br>421.8440               | 5/2 <sup>-</sup><br>(3/2) <sup>-</sup> |
| 2754.4<br>2755.5<br>2756.2                                     | 3104.7<br>3182.2<br>3230.6    |                         | 351.1497<br>427.6801<br>475.3884 | $(1/2)^-$<br>$(5/2)^-$<br>$(5/2)^-$         | x3084.5 <i>j</i><br>3090.3<br>x3099.0 <sup>i</sup>                   | (6271.01)                     | 1/2+                                        | 3182.2                        |                                        |
| x2765.5 <sup>J</sup><br>2767.1<br>2773.6                       | 3119.1<br>(6271.01)           | 1/2+                    | 351.1497<br>3497.2               | (1/2) <sup>-</sup>                          | 3099.9<br>3102.9<br><sup>x</sup> 3116.8 <sup>n</sup><br>x2122.79     | 3353.0<br>3104.7              | (3/2,5/2 <sup>-</sup> )                     | 250.8895<br>0.0               | 5/2 <sup>+</sup><br>5/2 <sup>-</sup>   |
| 2788.5<br>2793.1<br>x2811.1 <sup>i</sup>                       | 3217.2                        |                         | 421.8440                         | (3/2) <sup>-</sup>                          | 3153.0<br>3167.8                                                     | (6271.01)<br>(6271.01)        | 1/2 <sup>+</sup><br>1/2 <sup>+</sup>        | 3119.1<br>3104.7              |                                        |
| 2816.6<br>2835.1                                               | 3067.1<br>2835.4              | (3/2,5/2 <sup>-</sup> ) | 250.8895<br>0.0                  | 5/2 <sup>+</sup><br>5/2 <sup>-</sup>        | <sup>x</sup> 3188.1 <sup>J</sup><br>3204.2                           | (6271.01)                     | 1/2+                                        | 3067.1                        |                                        |
| 2859.3<br>2871.2                                               | 3335.0<br>2872.1              |                         | 475.3884<br>0.0                  | $(5/2)^{-}$<br>$5/2^{-}$                    | 3214.3 <sup>hu</sup><br>3223.5                                       | 3217.2<br>(6271.01)           | 1/2+                                        | 0.0<br>3048.0                 | 5/2-                                   |
| x2896.7k<br>x2904.1 <sup>n</sup><br>2907.1<br>2918.5<br>2021.5 | 3335.0<br>(6271.01)           | 1/2+                    | 427.6801<br>3353.0<br>250 8805   | $(5/2)^{-}$<br>$(3/2,5/2^{-})$<br>$5/2^{+}$ | x3239.4°<br>3241.5<br>3259.9<br>3273.9                               | 3314.7<br>3612.8<br>(6271.01) | 1/2+                                        | 73.4448<br>351.1497<br>2996.9 | 7/2 <sup>-</sup><br>(1/2) <sup>-</sup> |
| 2931.3<br>2937.3<br>$x2938.1^{j}$<br>$x2943.1^{n}$             | (6271.01)                     | 1/2+                    | 3335.0                           | 5/2                                         | 3290.8<br>3293.3<br>x3334.6 <sup>j</sup><br>x3347.8 <sup>0</sup>     | (6271.01)                     | 1/2+                                        | 2978.1                        |                                        |
| 2946.1<br>*2947.6 <sup>0</sup><br>2956.7                       | 3335.0<br>(6271.01)           | 1/2+                    | 389.7532<br>3314.7               | 3/2-                                        | 3347.9<br>3352.1<br>3358.5                                           | 3737.9<br>3353.0<br>(6271.01) | (3/2,5/2 <sup>-</sup> )<br>1/2 <sup>+</sup> | 389.7532<br>0.0<br>2912.0     | 3/2 <sup>-</sup><br>5/2 <sup>-</sup>   |
| <sup>x</sup> 2973.4 <sup>0</sup><br>2979.2                     | 3230.6                        |                         | 250.8895                         | 5/2+                                        | x3362.5 <sup>l</sup><br>x3369.4 <sup>o</sup>                         |                               |                                             |                               |                                        |
| 2979.8<br>2984.3<br>*2984.4 <sup>k</sup>                       | 2978.1<br>3335.0              |                         | 0.0<br>351.1497                  | $5/2^{-}$<br>$(1/2)^{-}$                    | x3373.4 <sup>k</sup><br>x3392.1 <sup>i</sup><br>x3393.7 <sup>k</sup> |                               |                                             |                               |                                        |
| x2987.5 <sup>n</sup><br>2997.5                                 | 2996.9                        |                         | 0.0                              | 5/2-                                        | 3399.3<br><sup>x</sup> 3409.5 <sup>io</sup>                          | (6271.01)                     | 1/2+                                        | 2872.1                        |                                        |
| 3004.9 <sup>hu</sup><br>x3033.4 <sup>n</sup>                   | 3353.0                        | (3/2,5/2 <sup>-</sup> ) | 351.1497                         | (1/2)-                                      | 3410.7<br><sup>x</sup> 3413.3 <sup>k</sup>                           | 3884.3                        |                                             | 475.3884                      | (5/2)-                                 |
| <sup>x</sup> 3035.9 <sup>i</sup><br>3041.2                     | (6271.01)                     | 1/2+                    | 3230.6                           |                                             | 3435.5<br><sup>x</sup> 3448.5 <sup>k</sup>                           | (6271.01)                     | 1/2+                                        | 2835.4                        | (3/2,5/2 <sup>-</sup> )                |
| 3046.7<br>3054.1<br>3063.7                                     | 3048.0<br>(6271.01)<br>3314.7 | 1/2+                    | 0.0<br>3217.2<br>250.8895        | 5/2 <sup>-</sup><br>5/2 <sup>+</sup>        | x3458.4 <sup>l</sup><br>3461.2<br>x3472.1 <sup>l</sup>               | 3884.3                        |                                             | 421.8440                      | (3/2)-                                 |

