	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111,1211 (2010)	12-Apr-2010

 $Q(\beta^{-}) = -2.555 \ 16$; $S(n) = 6271.01 \ 5$; $S(p) = 7.99 \times 10^{3} \ 4$; $Q(\alpha) = -244.0 \ 13 \ 2012 Wa38$

Note: Current evaluation has used the following Q record -2.555 16 6271.01 5 7990 40 -242.9 12 2009AuZZ,2003Au03.

Additional information 1.

1999Dr07, 1996De14, 1996So02: calculation of B(M1) strengths.

Other reactions:

1986Ut01: ¹⁶⁴Dy(¹⁴N,X) E=280 MeV, measured inclusive σ for projectile-like fragments.

In (γ, γ') , a number of levels are proposed based on the placement of gammas that can Be assigned as arising from either elastic

scattering or inelastic scattering. Levels based only these multiply placed gammas are not included here. They are listed in the 163 Dy(γ,γ') Data Set. In addition, certain of the level properties for all the (γ,γ') levels are not included here. For these, see this (γ,γ') Data Set.

A total of 142 neutron resonances in the energy range 5.44 eV to 15.814 keV are known, see 162 Dy(n, γ),(n,n):resonances data set for details.

¹⁶³Dy Levels

Cross Reference (XREF) Flags

		A B C D E	¹⁶³ Tb β^- decay (19.5 ¹⁶³ Ho ε decay (4570) ¹⁶⁰ Gd(⁷ Li,p3n γ) ¹⁶¹ Dy(t,p) ¹⁶² Dy(n, γ):E=th, res	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
E(level)	$J^{\pi \ddagger}$	T _{1/2} †	XREF	Comments
0.0#	5/2-	stable	ABC EFGHIJK M	μ=+0.6726 35 (1974Fe05,1989Ra17,2005St24) Q=+2.648 21 (1984Ta04,1989Ra17,2005St24) T _{1/2} (¹⁶³ Dy ⁶⁶⁺ ion)=48 d 3 (1997Kl06,1992Ju01). %β-(¹⁶³ Dy ⁶⁶⁺ ion)=100. J ^π : spin from electron paramagnetic resonance (1958Pa11) and atomic beam. (1962Sp03). Parity: L(d,t)=3 from 0 ⁺ target; measured μ is consistent with v5/2[523]. Q ₄ ≈+0.67 (1972DaYT, atomic beam magnetic resonance). μ: atomic beam magnetic resonance (1974Fe05,1972FeZY). Others: 0.66 4 (1973Mu06, hyperfine structure in optical spectroscopy), +0.65 6 (1970Ch31, atomic beam), +0.66 13 (1967Eb01, atomic beam), +0.635 14 (1963Bl25, electron paramagnetic resonance), 0.51 6 (1958Pa11, electron paramagnetic resonance). Recalculations: 1962Li06, 1972Ro36). Q: quadrupole hyperfine splitting of muonic M x rays (1984Ta04). Sign from μ=+2.57 17 (AB, Sternheimer correction included, 1970Ch31). Others: 2.318 6 (1974Fe05,1972FeZY, atomic beam), +2.46 21 (1973Mu06, hyperfine structure in optical spectroscopy), +2.5 3 (1970Ch31, atomic beam), +2.46 4 (1967Eb01, atomic beam), +1.6 4 (1963Bl25, electron paramagnetic resonance), 1.3 4 (1958Pa11, electron paramagnetic resonance). 1966Ko14 measured ratio Q(¹⁶³ Dy)/Q(¹⁶¹ Dy) in NMR method. Δ <r<sup>2>(¹⁶²Dy-¹⁶³Dy)=0.041 fm² 2 (1990Wa25). From an evaluation of nuclear rms charge radii, 2004An14 report <ra><r<sup>2>^{1/2}=5.2091 fm 25. Hexadecapole moment: 1972FeZY (also 1972DaYT).</r<sup></ra></r<sup>
73.4448 [@] 4	7/2-	1.51 ns .	5 A C EFGHIJK M	J ^{π} : L(d,t)=3. M1+E2 γ from 9/2 ⁻ rules out 5/2 ⁻ .

¹⁶³Dy Levels (continued)