|                                  |                        |                      |          |                      | <sup>162</sup> <b>Dy</b> ( $\mathbf{n},\gamma$ ): <b>E=th</b> , res | 1989Sc31,1967Sc05,1986Bo43 (continued)   |
|----------------------------------|------------------------|----------------------|----------|----------------------|---------------------------------------------------------------------|------------------------------------------|
|                                  |                        |                      |          |                      |                                                                     | $\gamma$ <sup>(163</sup> Dy) (continued) |
| $E_{\gamma}^{\dagger}$           | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_f^{\pi}$ |                                                                     |                                          |
| 3488.7                           | 3737.9                 |                      | 250.8895 | $5/2^{+}$            | -                                                                   |                                          |
| <sup>x</sup> 3494.1 <sup>i</sup> |                        |                      |          | -/-                  |                                                                     |                                          |
| 3497.4                           | 3497.2                 |                      | 0.0      | $5/2^{-}$            |                                                                     |                                          |
| <sup>x</sup> 3503.3 <sup>i</sup> |                        |                      |          | ,                    |                                                                     |                                          |
| x3505.3 <sup>n</sup>             |                        |                      |          |                      |                                                                     |                                          |
| <sup>x</sup> 3507.2 <sup>j</sup> |                        |                      |          |                      |                                                                     |                                          |
| 3515.8                           | (6271.01)              | $1/2^{+}$            | 2755.3   |                      |                                                                     |                                          |
| 3536.1 <sup>hu</sup>             | 3884.3                 |                      | 351.1497 | $(1/2)^{-}$          |                                                                     |                                          |
| <sup>x</sup> 3539.3 <sup>k</sup> |                        |                      |          |                      |                                                                     |                                          |
| <sup>x</sup> 3539.9 <sup>j</sup> |                        |                      |          |                      |                                                                     |                                          |
| 3543.4                           | (6271.01)              | $1/2^{+}$            | 2728.4   |                      |                                                                     |                                          |
| <sup>x</sup> 3568.7 <sup>m</sup> | . ,                    |                      |          |                      |                                                                     |                                          |
| <sup>x</sup> 3577.8 <sup>0</sup> |                        |                      |          |                      |                                                                     |                                          |
| 3614.7                           | 3612.8                 |                      | 0.0      | 5/2-                 |                                                                     |                                          |
| 3622.6                           | (6271.01)              | $1/2^+$              | 2648.0   | $(3/2^{-})$          |                                                                     |                                          |
| 3644.7                           | (62/1.01)              | 1/2 '                | 2627.7   |                      |                                                                     |                                          |
| 3664 3                           | (6271.01)<br>(6271.01) | $\frac{1/2}{1/2^+}$  | 2606.9   | $(5/2^{-})$          |                                                                     |                                          |
| x3683.6 <sup>0</sup>             | (0271.01)              | 1/2                  | 2000.9   | (3/2)                |                                                                     |                                          |
| x3683.9 <sup>k</sup>             |                        |                      |          |                      |                                                                     |                                          |
| 3687.9                           | (6271.01)              | $1/2^{+}$            | 2583.3   |                      |                                                                     |                                          |
| <sup>x</sup> 3693.5 <sup>i</sup> |                        |                      |          |                      |                                                                     |                                          |
| <sup>x</sup> 3698.9 <sup>l</sup> |                        |                      |          |                      |                                                                     |                                          |
| 3708.9                           | (6271.01)              | $1/2^{+}$            | 2562.2   |                      |                                                                     |                                          |
| <sup>x</sup> 3715.0 <sup>i</sup> |                        |                      |          |                      |                                                                     |                                          |
| <sup>x</sup> 3715.2 <sup>j</sup> |                        |                      |          |                      |                                                                     |                                          |
| <sup>x</sup> 3729.8 <sup>0</sup> |                        |                      |          |                      |                                                                     |                                          |
| 3736.5                           | 3737.9                 |                      | 0.0      | $5/2^{-}$            |                                                                     |                                          |
| 3745.2                           | (6271.01)              | $1/2^{+}$            | 2525.3   |                      |                                                                     |                                          |
| x3755.90                         |                        |                      |          |                      |                                                                     |                                          |
| 3790.9                           | (6271.01)              | $1/2^{+}$            | 2475 4   |                      |                                                                     |                                          |
| 3799.5                           | (6271.01)              | $1/2^+$              | 2471.6   |                      |                                                                     |                                          |
| 3811.6                           | (6271.01)              | $1/2^+$              | 2459.8   |                      |                                                                     |                                          |
| <sup>x</sup> 3817.2 <sup>l</sup> |                        |                      |          |                      |                                                                     |                                          |
| 3838.9                           | (6271.01)              | $1/2^{+}$            | 2432.5   |                      |                                                                     |                                          |
| 3880.6 <sup>hu</sup>             | 3884.3                 |                      | 0.0      | $5/2^{-}$            |                                                                     |                                          |
| <sup>x</sup> 3890.7 <sup>j</sup> |                        |                      |          |                      |                                                                     |                                          |
| <sup>x</sup> 3895.9 <sup>m</sup> |                        |                      |          |                      |                                                                     |                                          |
| 3909.3                           | (6271.01)              | $1/2^{+}$            | 2361.2   |                      |                                                                     |                                          |
| 3923.2                           | (6271.01)              | $1/2^{+}$            | 2349.5   |                      |                                                                     |                                          |

|                                   |                           |                        |                      | <sup>162</sup> <b>Dy(n,</b> γ | ):E=th, res          | 1989Sc31,1967Sc05,1986Bo43 (continued)   |
|-----------------------------------|---------------------------|------------------------|----------------------|-------------------------------|----------------------|------------------------------------------|
|                                   |                           |                        |                      |                               |                      | $\gamma$ <sup>(163</sup> Dy) (continued) |
| $\mathrm{E}_{\gamma}^{\dagger}$   | $I_{\gamma}^{\ddagger s}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$              | $\mathbf{J}_f^{\pi}$ | Comments                                 |
| 3933.1                            |                           | (6271.01)              | $1/2^{+}$            | 2339.2                        |                      |                                          |
| *3984.8                           | 0.07.20                   | (6271.01)              | 1/2+                 | 2270 1                        | (2/2+)               | Additional information 51                |
| 4002.0                            | 0.97 20                   | (6271.01)              | 1/2                  | 2270.1                        | $(3/2^{+})$          | Additional information 51.               |
| 4027.7                            | 0.54 14                   | (6271.01)              | 1/2                  | 2242.9                        |                      | Additional information 52.               |
| 4049.8                            | 0.25 /                    | (62/1.01)              | $1/2^{+}$            | 2222.0                        | (2/2-)               | Additional information 53.               |
| 40/3.6                            | 0.78 18                   | (62/1.01)              | 1/2 '                | 2197.0                        | (3/2)                | Additional information 54.               |
| <sup>x</sup> 4110 <sup>0</sup> 4  | 0.16 <sup>0</sup> 5       |                        |                      |                               |                      |                                          |
| 4136.5                            | < 0.20                    | (6271.01)              | $1/2^{+}$            | 2135.1                        |                      | Additional information 55.               |
| 4161.7                            | 0.28 9                    | (6271.01)              | $1/2^{+}$            | 2109.4                        |                      | Additional information 56.               |
| <sup>x</sup> 4220.8 <sup>n</sup>  |                           |                        |                      |                               |                      |                                          |
| $x_{4226}^{b}$ 4                  | $0.15^{b}$ 4              |                        |                      |                               |                      |                                          |
| 4264.8                            | 0.12                      | 4740 1                 |                      | 475 3884                      | $(5/2)^{-}$          |                                          |
| raceh a                           | a coh 14                  | 17 10.1                |                      | 175.5001                      | (3/2)                |                                          |
| x4268° 4                          | 0.63° 14                  |                        |                      |                               |                      |                                          |
| *4298.1"                          |                           | 17 10 1                |                      | 105 (001                      | (5.10) -             |                                          |
| 4312.8                            |                           | 4740.1                 | 1 (a+                | 427.6801                      | (5/2)                |                                          |
| 4321.1                            | 1.5 3                     | (62/1.01)              | $1/2^{+}$            | 1950.771                      | $3/2^{-}$            | Additional information 57.               |
| <sup>x</sup> 4348 <sup>b</sup> 4  | 0.37 <sup>b</sup> 9       |                        |                      |                               |                      |                                          |
| 4349.2                            |                           | 4740.1                 |                      | 389.7532                      | 3/2-                 |                                          |
| 4398.5                            | 0.16 3                    | (6271.01)              | $1/2^{+}$            | 1874.13                       | $(5/2^-, 7/2^-)$     | Additional information 58.               |
| 4435.9                            | 0.20 6                    | (6271.01)              | $1/2^{+}$            | 1834.9                        | 5/2+                 | Additional information 59.               |
| <sup>х</sup> ддд9 д <b>ј</b>      |                           |                        |                      |                               |                      |                                          |
| x 4 7 2 2 k                       |                           |                        |                      |                               |                      |                                          |
| *44/3.3*                          |                           |                        |                      |                               |                      |                                          |
| <sup>x</sup> 4489.9               |                           |                        |                      |                               |                      |                                          |
| <sup>x</sup> 4499.0 <sup>j</sup>  |                           |                        |                      |                               |                      |                                          |
| 4506.3                            |                           | 4928.2                 |                      | 421.8440                      | $(3/2)^{-}$          |                                          |
| 4577.6                            | 0.51 12                   | (6271.01)              | $1/2^{+}$            | 1692.675                      | $(3/2)^{-}$          |                                          |
| 4579.9 <sup>e</sup> 3             |                           | S(n)+2                 | ,                    | 1692.675                      | $(3/2)^{-}$          |                                          |
| x1588 0i                          |                           |                        |                      |                               | (-1)                 |                                          |
| +500.0                            |                           |                        |                      |                               |                      |                                          |
| ~4601.0°                          |                           | G( ) <b>0</b> 4        |                      | 1600 675                      | (2)(2) -             |                                          |
| 4601.9° 3                         | 1                         | S(n)+24                |                      | 1692.675                      | $(3/2)^{-}$          |                                          |
| <sup>x</sup> 4611 <sup>ab</sup> 4 | 0.07 <sup>b</sup>         |                        |                      |                               |                      |                                          |
| 4652 <sup>bu</sup> 4              | 0.18 <sup>b</sup> 6       | (6271.01)              | $1/2^{+}$            | 1615.113                      | $1/2^{-}.3/2^{-}$    |                                          |
| 4658 1 <sup>e</sup> 3             | 0110 0                    | S(n)+2                 | -/-                  | 1615 113                      | $1/2^{-} 3/2^{-}$    |                                          |
| x4670.01                          |                           | 2()                    |                      | 10101110                      | -12 ,512             |                                          |
| 40/9.9<br>1690 1 0 2              |                           | S(n) + 24              |                      | 1615 112                      | 1/2- 2/2-            |                                          |
| 4000.1 3                          | 0.05- <b>8</b> 7          | 3(11)+24               |                      | 1013.113                      | 1/2 ,3/2             |                                          |
| 4685.6°° <i>1</i>                 | 0.060                     | (6271.01)              | $1/2^{+}$            | 1585.250                      | $1/2^+, 3/2^+$       |                                          |
| 4739 <sup>bu</sup> 4              | 0.14 <sup>6</sup> 4       | (6271.01)              | $1/2^{+}$            | 1529.326                      | $(1/2^{-}, 3/2^{-})$ |                                          |
| 4741.6                            |                           | 4740.1                 |                      | 0.0                           | 5/2-                 |                                          |
| <sup>x</sup> 4742.8 <sup>0</sup>  |                           |                        |                      |                               |                      |                                          |
| 4743.5 <sup>e</sup> 3             |                           | S(n)+2                 |                      | 1529.326                      | $(1/2^{-},3/2^{-})$  |                                          |
|                                   |                           |                        |                      |                               | ST 7-1 7             |                                          |