E(level)	$J^{\pi \ddagger}$	$T_{1/2}^{\dagger}$	XREF	Comments				
				T _{1/2} : from recoil-distance method in Coul. ex. Other: 1.34 ns 7 from B(E2) in Coul. Ex.				
167.3451 [#] 12	9/2-	0.34 ns 6	A C EFGHIJKL	J ^{π} : L(d,p)=L(d,t)=5; E2 γ to 5/2 ⁻ rules out 11/2 ⁻ .				
250.8896 [°] 12	5/2+		A DEFHKM	J^{π} : L(t,p)=0 from 5/2 ⁺ .				
281.5716 [@] 21	11/2-		A C EF H JKlM	B(E4) \uparrow =0.06 +11-6 (1978Wo02) J ^π : ΔJ=2, E2 γ to 7/2 ⁻ ; ΔJ=1 γ to 9/2 ⁻ . Band member.				
285.5954 ^d 9	$7/2^{+}$		A DEF H KlM	J ^{π} : E1 γ 's to 5/2 ⁻ and 7/2 ⁻ ; γ to 9/2 ⁻ and band member.				
336.5439 [°] 24	9/2+		CDEF H KL	J ^{π} : L(d,t)=L(³ He, α)=4; E1 γ 's to 7/2 ⁻ , 9/2 ⁻ . Band member.				
351.1493 ^{&} 10	$(1/2)^{-}$	0.26 ns 5	A EFHJK	J^{π} : L(d,p)=L(d,t)=1; band member.				
389.7532 ^{&} 11	3/2-	0.12 ns 4	A EFHJK	J^{π} : L(d,p)=L(d,t)=1; E2 γ to 7/2 ⁻ .				
412.382 ^{<i>d</i>} 5	11/2+		CDEf H	XREF: D(415). J^{π} : γ 's to $9/2^{-}$ and $11/2^{-}$. Band member.				
415.34 [#] 5	13/2-	46 ps 18	CfHJ	J^{π} : $\Delta J=(2)$ (E2) γ to 9/2 ⁻ , $\Delta J=1 \gamma$ to 11/2 ⁻ . Coulomb excited. Band member.				
421.8439 ^a 11	$(3/2)^{-}$	0.18 ns 6	A EFHJK	J^{π} : L(d,p)=L(d,t)=1; γ to 5/2 ⁺ : E2 γ to (1/2) ⁻ .				
427.6796 ^{&} 9 450	$(5/2)^{-}$ $5/2^{-}$ $7/2^{-}$	0.15 ns 7	A EFHJ K	J^{π} : E2 γ' s to $9/2^{-}$ and $(1/2)^{-}$; resonance-averaged n capture. I^{π} : I (d t)=3				
475.3880 ^{<i>a</i>} 10 497.02 ^{<i>c</i>} 5	$(5/2)^{-}$ $(5/2)^{-}$ $13/2^{+}$	0.10 ns 10	A EFHJK CFKL	J^{π} : M1 γ to 7/2 ⁻ ; E2 γ to (1/2) ⁻ ; resonance-averaged n capture. J^{π} : L(d,p)=L(d,t)=6. γ 's to 9/2 ⁺ , 11/2 ⁻ . Band member.				
514.5519 ^{&} 12	7/2-		A EFHK	J^{π} : L(d,t)=3; E2 γ to 11/2 ⁻ .				
553.0196 ^a 14 566.0 4	7/2-		A EFH KL F	J^{π} : L(d,p)=L(d,t)=3; γ to 11/2 ⁻ ; band member.				
568.79 [@] 7	15/2-	17 ps 4	C J	J^{π} : $\Delta J=1 \gamma$ to $13/2^{-}$ and $\Delta J=2$, (E2) γ to $11/2^{-}$. Coulomb excited. Band member. T _{1/2} : from DSAM in Coul. ex. (1987Mi04).				
587.9290 ^{&} 25 612 2	(9/2) ⁻ 1/2 ⁻ ,3/2 ⁻		EFHK K	J^{π} : M1 γ to 11/2 ⁻ ; γ to (5/2) ⁻ . J^{π} : L(d,t)=1.				
624.22 ^{<i>d</i>} 6 646.249 ^{<i>a</i>} 4	15/2 ⁺ 9/2 ⁻		C EF H KL	J^{π} : γ 's to 13/2 ⁺ , 13/2 ⁻ and 11/2 ⁻ . Band member. XREF: L(638). I^{π} . L(d t)=5: γ to 5/2 ⁻				
660.0 <i>5</i> 705 <i>8</i>			F F	J . <u>L</u> (u , <i>t</i>)- J , f to J / <u>2</u> .				
711.4721 ^{<i>h</i>} 21 712 5	5/2 ⁻ 5/2 ⁺		EF H D	J^{π} : M1 γ 's to 5/2 ⁻ and 7/2 ⁻ ; resonance-averaged n capture. J^{π} : L(t,p)=0 from 5/2 ⁺ .				
718.23 ^{&} 4	(11/2 ⁻)		FH K	J^{π} : γ 's to 7/2 ⁻ and 13/2 ⁻ ; band member. L(d,p)=(6) is in conflict with this assignment.				
727.6 5	17/0+		K					
734.91° 7	$17/2^+$		C	J^{n} : γ' s to $13/2^{+}$, $15/2^{-}$, $15/2^{-}$. Band member.				
737.0384° 73	1/2	111 74	A EFH K	J^{T} : L(d,p)=L(d,t)=0.				
/39.9/" 8	17/2	11.1 ps 14	C J	$J^{*}: \Delta J=2, E2 \gamma$ to $13/2$, γ to $15/2$. Coulomb excited. Band member.				
766.2071 ^e 18	(3/2)+		A EFHK	$J_{1/2}^{-1}$: from DSAM in Coul. ex. (1987)(104). J^{π} : E1 γ' s to (5/2) ⁻ and (1/2) ⁻ . E(level): from L(d,t)=(2+5), another 11/2 ⁻ level (possibly due to 3/2[521]) may be present near this energy				
781.1002 ^e 15	5/2+		A EFHK	J^{π} : E1 γ 's to $7/2^-$ and $3/2^-$.				
793.3942 ^b 20	$(1/2)^{-}$		EF K	J^{π} : L(d,t)=1; E2 γ to 5/2 ⁻ ; resonance-averaged n capture.				
801.311 ^h 7	$(7/2)^{-}$		EF H K	J^{π} : L(d,p)=3 and band member.				
820.7954 ^b 18	(3/2)-		EF K	J^{π} : M1 γ 's to 3/2 ⁻ and 5/2 ⁻ ; E2 γ to 7/2 ⁻ ; resonance-averaged n capture.				