 $^{163}_{66}\mathrm{Dy}_{97}$ -21

From ENSDF

|                                                                                                                                                                                                                                                                                                                                            | $162$ Dy(n, $\gamma$ ):E=th, res 1989Sc31,1967Sc05,1986Bo43 (continued)                                                                                                 |                                                                                                                          |                                      |                                                                                                        |                                                                                                     |                               |          |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------|----------|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                         |                                                                                                                          |                                      |                                                                                                        | $\gamma(1)$                                                                                         | <sup>63</sup> Dy) (continued) |          |  |  |  |  |  |  |  |
| $E_{\gamma}^{\dagger}$                                                                                                                                                                                                                                                                                                                     | $I_{\gamma}^{\ddagger s}$                                                                                                                                               | E <sub>i</sub> (level)                                                                                                   | $\mathbf{J}_i^{\pi}$                 | $E_f$                                                                                                  | $\mathrm{J}_f^\pi$                                                                                  |                               | Comments |  |  |  |  |  |  |  |
| $\begin{array}{r} x4747.1^{n} \\ 4765.5^{e} & 3 \\ 4771.1^{e} & 4 \\ 4782.8 \\ 4783.5^{e} & 3 \\ 4793.1^{e} & 4 \\ 4805.5^{e} & 3 \\ 4811.6^{e} & 6 \\ \end{array}$                                                                                                                                                                        | 0.60 14                                                                                                                                                                 | S(n)+24<br>S(n)+2<br>(6271.01)<br>S(n)+2<br>S(n)+24<br>S(n)+24<br>S(n)+24                                                | 1/2+                                 | 1529.326<br>1501.665<br>1489.104<br>1489.104<br>1501.665<br>1489.104<br>1483.263                       | $(1/2^{-},3/2^{-}) (5/2^{+}) (3/2^{-}) (3/2^{-}) (5/2^{+}) (3/2^{-}) (5/2^{+}) (3/2^{-}) (5/2^{-})$ | Additional information 60.    |          |  |  |  |  |  |  |  |
| x4813.5 <sup><i>i</i></sup><br>4833.4<br>4833.6 <sup><i>e</i></sup> 4<br>4842.5 <sup><i>e</i></sup> 4<br>4854.1<br>4855.6 <sup><i>e</i></sup> 4<br>4864.5 <sup><i>e</i></sup> 4<br>x4877.9 <sup><i>i</i></sup><br>x4885.2 <sup><i>j</i></sup><br>x4899.4 <sup><i>j</i></sup><br>x4993.2 <sup><i>n</i></sup><br>x4992.6 <sup><i>n</i></sup> | 0.15 4                                                                                                                                                                  | $\begin{array}{c} (6271.01)\\ S(n)+2\\ S(n)+2\\ 4928.2\\ S(n)+24\\ S(n)+24\\ \end{array}$                                | 1/2+                                 | 1439.054<br>1439.054<br>1430.239<br>73.4448<br>1439.054<br>1430.239                                    | $(1/2^-,3/2^-)$<br>$(1/2^-,3/2^-)$<br>$(3/2^+)$<br>$7/2^-$<br>$(1/2^-,3/2^-)$<br>$(3/2^+)$          | Additional information 61.    |          |  |  |  |  |  |  |  |
| $4992.0$ $4995.1^{d} 4$ $4996.6^{c} 7$ $5016.2$ $5018.6^{d} 7$ $5019.5^{c} 3$ $5041.5^{d} 3$ $5070.2^{c} 6$ $5075.0^{\&} 1$ $5076.8^{c} 3$ $x 5077.5^{i}$                                                                                                                                                                                  | $\begin{array}{c} 45^{d} 5\\ 2.6^{c} 6\end{array}$ $\begin{array}{c} 52^{d} 5\\ 11.7^{c} 10\\ 70^{d} 6\\ 4.2^{c} 7\\ 0.54^{\&} 3\\ 57^{c} 3\end{array}$                 | $\begin{array}{c} S(n)+24\\ S(n)+2\\ (6271.01)\\ S(n)+24\\ S(n)+2\\ S(n)+24\\ S(n)+2\\ (6271.01)\\ S(n)+2\\ \end{array}$ | 1/2 <sup>+</sup><br>1/2 <sup>+</sup> | 1299.7<br>1277.172<br>1253.160<br>1277.172<br>1253.160<br>1253.160<br>1202.529<br>1196.051<br>1196.051 | $(5/2^{-}) (5/2^{+}) (3/2^{+}) (5/2^{+}) (3/2^{+}) (3/2^{+}) (5/2)^{+} (3/2)^{-} (3/2)^{-}$         |                               |          |  |  |  |  |  |  |  |
| 5080.6 <sup><i>i</i></sup><br>5086.8 <sup><i>d</i></sup> 7<br>5092.2 <sup><i>d</i></sup> 6<br>5098.8 <sup><i>d</i></sup> 3<br>5110.6 <sup>&amp;</sup> g 1<br>5112.3 <sup><i>c</i></sup> 3<br>5123.7 <sup>&amp;</sup> g 1<br>5125.8 <sup><i>c</i></sup> 3                                                                                   | 27 <sup>d</sup> 5<br>29 <sup>d</sup> 10<br>112 <sup>d</sup> 8<br>0.286 <sup>&amp;</sup> 14<br>24.5 <sup>c</sup> 15<br>0.250 <sup>&amp;</sup> 13<br>14.7 <sup>c</sup> 11 | S(n)+24<br>S(n)+24<br>S(n)+24<br>(6271.01)<br>S(n)+2<br>(6271.01)<br>S(n)+2                                              | 1/2 <sup>+</sup><br>1/2 <sup>+</sup> | 1208.0<br>1202.529<br>1196.051<br>1160.547<br>1160.547<br>1147.455<br>1147.455                         | $(5/2^{-})$<br>$(5/2)^{+}$<br>$(3/2)^{-}$<br>$(1/2)^{-}$<br>$(1/2)^{-}$<br>$3/2^{+}$<br>$3/2^{+}$   |                               |          |  |  |  |  |  |  |  |