¹⁶³Dy Levels (continued)

E(level)	$J^{\pi \ddagger}$	T _{1/2} †	XRE	EF	Comments
826.8 <i>3</i>	$(1/2^+ \text{ to } 9/2^+)$		DF	K	XREF: D(825).
951 101 ⁶ 2	$(7/2^{+})$		EE I	1 1/1	J^{π} : L(t,p)=2 from 5/2 ⁺ .
631.124 5	(1/2)		EF F	1 KL	J ^{π} : (M1,E2) γ to 5/2 ⁻ ; γ to 9/2 ⁻ ; band member. In (³ He, α), 11/2[505] is assigned, based on large cross section and analogy with ¹⁶¹ Dy, but here this orbital is assigned to a level at 851.5.
851.5 ^m 2	11/2-		F	KL	XREF: L(849).
					J^{π} : Large cross section in (³ He, α) indicates a large L transfer. Relative cross section for population in (d,p) and (d,t) indicates level is a hole state. Most plausibly assigned as the 11/2[505] state. Assignment is also consistent with systematics.
859.287 <i>f</i> 3	$(3/2)^+$		A EF	к	J^{π} : L(d,t)=2: γ to $(1/2)^{-}$: resonance-averaged n capture.
883.0136 ^b 20	$(5/2)^{-}$		Ef H	ł	J^{π} : M1 γ' s to 7/2 ⁻ and (3/2) ⁻ .
884.2943 ^{<i>j</i>} 17	1/2+		A Ef	K	J ^π : L(d,t)=0. Probable bandhead of the K^{π} =2 ⁻ octupole vibration built on the 5/2[523] g.s. orbital. The low log <i>ft</i> value indicates that it is populated via a $v5/2[523] \rightarrow \pi7/2[523]$, <i>au</i> , β^- transition, implying that the dominant configuration is $v5/2[523] - \pi7/2[523] + \pi3/2[411]$. This situation is presumably similar to that in ¹⁶² Dy, where the K^{π} =2 ⁻ octupole vibration occurs relatively low in the level scheme (1148.2 keV) and has these two proton orbitals as the dominant configuration, which is what is expected for the K^{π} =2 ⁻ octupole chemen in this mean main expected for
8937 2	$(1/2^+)$			ĸ	$I^{\pi} \cdot I(d t) = (0)$
915.2^{h} 3	$(9/2)^{-}$		F	ĸ	I^{π} . L(d, p)=5 and hand member
915 6577 f 24	5/2+		A DE F	4 K	XREF: D(910)
, , , , , , , , , , , , , , , , , , , ,	0/=				J^{π} : γ to $1/2^+$, M1 γ to $7/2^+$; resonance-averaged n capture.
924.22 ^d 8	19/2+		С		J^{π} : γ 's to 15/2 ⁺ , 17/2 ⁺ , and 17/2 ⁻ ; band member.
930.93 [@] 9	19/2-	6.2 ps 7	С	J	 J^π: ΔJ=(2) γ to 15/2⁻, ΔJ=1 γ to 17/2⁻. Coulomb excited. Band member. T_{1/2}: from DSAM in Coul. ex. (1987Mi04).
935.134 ^j 4	$(3/2)^+$		A EF	K	J^{π} : L(d,t)=2; (E1) γ to (1/2) ⁻ ; band member.
946.003 ^b 4	$(7/2)^{-}$		EF H	ΗK	J^{π} : L(d,p)=L(d,t)=3; γ to $(9/2)^+$.
949.3369 ^j 23	$(5/2)^+$		A E H	ł	J ^{π} : E1 γ to 3/2 ⁻ ; γ to 7/2 ⁻ ; resonance-averaged n capture.
955.55 966.4 <i>3</i> 981.6 <i>5</i>	1/2+		F	K K K	J^{π} : L(d,t)=0.
991.2 <i>3</i>	$(3/2^+, 5/2^+)$		F	K	J^{π} : L(d,t)=(2).
999.5 6			d	K	J^{π} : L(t,p)=0 gives 5/2 ⁺ for 999.5 or 1009.5 level.
1009.5 5			d F F		J ^{<i>n</i>} : see comment for 999.5 level.
1030.5 4			F	L	XREF: L(1037).
1047.48 [°] 8	$21/2^+$		C	_	J^{π} : γ' s to $19/2^{-}$, $17/2^{+}$ and $19/2^{+}$; band member.
1049.0730 ⁱ 16	3/2-		EF	K	J^{π} : L(d,t)=1; E1 γ to 5/2 ⁺ .
1055.7574 ⁱ 23	$(1/2)^{-}$		Е		J^{π} : M1 γ to $(1/2)^{-}$; E1 γ to $1/2^{+}$; band member.
1058.4671 ^g 18	1/2+		A EF	K	J^{π} : L(d,t)=0.
1073.2 6	т		DF	Kl	XREF: D(1071). J^{π} : L(t,p)=2 from 5/2 ⁺ gives 1/2 ⁺ to 9/2 ⁺ .
1080.0 <i>4</i> 1084 349 <mark>8</mark> 3	$(3/2)^+$		۲ ۲	L I	I^{π} . I (d t)=2 and γ to $(1/2)^{-1}$ hand member
1086.5 4	(J/2)		F	KT.	$J : E(\alpha, r) = 2$ and γ to $(1/2)$, band included.