 $^{163}_{66}\mathrm{Dy}_{97}$ -22

|                                                    |                                                 |                        |                      |                        |                                      | $\gamma$ <sup>(163</sup> Dy) (co                          | ntinued)                                         |                        |                      |                      |                        |
|----------------------------------------------------|-------------------------------------------------|------------------------|----------------------|------------------------|--------------------------------------|-----------------------------------------------------------|--------------------------------------------------|------------------------|----------------------|----------------------|------------------------|
| $E_{\gamma}^{\dagger}$                             | $I_{\gamma}^{\ddagger s}$                       | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$       | $\mathbf{J}_f^{\pi}$                 | $E_{\gamma}^{\dagger}$                                    | $I_{\gamma}^{\ddagger s}$                        | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$                | ${ m J}_f^\pi$         |
| 5134.3 <sup>d</sup> 3<br>5143.3 <sup>c</sup> 5     | 59 <sup>d</sup> 7<br>3.4 <sup>c</sup> 6         | S(n)+24<br>S(n)+2      |                      | 1160.547<br>1129.759   | $(1/2)^{-}$<br>$5/2^{+}$             | 5450.3 <sup>&amp;</sup> 1<br>5452.1 <sup>c</sup> 3        | $2.08^{\&} 10$<br>$38.0^{c} 21$                  | (6271.01)<br>S(n)+2    | 1/2+                 | 820.7956<br>820.7956 | $(3/2)^-$<br>$(3/2)^-$ |
| $5147.8^{d}$ 3                                     | $73^{d} 6$                                      | S(n)+24                |                      | 1147.455               | 3/2+                                 | 5474.1 <sup>d</sup> 3                                     | $84^{d} 6$                                       | S(n)+24                | 1/2+                 | 820.7956             | $(3/2)^{-}$            |
| $5160^{-4}$                                        | $0.07^{2}$ 2                                    | S(m) + 24              |                      | 1120 750               | 5/2+                                 | $54/7.7^{-1}$                                             | $0.0352^{-2}21$                                  | (62/1.01)              | 1/2                  | 793.3941             | (1/2)                  |
| $5105.5^{\circ}$ 5                                 | $40^{\circ} 4$                                  | S(II)+24               | 1/2+                 | 1084 340               | $\frac{3}{2}$                        | 5479.5° 5<br>5480.8 <mark>00</mark>                       | 50.1° /                                          | S(II)+2                | 1/2+                 | 795.5941             | (1/2)<br>$5/2^+$       |
| 5188.7 <sup>c</sup> 3                              | $10.3^{\circ} 8$                                | S(n)+2                 | 1/2                  | 1084.349               | $(3/2)^+$                            | 5492.1 <sup>°</sup> 4                                     | $3.8^{\circ} 5$                                  | S(n)+2                 | 1/2                  | 781.0994             | $5/2^+$                |
| 5210.7 <sup>d</sup> 3                              | 58 <sup>d</sup> 5                               | S(n)+24                |                      | 1084.349               | $(3/2)^+$                            | 5501.3 <sup>d</sup> 3                                     | 95 <sup>d</sup> 6                                | S(n)+24                |                      | 793.3941             | $(1/2)^{-}$            |
| 5214.2 <sup>c</sup> 9                              | 13.7 <sup>c</sup> 9                             | S(n)+2                 |                      | 1058.4675              | $1/2^{+}$                            | 5504.9 <sup>&amp;</sup> 1                                 | 0.183 <sup>&amp;</sup> 9                         | (6271.01)              | $1/2^{+}$            | 766.2075             | $(3/2)^+$              |
| 5214.7 <sup>&amp;</sup> 9<br>5217.2 <sup>c</sup> 4 | 0.75 <sup>&amp;</sup> 4<br>34.7 <sup>c</sup> 18 | (6271.01)<br>S(n)+2    | 1/2+                 | 1055.7577<br>1055.7577 | $(1/2)^{-}$<br>$(1/2)^{-}$           | 5506.6 <sup>c</sup> 3<br><sup>x</sup> 5514.0 <sup>m</sup> | 12.8 <sup>c</sup> 6                              | S(n)+2                 |                      | 766.2075             | $(3/2)^+$              |
| <sup>x</sup> 5217.6 <sup>j</sup>                   | 1.9 <sup>r</sup> 4                              |                        |                      |                        |                                      | 5514.1 <sup>d</sup> 4                                     | 44 <sup><i>d</i></sup> 4                         | S(n)+24                |                      | 781.0994             | $5/2^{+}$              |
| <sup>x</sup> 5218.2 <sup>k</sup>                   | 1.9 <sup>r</sup> 4                              |                        |                      |                        |                                      | 5528.6 <sup>d</sup> 3                                     | 86 <sup>d</sup> 6                                | S(n)+24                |                      | 766.2075             | $(3/2)^+$              |
| 5221.9 <sup>&amp;</sup> 1<br>5223.9 <sup>c</sup> 3 | 0.91 <sup>&amp;</sup> 5<br>59 <sup>c</sup> 3    | (6271.01)<br>S(n)+2    | 1/2+                 | 1049.0725<br>1049.0725 | 3/2 <sup>-</sup><br>3/2 <sup>-</sup> | 5533.4 <sup>&amp;</sup> 1<br>5535.2 <sup>c</sup> 3        | 0.266 <sup>&amp;</sup> 13<br>13.5 <sup>c</sup> 9 | (6271.01)<br>S(n)+2    | $1/2^{+}$            | 737.6586<br>737.6586 | $1/2^+$<br>$1/2^+$     |
| 5236.2 <sup>d</sup> 9                              | 40 <sup>d</sup> 8                               | S(n)+24                |                      | 1058.4675              | $1/2^{+}$                            | 5557.2 <sup>d</sup> 3                                     | 98 <sup>d</sup> 6                                | S(n)+24                |                      | 737.6586             | $1/2^{+}$              |
| 5239.2 <sup>d</sup> 4                              | 113 <sup>d</sup> 10                             | S(n)+24                |                      | 1055.7577              | $(1/2)^{-}$                          | 5583.6 <sup>d</sup> 5                                     | 19 <sup>d</sup> 3                                | S(n)+24                |                      | 711.4718             | 5/2-                   |
| 5245.9 <sup>d</sup> 3                              | 82 <sup>d</sup> 6                               | S(n)+24                |                      | 1049.0725              | 3/2-                                 | <sup>x</sup> 5606.3 <sup>j</sup>                          |                                                  |                        |                      |                      |                        |
| <sup>x</sup> 5249.1 <sup>m</sup>                   |                                                 |                        |                      |                        |                                      | <sup>x</sup> 5675.1 <sup>j</sup>                          |                                                  |                        |                      |                      |                        |
| <sup>x</sup> 5289.1 <sup>l</sup>                   |                                                 |                        |                      |                        |                                      | 5819.1 <sup>d</sup> 4                                     | 20.7 <sup>d</sup> 22                             | S(n)+24                |                      | 475.3884             | $(5/2)^{-}$            |
| 5321.6 <sup><i>au</i></sup>                        | < 0.002                                         | (6271.01)              | $1/2^{+}$            | 949.3369               | $(5/2)^+$                            | 5849.1 × 1                                                | 0.95 5                                           | (6271.01)              | $1/2^{+}$            | 421.8440             | $(3/2)^{-}$            |
| 5322.7° 5                                          | 3.3° 5                                          | S(n)+2                 | 1/0+                 | 949.3369               | $(5/2)^+$                            | 5851.1° 3                                                 | $35.0^{\circ} 20$                                | S(n)+2                 |                      | 421.8440             | $(3/2)^{-}$            |
| 5335.9 <sup>cc</sup> 1                             | $0.229^{\circ\circ}$ 11                         | (62/1.01)              | 1/2                  | 935.142                | $(3/2)^+$                            | $5867.5^{d}$ 3                                            | $22^{d}$ 3                                       | S(n)+24                |                      | 427.0801             | (5/2)                  |
| $5338.1^{\circ}$ 5                                 | $9.7^{-}9$                                      | S(n)+2                 |                      | 955.142                | $(3/2)^+$                            | $58/3.1^{-5}$                                             | $55^{-4}$                                        | S(n)+24                | 1/2+                 | 421.8440             | (3/2)                  |
| 5356.5 <sup>°</sup> 4                              | $34^{\circ}4$<br>$3.4^{\circ}5$                 | S(n)+24<br>S(n)+2      |                      | 949.5509               | (3/2)<br>$5/2^+$                     | 5883.1 <sup>°</sup> 3                                     | 100 <sup>C</sup> 5                               | S(n)+2                 | 1/2                  | 389.7532             | $\frac{3}{2}^{-}$      |
| 5360.1 <sup>d</sup> 3                              | $54^{d}$ 4                                      | S(n)+24                |                      | 935.142                | $(3/2)^+$                            | $5905.1^{d}$ 3                                            | $100^{d} 5$                                      | S(n)+24                |                      | 389.7532             | $3/2^{-}$              |
| 5378.5 <sup>d</sup> 4                              | $62^{d}$ 5                                      | S(n)+24                |                      | 915.6575               | 5/2+                                 | 5919.9 <mark>&amp;</mark> 1                               | 0.047 <sup>&amp;</sup> 3                         | (6271.01)              | $1/2^{+}$            | 351.1497             | $(1/2)^{-}$            |
| 5386.7 <mark>&amp;</mark> 1                        | 0.163 <sup>&amp;</sup> 8                        | (6271.01)              | $1/2^{+}$            | 884.2945               | $1/2^{+}$                            | 5921.7 <sup>°</sup> 3                                     | 44 <sup>°</sup> 3                                | S(n)+2                 | ,                    | 351.1497             | $(1/2)^{-}$            |
| 5388.3 <sup>C</sup> 3                              | 12.3 <sup>c</sup> 9                             | S(n)+2                 |                      | 884.2945               | $1/2^{+}$                            | 5943.7 <sup>d</sup> 3                                     | 99 <sup>d</sup> 6                                | S(n)+24                |                      | 351.1497             | $(1/2)^{-}$            |
| 5410.3 <sup>d</sup> 3                              | 85 <mark>d</mark> 6                             | S(n)+24                |                      | 884.2945               | $1/2^{+}$                            | 6020.0 <sup>au</sup>                                      | < 0.003                                          | (6271.01)              | $1/2^{+}$            | 250.8895             | 5/2+                   |
| 5411.5 <mark>&amp;</mark> 1                        | 0.153 <sup>&amp;</sup> 8                        | (6271.01)              | $1/2^{+}$            | 859.287                | $(3/2)^+$                            | 6021.9 <sup>c</sup> 3                                     | 1.8 <sup>C</sup> 6                               | S(n)+2                 |                      | 250.8895             | 5/2+                   |
| 5413.6 <sup>°</sup> 3                              | 13.6 <sup>c</sup> 9                             | S(n)+2                 |                      | 859.287                | $(3/2)^+$                            | 6043.9 <sup>d</sup> 3                                     | 8.4 <sup>d</sup> 19                              | S(n)+24                |                      | 250.8895             | $5/2^{+}$              |
| 5435.6 <sup>d</sup> 3                              | 65 <sup>d</sup> 5                               | S(n)+24                |                      | 859.287                | $(3/2)^+$                            | 6294.8 <sup>d</sup> 4                                     | 13.8 <sup>d</sup> 17                             | S(n)+24                |                      | 0.0                  | 5/2-                   |