¹⁶³Dy Levels (continued)

E(level)	$J^{\pi \ddagger}$	T _{1/2} †	XREI	F	Comments
1093.1 <i>3</i>			F	K	
1109? 2				K	J^{π} : L(d,t)=0 gives 1/2 ⁺ .
1119.9 2			F	ĸ	
1129.759 ⁸ 4	5/2+		DEF H	к	XREF: F(1131.0)K(1131.0).
					J^{π} : L(d,t)=2 for 1131.0 group; M1 γ to 7/2 ⁺ .
1135.494 ^{<i>i</i>} 3	$(5/2)^{-}$		EF H	Kl	J^{π} : E1 γ 's to 3/2 ⁺ and (7/2 ⁺).
1137.09 [#] 12	$21/2^{-}$	4.2 ps 7	С	J	XREF: J(1137).
1					J^{n} : $\Delta J=(2) \gamma$ to $17/2^{-}$, γ to $19/2^{-}$. Coulomb excited. Band member. T _{1/2} : from DSAM in Coul. ex. (1987Mi04).
1147.454 ¹ 3	3/2+		A EF	Kl	J^{π} : M1 γ to $1/2^+$; γ to $7/2^+$. L(d,t)=0 for a 1145 2 group (1976Ma33) is inconsistent with J=3/2. The level in (d,t) may be different.
1157.7 3			F		
1160.548 ^k 6	(1/2)-		EF	K	XREF: K(1162.2). J^{π} : L(d,t)=1; M1 γ 's to 3/2 ⁻ and (1/2) ⁻ ; band member.
1183.7 5			F	K	
1196.051 ^k 3	(3/2)-		EF	K	J^{π} : M1 γ 's to (1/2) ⁻ and (5/2) ⁻ ; band member. L(d,t)=(0) for a 1191 group (1976Ma33) is inconsistent with J^{π} =(3/2) ⁻ .
1202.529 ^l 6	$(5/2)^+$		DE H	K	J ^{π} : E2(+M1) γ to 7/2 ⁺ ; resonance-averaged n capture; band member.
1208.0 7	$(5/2^{-})$		E		J^{π} : resonance-averaged n capture.
1217	(3/2',5/2')		F	ĸ	$J^{n}: L(d,t)=(2).$
1253.160 7	$(3/2^+)$		DE		XREF: D(1258). J^{π} : M1,E2 γ 's to 5/2 ⁺ ; γ 's to 7/2 ⁺ and (1/2) ⁻ ; L(t,p)=(2) from 5/2 ⁺ ;
1258.214 ^k 5	5/2-		EF	K	XREF: K(1253.6).
					J^{π} : M1 γ 's to 3/2 ⁻ and 7/2 ⁻ . E(level): 1253.6 level reported in (d,t) possibly corresponds to this
1277,173 6	$(5/2^+)$		EF	KI.	XREF: F(1284).
12/11/0 0	(0/2)				J^{π} : resonance-averaged n capture; band member. L(d,t)=(3) is inconsistent with positive parity.
1299.7 4	(5/2-)		Е	К	XREF: K(1295).
,					J^{π} : resonance-averaged n capture.
1310.74 ^{<i>d</i>} 10	$\frac{23}{2^+}$		C		J^{π} : γ 's to $21/2^+$ and $19/2^+$; band member.
1312	$\frac{1}{2^+}$			K	$J^{*}: L(d,t)=0.$ $I^{\pi}: L(d,t)=(0)$
1342 5	$(5/2^{-},7/2^{-})$		F	ĸ	XREF: K(1360).
					J^{π} : L(d,p)=L(d,t)=(3).
1362.60 [@] 14	23/2-	3.0 ps 6	С	J	XREF: J(1363.59). J ^{π} : Δ J=2, (E2) γ to 19/2 ⁻ . Coulomb excited. Band member.
					$T_{1/2}$: from DSAM in Coul. ex.
1395	$(1/2^-, 3/2^-)$		-	K	J^{π} : L(d,t)=(1).
1430.239 7	$(3/2^{+})$		E	K	J^{*} : (E1) γ to (1/2); (M1,E2) γ to (3/2); resonance-averaged n capture. L(d,t)=(0) is inconsistent with (3/2 ⁺).
1431.61 ^c 11	$25/2^+$		С		J^{π} : γ 's to $21/2^+$ and $23/2^+$; band member.
1439.054 8	$(1/2^-, 3/2^-)$		EF		XREF: F(1448).
					J^{*} : (M1,E2) γ 's to (1/2) ⁻ and 3/2 ⁻ . Resonance-averaged n capture results (10805c31) suggest positive parity
1463 5	+		D		I^{π} : L(t,p)=4 from 5/2 ⁺ gives 3/2 ⁺ to 13/2 ⁺
1465 1	5/2,7/2		Ğ		$(\mathbf{q}_{\mathbf{p}})$ (non $\mathbf{q}_{\mathbf{p}}$ gives $\mathbf{q}_{\mathbf{p}}$ to $\mathbf{q}_{\mathbf{p}}$.
1483.263 19	$(5/2^{-})$		E	Kl	XREF: K(1481).
1480 104 9	$(2/2^{-})$		F		J^{π} : γ 's to $9/2^{-}$ and $(3/2)^{-}$; resonance-averaged n capture.
1409.104 ð	(3/2)		E	T	J . γ s to $1/2$ and $(1/2)$; resonance-averaged n capture.

¹⁶³Dy Levels (continued)

E(level)	$J^{\pi \ddagger}$	XRE	F	Comments			
1494 5	$(1/2^+)$	F	1	$I^{\pi} \cdot I (d \mathbf{n}) = (0)$			
1501 665 5	$(5/2^+)$	F	וא	XRFF: K(1499)			
1501.005 5	(3/2)	-	ICI.	I^{π} : I (d t)=(2): resonance-averaged n canture			
1529 326 11	$(1/2^{-} 3/2^{-})$	F	ĸ	XRFF K(1527)			
1527.520 11	(1/2, 3/2)	L	ĸ	$\pi(1327)$. $\pi \cdot I (d t) = (1)$: resonance-averaged n canture			
1531 /	2/2	C		J : E(u,t) = (1), resonance-averaged if capture.			
1522 5	1/2+	E G		π I (d p)-0			
1555 5	1/2	r		J : L(u,p) = 0.			
1542 1		U F					
1549 5	1/0- 2/0-	Г	v	Π , Γ (14) 1			
15/2 2	1/2, $3/21/2^+ 2/2^+$	-	K	$J^{*:} L(d,t)=1.$			
1585.249 0	1/2, 3/2	E _		J^{*} : MI γ to $1/2^{*}$.			
1597 5		F	L				
1601.39 [#] 16	25/2-	С	J	XREF: J(1601.34).			
				J^{π} : γ to 21/2 ⁻ . Coulomb excited. Band member.			
1615.113 5	$1/2^{-}, 3/2^{-}$	E	K	XREF: K(1613).			
				J^{π} : L(d,t)=1.			
1634 <i>1</i>	5/2-,7/2-	FG	K	XREF: F(1629)K(1631).			
				J ^{π} : L(d,t)=3, dipole excitation in (γ , γ').			
1649			K				
1663 6	$(5/2^{-},7/2^{-})$	F	KL	XREF: K(1660)L(1667).			
				J^{π} : L(d,t)=(3).			
1684 <i>1</i>		G					
1692.675 6	$(3/2)^{-}$	EF	K	J^{π} : L(d,t)=1: M1(+E2) γ to $3/2^{-}$: γ to $(5/2)^{+}$.			
1705 /	5/27/2-	FG	KL.	XREF: F(1708)K(1708)L(1710).			
	-1) 1			J^{π} : L(d,t)=3.			
1730 /		G					
1734 5	$3/2^+.5/2^+$	F		J^{π} : L(d,p)=2.			
1753 2	$1/2^{-} 3/2^{-}$	_	к	$I^{\pi} \cdot I_{\tau}(dt) = 1$			
1775 /	1/2 ,0/2	G					
1770.55d 12	27/2+	<u> </u>		π , t_{a} to $22/2^{+}$ and $25/2^{+}$, hand member			
1779.33 12	21/2			J^{*} , γ s to 25/2 and 25/2 ; band member.			
1/9/ 1	1/2,3/2	FG		$\pi_{\rm L}$ (1795).			
1017 5				$J^{*}: L(d,p)=0,1.$			
181/ 5		ł	K				
1831 1	5 /0+	G		VREE D(1021)			
1836.2 /	5/21	DE		XREF: $D(1831)$.			
1040 1				J^{n} : L(t,p)=0 from $5/2^{+}$.			
1840 <i>I</i>	$(5/2^{-}, 7/2^{-})$	G	K	XREF: K(1843).			
				J^{n} : L(d,t)=(3).			
1856 5	3/2+,5/2+	F		J^{n} : L(d,p)=2.			
1861.30 [@] 17	$27/2^{-}$	С	J	XREF: J(1858.3).			
				J^{π} : γ to 23/2 ⁻ . Coulomb excited. Band member.			
1874.14 5	$(5/2^{-},7/2^{-})$	EF	K	XREF: F(1870)K(1876).			
				J^{π} : L(d,t)=(3).			
1883.36 ^c 13	$29/2^{+}$	С		J^{π} : γ to 25/2 ⁺ ; band member.			
1887	,	F					
1902 1		G					
1942 /	$5/2^{+}$	D FG		XREF: D(1937)F(1936).			
= -	- / =			J^{π} : L(t,p)=0 from 5/2 ⁺ .			
1950.770 6	$3/2^{-}$	EF	к	XREF: F(1957).			
	-/-			J^{π} : L(d,t)=1, γ to 7/2 ⁻ .			
1981 /		G					
1984 /	3/2+ 5/2+	FG	к	XREF: F(1988)K(1986)			
17011	5/2 ,5/2	10		$I^{\pi} \cdot I(dt) = 2$			
2009 1		G		J : L(u, t) = 2.			
2012 5		ר ד					
2012 3		Ľ					

¹⁶³Dy Levels (continued)

E(level)	$J^{\pi \ddagger}$	XREF	7	Comments
2042 2	5/2+	D	K	XREF: D(2053). J^{π} : L(d,p)=2 and L(t,p)=0 from 5/2 ⁺ for a 2053 5 group.
2054 1 2067 5 2080 1 2083 5 2091 1 2095 5	5/2 ⁻ ,7/2 ⁻	G F G D f G D f		J^{π} : L(d,p)=3.
2099 <i>I</i> 2103 <i>I</i>	7/2	G		
2104	1/2-,3/2-	FF	K	J^{π} : L(d,t)=1. The evaluators assume that this level is different from the 2103 level in (γ, γ') .
2109.3 2112 <i>I</i>		G		AREP. P(2114).
2127.49 [#] <i>19</i> 2135.2	29/2-	C E		J^{π} : γ to 25/2 ⁻ ; band member.
2156	$(1/2^+)$	F	K	XREF: $F(2169)$. J^{π} : $L(d,t)=(0)$.
2158 <i>I</i> 2165 <i>I</i>		G G		
2169 <i>1</i> 2180 <i>1</i>	7/2	G	к	XREF: K(2179)
2191 <i>I</i>	5/2+,7/2+	D fG		J^{π} : value suggested by 2003No02 (γ, γ'), but no basis is given. XREF: f(2196).
2197.0	(3/2 ⁻)	Ef	K	J^{π} : L(t,p)=4 gives 3/2 ⁺ to 13/2 ⁺ . In (γ , γ'), 2003No02 assign 5/2,7/2. XREF: f(2196)K(2194).
2222.2	(1/2 ⁻ ,3/2,5/2 ⁻)	EF		J^{π} : L(d,t)=(1) and γ to 5/2 ⁺ . XREF: F(2225).
2224 1		G		$J^{*}: \gamma \in to(1/2)$ and $(5/2)$.
2241.1 2242 <i>I</i> 2255 <i>I</i>	(1/2,3/2,5/2 ⁻) 7/2	E G G		J^{π} : γ to $(1/2)^{-}$.
2256 8 2270.3	(3/2+)	F E	L K	XREF: F(2259). XREF: K(2275). J^{π} : L(d,t)=2; γ to $(1/2)^{-}$.
2272 <i>1</i> 2278 <i>1</i>		G G		
2285 2 2287 <i>1</i> 2317 5	$(3/2^+, 5/2^+)$	F G F	K	J^{π} : L(d,t)=(2).
2324.30 ^d 14 2329 1	31/2+	C G		J^{π} : γ 's to 27/2 ⁺ and 29/2 ⁺ ; band member.
2339.5 2344 <i>1</i>	(1/2 ⁻ ,3/2,5/2 ⁻)	E G		J^{π} : γ' s to $5/2^{-}$ and $(1/2)^{-}$.
2350.2 2353 <i>1</i> 2356 <i>1</i>		EF G G		XREF: F(2351).
2360.9 2367 <i>1</i> 2369 <i>1</i>	(1/2,3/2,5/2 ⁻)	E G	1	J^{π} : γ to $(1/2)^{-}$.
2380 1	5/2-,7/2-	G	Kl	XREF: K(2378). J^{π} : L(d,t)=3.
2387 <i>1</i> 2398.87 ^c 15	3/2 ⁺ ,5/2 ⁺ 33/2 ⁺	FG C	K	J^{π} : L(d,t)=2. J^{π} : γ to 29/2 ⁺ ; band member.