From ENSDF

#### $^{162}$ Dy(n, $\gamma$ ):E=th, res **1989Sc31**,**1967Sc05**,**1986Bo43** (continued)

#### $\gamma$ (<sup>163</sup>Dy) (continued)

- <sup>†</sup> Secondary E $\gamma$ : from 1989Sc31 up to 1615 keV and from 1986Bo43 above this energy, unless otherwise stated. Uncertainties from 1989Sc31 are statistical. Systematic error of 10 ppm should be added. Primary E $\gamma$  for E=th: from 1986Bo43, unless otherwise stated. Primary E $\gamma$  for E(n)= 2 keV and 24 keV: deduced from S(n) and level energies from table 2 of 1989Sc31.
- <sup>‡</sup> Per 100 n-captures. Secondary  $\gamma$ : from 1989Sc31 up to 1615 keV and from 1986Bo43 above this energy, unless otherwise stated. Uncertainties from 1989Sc31 are statistical. Systematic error of 20% should be added. Primary  $\gamma$  for E=th: from 1967Sc05, unless otherwise stated. Primary  $\gamma$  from E=2 keV and 24 keV: from 1989Sc31 (see table 2). The values are reduced (by a factor of  $E\gamma^5$ ) intensities relative to 100, in each case, for the reduced intensity of primary  $\gamma$  to 389.7 level.
- <sup>#</sup> From 1989Sc31 based on authors' ce data, unless otherwise stated. Only the dominant multipolarity indicated by ce data is given, small admixtures of the competing multipolarity cannot be discounted.
- <sup>@</sup> From 1986Bo43.

24

- & From 1989Sc31. Uncertainty of 0.1 keV assigned (evaluators) to primary  $E\gamma$  based on  $\Delta(S(n))=0.09$  (1989Sc31).
- <sup>*a*</sup> Tentative  $\gamma$  from 1984Pr03.
- <sup>b</sup> From 1967Sc05. Treated as uncertain (evaluators) since it is not confirmed by 1989Sc31 (as secondary  $\gamma$ ) and 1986Bo43 (as primary  $\gamma$ ).
- <sup>*c*</sup> Energy of primary  $\gamma$  from E(n)= 2 keV data deduced from S(n) and E(level) given in table 2 of 1989Sc31. Intensity (from 1989Sc31) is the reduced (by E $\gamma^5$ ) value relative to 100 for the reduced intensity of primary  $\gamma$  to 387.9 level.
- <sup>d</sup> Energy of primary  $\gamma$  from E(n)= 24 keV data deduced from S(n) and E(level) given in table 2 of 1989Sc31. Intensity (from 1989Sc31) is the reduced (by E $\gamma^5$ ) value relative to 100 for the reduced intensity of primary  $\gamma$  to 387.9 level.
- <sup>*e*</sup> Deduced from S(n) and E(level) listed in column 2 of table 4 in 1989Sc31. This is a primary  $\gamma$  observed in E(n)=2 keV and/or E(n)=24 keV data as implied by 1989Sc31.
- <sup>*f*</sup> Energy fit is within 2 to 3  $\sigma$  of the quoted uncertainty. The deviation between E $\gamma$  and level-energy difference is < 0.05 keV.
- <sup>g</sup> Energy fit is within 2 to 3  $\sigma$  of the quoted uncertainty. The deviation between Ey and level-energy difference is 0.06-0.3 keV.
- <sup>h</sup> Poor energy fit. Placement is considered as uncertain since  $E\gamma$  differs from level-energy difference by  $\approx 3$  keV.
- <sup>*i*</sup> Observed (1986Bo43) in  $\gamma\gamma$  where sum of two  $E\gamma's=S(n)-427.8$ .
- <sup>*j*</sup> Observed (1986Bo43) in  $\gamma\gamma$  where sum of two  $E\gamma$ 's=S(n).
- <sup>k</sup> Observed (1986Bo43) in  $\gamma\gamma$  where sum of two  $E\gamma$ 's=S(n)-389.7.
- <sup>*l*</sup> Observed (1986Bo43) in  $\gamma\gamma$  where sum of two  $E\gamma$ 's=S(n)-474.7.
- <sup>*m*</sup> Observed (1986Bo43) in  $\gamma\gamma$  where sum of two E $\gamma$ 's=S(n)-73.44.
- <sup>*n*</sup> Observed (1986Bo43) in  $\gamma\gamma$  where sum of two  $E\gamma$ 's=S(n)-250.88.
- <sup>o</sup> Observed (1986Bo43) in  $\gamma\gamma$  where sum of two E $\gamma$ 's=S(n)-351.1.
- <sup>*p*</sup> Unplaced  $\gamma$  in 1989Sc31. Placement from 1986Bo43.
- <sup>q</sup> Doublet, feeding 1056 and 1058 levels.
- <sup>*r*</sup> Total intensity for unresolved 5217.6+5218.2.
- <sup>s</sup> Intensity per 100 neutron captures.
- <sup>t</sup> Multiply placed with undivided intensity.
- <sup>*u*</sup> Placement of transition in the level scheme is uncertain.
- $x \gamma$  ray not placed in level scheme.



 $^{163}_{66} Dy_{97}$ 



 $^{163}_{\ 66} Dy_{97}$ 



<sup>163</sup><sub>66</sub>Dy<sub>97</sub>



 $^{163}_{66} Dy_{97}$ 

### <sup>162</sup>Dy(n,γ):E=th, res 1989Sc31,1967Sc05,1986Bo43

#### Level Scheme (continued)

Intensities: Per 100 N-captures

 $---- \rightarrow \gamma$  Decay (Uncertain)