¹⁶³Dy Levels (continued)

E(level)	$J^{\pi \ddagger}$	$T_{1/2}^{\dagger}$	XREF		Comments		
2417			F				
2418.40 [@] 20 2427 1	31/2-		C G		J^{π} : γ to 27/2 ⁻ ; band member.		
2431 <i>1</i> 2432.6 2449 <i>1</i>	(1/2 ⁻ ,3/2,5/2 ⁻)		G E G		J^{π} : γ' s to $5/2^{-}$ and $(1/2)^{-}$.		
2459.9 2471.6 2473 <i>I</i> 2475.3 2483 <i>I</i>	(3/2,5/2,7/2) (1/2,3/2,5/2)		E E G E	1 1 1 1	J^{π} : γ 's to 5/2 ⁺ , 5/2 ⁻ . J^{π} : γ to (1/2) ⁻ .		
2493 <i>I</i> 2493 <i>I</i> 2503 <i>I</i>	5/2		G				
2525.0 2527 1 2542 1	(1/2,3/2,5/2 ⁻)		E G G		$J^{\pi}: \gamma \text{ to } (1/2)^{-}.$		
2559 1 2562.1 2567 1 2570 1	(1/2 ⁻ ,3/2,5/2 ⁻)		E G G		J^{π} : γ' s to $(1/2)^{-}$ and $(5/2)^{-}$.		
2583 <i>1</i> 2584.2	5/2,7/2		G E				
2587 <i>1</i> 2606.8	7/2 (5/2 ⁻)		G E	K	XREF: K(2609). J^{π} : L(d,t)=(3); γ to $(1/2)^{-}$.		
2616.1 2627 <i>1</i> 2627 9			E G F				
2647.7	(3/2 ⁻)		Ē	K	XREF: K(2645). J^{π} : L(d,t)=(1); γ to 7/2 ⁻ .		
2658 <i>I</i> 2666 <i>I</i> 2669 <i>I</i> 2691 2698 <i>I</i>			G G G	K			
2707 <i>I</i>	5/2,7/2		G		T^{T} (20/2 1 1 1		
2709.79 ^a 22 2715 <i>1</i> 2724 <i>1</i>	33/2		G G		J^{-} : γ to 29/2 ; band member.		
2728.6 2752 <i>1</i>	(3/2,5/2,7/2)		E G		J^{π} : γ 's to $5/2^+$ and $(5/2)^-$.		
2755.2 2765 <i>1</i> 2774 <i>1</i> 2790 <i>1</i>	(1/2 ⁻ ,3/2,5/2 ⁻)		E G G		J^{π} : γ 's to $(1/2)^{-}$ and $(5/2)^{-}$.		
2794 <i>1</i> 2808 <i>1</i>	7/2		G G				
2810 90 2812 <i>I</i> 2819.2 7 2830 <i>I</i>	7/2 7/2	0.86 MeV <i>19</i>	G G G	L	E(level): pygmy resonance.		
2835.3 2847 <i>1</i> 2853 <i>1</i> 2859 <i>1</i>	(3/2,5/2 ⁻)		E G G		J^{π} : γ 's to 5/2 ⁺ , 5/2 ⁻ and (1/2) ⁻ .		
2872.2	(1/2 ⁻ ,3/2,5/2 ⁻)		E		J^{π} : γ' 's to $5/2^{-}$ and $(1/2)^{-}$.		

¹⁶³Dy Levels (continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E(level)	$J^{\pi \ddagger}$	XREF	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2894 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2911 <i>I</i>		G	
2918 I G F Y's to 31/2* and 33/2*; band member. 2931 J G G 2931 J G G 2934 I 7/2 G 2934 I 7/2 G 2934 I 7/2 G 2934 I 7/2 G 2938 I 1/2.3/2.5/2 E P': γ to 33/2*; band member. 2936 I G G 3026 I G G 3026 I G G 3028 M0 ⁰ 22 25/2" C J': γ to 31/2"; band member. 3037 I G G G 3037 I S/2.7/2 G G 3037 I S/2.7/2 G F: γ' s to 5/2* and (1/2)". 305 I S/2.7/2 G F: γ' s to 5/2* and (1/2)". 305 I S/2.7/2 G J': γ' s to 5/2" and (1/2)". 3125 I G G G	2911.6	$(1/2, 3/2, 5/2^{-})$	Е	J^{π} : γ to $(1/2)^{-}$.
2928 I G 2931 I G 2931 I G 2931 I G 2932 I 72 G 2942 I 72 G 2943 I 72 G 2944 I 72 G 2958 I 72 G 2958 I G J*: γ to $33/2^+$; band member. 2976 I B 37/2^+ C J*: γ to $33/2^+$; band member. 2976 I B G J*: γ to $33/2^+$; band member. 2976 I B G J*: γ to $33/2^+$; band member. 2986 I E G 3005 I S/2.7/2 G J*: γ to $31/2^-$; band member. 3035 I G J*: γ to $31/2^-$; band member. 3035 I G J*: γ to $37/2^-$; band member. 3035 I G J*: γ to $37/2^-$; band member. 3057 I G J*: γ to $5/2^-$ and $(1/2)^-$. 3057 I G J*: γ to $5/2^-$ and $(1/2)^-$. 3057 I G J*: γ to $5/2^-$ and $(1/2)^-$. 3050 I G J*: γ to $5/2$	2918 <i>I</i>		G	
2931 J G 2937 29 ⁴ J 5 35/2* C F: γ' s to 31/2* and 33/2*; band member. 2934 J 7/2 G 2938 J G F: γ to 33/2*; band member. 2971 J 3/2,25/2 E F: γ to 1/2)*. 2938 J G F: γ to 31/2*; band member. 2976 J J,22,5/2 E F: γ to 1/2)*. 2988 J G F: γ to 31/2*; band member. 2930 J G F: γ' to 31/2*; band member. 3000 J 5/2.7/2 G J*: γ' to 5/2* and (1/2)*. 3041 G G G G 3052 J G J*: γ' to 5/2* and (1/2)*. 3053 J S/2.7/2 G J*: γ' to 5/2* and (1/2)*. 3051 J S/2.7/2 G J*: γ' to 5/2* and (1/2)*. 3051 J S/2.7/2 G J*: γ' to 5/2* and (1/2)*. 3119 J (1/2*-3/2.5/2*) E J*: γ' to 5/2* and (2928 1		G	
2937 2947 J 5 35/2* C J ² : γ' s to 33/2*; band member. 2934 1 7/2 G 2934 1 7/2 G 2938 1 7/2 G 2938 1 7/2 G 2938 1 7/2 G 2938 1 G G 2976 1 B 37/2* C 2977 1 L3.3/2,5/2 E J ² : γ to 33/2*; band member. 2978 1/8 37/2* C J ² : γ to 31/2". 2988 1 E G 3020 1 S/2.7/2 G J ² : γ to 31/2"; band member. 3028 1/ G G 3030 1 S/2.7/2 G 3031 1 G G 3035 1 G J ² : γ' so 5/2* and (1/2)". 3067 1 (1/2".3/2.5/2") E J ² : γ' so 5/2* and (1/2)". 3071 1 S/2.7/2 G J ² : γ' so (5/2* and (1/2)". 31071 6 G J ² : γ' so (5/2* and (5/2)". 3125 1 G J ² : γ' so (5/2* and (5/2)". 3137 1 G	2931 <i>I</i>		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2937.29 ^d 15	35/2+	С	J^{π} : γ 's to $31/2^+$ and $33/2^+$; band member.
2954 I 7/2 G 2958 I 7/2 G 2958 I G 2970 I 18 37/2* C 2971 I 1/2,3/2,5/2 E I*: γ to $33/2*$; band member. 2976 I 0 F*: γ to $33/2*$; band member. 2976 I 0 F*: γ to $31/2*$; band member. 2986 I C G 3002 I 5/2.7/2 G 3034 I G G 3035 I G G 3037 I G G 3037 I G G 3057 I 5/2.7/2 G 3105.0 (1/2*.3/2.5/2*) E J*: γ' s to $5/2*$ and $(1/2)^*$. 3105.1 (1/2*.3/2.5/2*) E J*: γ' s to $(1/2)^*$. 3125 I G G G 3137 I G G G 3142 I G G	2942 1		G	
2988 I 7/2 G 2963 I G 2964 I G 2972 97 ⁶ I 3/2 ⁺ C 2977 97 1/2,3/2,5/2 E 2978 97 1/2,3/2,5/2 E 2978 97 1/2,3/2,5/2 E 2978 97 1/2,3/2,5/2 E 2978 97 1/2,3/2,5/2 C 3026 1 5/2,7/2 G 3027 1 G 3038 0 ⁽⁶⁾ 2.2 3051 1 G 3052 1 G 3057 1 S/2,7/2 G J [#] : y's to 5/2 ⁺ and (1/2) ⁻ . 3105 0 (1/2 ⁻ ,3/2,5/2 ⁻) E 3119 3 (1/2 ⁻ ,3/2,5/2 ⁻) E 3121 7 G G 3122 1 G G 3123 7 G G 3124 1 <	2954 1	7/2	G	
2963 / G 2976 / ////////////////////////////////////	2958 1	7/2	G	