Legend



 $^{163}_{66}\text{Dy}_{97}$ 

# <sup>162</sup>Dy(n,γ):E=th, res 1989Sc31,1967Sc05,1986Bo43

Legend

#### Level Scheme (continued)

Intensities: Per 100 N-captures

 $--- \rightarrow \gamma$  Decay (Uncertain)

|                                          | 200 | 3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3.<br>3 |   |      | <b>`</b>                                     |           |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2755 2                     |
|------------------------------------------|-----|---------------------------------------------------------------------------------|---|------|----------------------------------------------|-----------|------|-----|---|------|----------------------------------------|--------|-----|-----|------------|------|------|-------|------|-----|--------|-----|----------|------------|-----|--------|----------------|------|----------------------------------------|------|------------|------|------------|-----|-----|-----|------|----|----------------------------|
|                                          |     | İ                                                                               |   | 20 X | <u>,                                    </u> | <u></u>   |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2733.5                     |
| (3/2 <sup>-</sup> )                      |     | _                                                                               | - |      | \$?<br>}}                                    | <u>~</u>  | 0.1  | ~ ^ | • |      |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     | <br> |    | 2648.0                     |
| ((*)= )                                  |     |                                                                                 |   |      |                                              | <u>چې</u> | ×.~~ | 20  | 5 | ~    |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2627.7                     |
|                                          |     | _                                                                               |   |      |                                              |           |      |     | 2 | 2180 | <u>ب</u>                               | \$     |     |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2615.6                     |
| (5/2-)                                   |     | _                                                                               | _ |      |                                              |           |      |     |   |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | у<br>У | \$  | م م | , ~        |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     | <br> |    | 2606.9                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        | 250    | 5.6 | 507 |            | *    | s c  | 5     |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2583.3                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        | I   |     | .دې<br>کې: | 214. | 2000 | ·     | ~ ~  |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2562.2                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        | - - |     |            |      | ,    | -2,-5 | 1012 | 6   | ~      |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2525.3                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        |     |     |            |      |      |       | 202  | 5,5 | ).<br> | 2   |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2475.4                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        | I   |     |            |      |      |       |      |     | -22    | 000 | <u>.</u> | Ş          |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 2471.6                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        | Ì   |     |            |      |      |       |      |     |        | 2,  |          | <u>s</u> _ | 5.0 | 2      |                |      |                                        |      |            |      |            |     |     |     |      |    | 2459.8                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        | 1   |     |            |      |      |       |      |     |        |     |          | 243        | 200 | ,<br>_ |                |      |                                        |      |            |      |            |     |     |     |      |    | 2432.5                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            | _   | ŝ      | څ <sup>ې</sup> | 0.   | <u>م</u>                               |      |            |      |            |     |     |     |      |    | 2361.2                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            |     |        | ć              | \$ S | ~<br>                                  | و کن | -9-        |      |            |     |     |     |      |    | 2349.5                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            | _   |        |                |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | \$°. | <u>,</u> , | ~~ • | <u>~</u> ~ |     |     |     |      |    | 2339.2                     |
| $(3/2^+)$                                |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        | i   |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      | 191.       | 0.00 |            | 6   | , ~ | . 5 |      |    | 2270.1                     |
|                                          |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        | Ì   |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      | Τ          |      | ~          | 000 | 195 | 6/9 |      |    | 2242.9                     |
| (5/2) <sup>-</sup><br>(5/2) <sup>-</sup> |     |                                                                                 | • |      |                                              |           |      |     |   |      |                                        |        |     |     |            |      | •    |       |      | •   |        |     |          |            |     |        |                |      |                                        |      |            |      | •          |     |     |     |      | 47 | 7 <u>5.3884</u><br>27.6801 |
| (3/2)-                                   |     | •                                                                               |   |      | •                                            | _         | _    |     |   |      |                                        |        |     | •   |            | ×    |      | -     | • •  | /   | _      |     |          | _          | _   | _      | ¥.             |      | _                                      | _    | _          | _    |            |     |     |     |      | 42 | 21.8440                    |
| 3/2-                                     |     |                                                                                 |   |      |                                              | _         | ¥    |     | _ |      |                                        |        | *   |     |            |      |      | _     |      |     | _ _    | ₹_  | _        | _          | _ _ | -      |                |      | _                                      | _    | _          | •    |            | ļ   |     |     | <br> | 38 | 39.7532                    |
| (1/2)-                                   |     |                                                                                 |   |      |                                              | _         |      |     |   |      | •                                      | _      |     |     |            |      |      | ¥     |      |     | ¥      |     | _        | _          | ł   | ¥      |                |      | _                                      | •    |            |      |            | •   |     |     | <br> | 35 | 51.1497                    |
| 5/2+                                     |     |                                                                                 | , |      |                                              |           |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     | _        | _          |     |        |                |      | _                                      |      |            |      |            |     |     |     | <br> | 2: | 50.8895                    |
| 7/2-                                     |     |                                                                                 |   |      | Ļ                                            |           |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 73.4448                    |
| 5/2-                                     |     |                                                                                 |   |      |                                              |           |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     |          |            |     |        |                |      |                                        |      |            |      |            |     |     |     |      |    | 0.0                        |
| 312                                      |     |                                                                                 |   |      |                                              | *         |      |     |   |      |                                        |        |     |     |            |      |      |       |      |     |        |     | /        | *          |     |        | -              | 7    | *                                      |      |            |      |            |     |     |     |      |    | 0.0                        |



 $^{163}_{66} Dy_{97}$ 



 $^{163}_{66}\text{Dy}_{97}$ 

From ENSDF



33



 $^{163}_{66} Dy_{97}$ 

### <sup>162</sup>Dy(n,γ):E=th, res 1989Sc31,1967Sc05,1986Bo43



 $^{163}_{66} Dy_{97}$ 



 $^{163}_{66} Dy_{97}$ 

36

From ENSDF

<sup>163</sup><sub>66</sub>Dy<sub>97</sub>-36

 $^{163}_{66}\mathrm{Dy}_{97}\text{--}36$ 



 $^{163}_{66}\mathrm{Dy}_{97}\text{--}38$ 



38

### <sup>162</sup>Dy(n,γ):E=th, res 1989Sc31,1967Sc05,1986Bo43





<sup>162</sup>Dy(n,γ):E=th, res 1989Sc31,1967Sc05,1986Bo43 (continued)

Band(L): 1/2[510] band

5/2- 1258.214

Band(M): 3/2[651] band

(5/2)+ 1202.529

(3/2)- 1196.051

(1/2)- 1160.547

3/2+ 1147.455