2988 I G J^{2} ; y to $3/2^{+}$; band member. 2970; J I/2,3/2,5/2 E J^{2} ; y to $3/2^{+}$; band member. 2988 I G J^{2}; y to $3/2^{+}$; band member. 2986 E G 3020 I 5/2,7/2 G 3031 I G G 3034 I G G 3035 I G G 3051 I S/2,7/2 G 3052 I G G 3053 I G G 3052 I G J^{2}; y's to $5/2^{+}$ and $(1/2)^{-}$. 3053 I G G 3054 I E J^{2}; y's to $5/2^{+}$ and $(1/2)^{-}$. 3057 I 5/2,7/2 G 3057 I 5/2,7/2 G 3057 I 5/2,7/2 G 3105 I (1/2 ⁻ , 3/2,5/2 ⁻) E J^{2}; y's to $5/2^{-}$ and $(1/2)^{-}$. 3107 I G G G 3115.1 G J G 3125 I G J G 3128 I G G </td <td>2963 1</td> <td></td> <td>G</td> <td></td>	2963 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2968 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29/2.9/ 18	37/2+	C	J^{n} : γ to $33/2^{+}$; band member.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2976 7	1/2 2/2 5/2	G	$I_{n-1}^{(1)} = (1/2)^{-1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2979.7	1/2,3/2,3/2	E	$J^{*}: \gamma \ 10 \ (1/2)$.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2988 1		E C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3020 1	5/2 7/2	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3026 1	5/2,7/2	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3028 80@ 22	35/2-	C	I^{π_1} or to $21/2^{-1}$ hand member
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3028.80 22	55/2	C C	\mathbf{J} . \mathbf{y} to $\mathbf{51/2}$, band member.
3048.1 E 3057.1 G 3067.1 $(1/2^+, 3/2, 5/2^-)$ E 3067.1 $(1/2^+, 3/2, 5/2^-)$ E 3087.7 $(3/2, 7/2)$ G 3099.7 G 3099.7 G 3099.7 G 3105.0 $(1/2^-, 3/2, 5/2^-)$ E 3119.3 $(1/2^-, 3/2, 5/2^-)$ E 3117.1 G 3182.8 $7/2$ G 3182.8 $7/2$ G 3182.8 $7/2$ G 3182.8 $7/2$ G 320.9 $(3/2,5/2,7/2)$ E J ² : γ' s to $(5/2)$ and $(5/2)^-$. 3282.1 G G 3282.4 G G 3282.7 G G 3282.1 G G 3314.4.8 E J ² : γ' s to $(1/2)^-$ and $(5/2)^-$. 3351.3 $(3/2,5/2^-)$	3037 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3048.1		E	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3052 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3057 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3067.1	$(1/2^+, 3/2, 5/2^-)$	EG	J^{π} : γ' s to $5/2^+$ and $(1/2)^-$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3075 1	5/2,7/2	G	
	3087 1		G	
3105.0 (1/2 ⁻ ,3/2,5/2 ⁻) E J ⁴ : γ's to 5/2 ⁻ and (1/2) ⁻ . 3107 G J ^π : γ's to (1/2) ⁻ and (5/2) ⁻ . 3125 G J ^π : γ's to (1/2) ⁻ and (5/2) ⁻ . 3125 G J ^π : γ's to (1/2) ⁻ and (5/2) ⁻ . 3125 G J ^π : γ's to (5/2) and (5/2) ⁻ . 3124 G G 3142 G G 3182.1 7/2 G 3182.8 (3/2,5/2,7/2) E J ^π : γ's to (5/2) and (5/2 ⁺). 3186.1 G G 320.9 (3/2,5/2,7/2) E J ^π : γ's to 5/2 ⁺ and (5/2) ⁻ . 3264.1 G G G 328.6 5/2,7/2 G G 3314.8 E G G 3314.8 E J ^π : γ's to (1/2) ⁻ and (5/2) ⁻ . 3342.49 [#] 24 37/2 ⁻ C J ^π : γ's to 5/2 ⁺ and 5/2 ⁻ . 3351.3 7 5/2,7/2 G 3351.5 (3/2,5/2 ⁻) E J ^π : γ's to 5/2 ⁺ and 5/2 ⁻ . 3362.3 5/2 G G 3390 G	3099 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3105.0	$(1/2^-, 3/2, 5/2^-)$	E	$J^{n}: \gamma'$ s to $5/2^{-}$ and $(1/2)^{-}$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3107 1	(1/2 - 2/2 - 5/2 -)	G	$I_{a}^{T} = \frac{1}{2} + $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3119.5	(1/2, 3/2, 3/2)	E C	$J : \gamma \ S \ to \ (1/2)$ and $(3/2)$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3125 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3142 1		G	
3182 I $7/2$ G 3182.8 $(3/2,5/2,7/2)$ E J^{π} : γ' s to $(5/2)$ and $(5/2^+)$. 3186 I G 3206 I G 3215.0 E 3230.9 $(3/2,5/2,7/2)$ E 3282 I G 3282 I G 3314.8 E 3335.2 $(1/2^-,3/2,5/2^-)$ E 3342.49 [#] 24 $37/2^-$ C 3351.5 $(3/2,5/2^-)$ E 3351.5 $(3/2,5/2^-)$ E 3362.37 $5/2$ G $3390 I$ G ≈ 3400 $(3/2^+,5/2^+)$ F $3404 I$ G $3416 I$ G	3173 1		Ğ	
3182.8 $(3/2,5/2,7/2)$ E J^{π} : γ' s to $(5/2)$ and $(5/2^+)$. 3186 I G 3206 I G 3215.0 E 3230.9 $(3/2,5/2,7/2)$ E 3286 I $5/2,7/2$ G 3301 I G 3335.2 $(1/2^-, 3/2, 5/2^-)$ E $3342.49^{\#}$ 24 $37/2^-$ C 3351.5 $(3/2, 5/2^-)$ E J^{π} : γ' s to $5/2^+$ and $(5/2)^-$. 3351.3 7 $5/2, 7/2$ G 3361.3 7 $5/2, 7/2$ G 3390 G J^{π} : γ' s to $5/2^+$ and $5/2^-$. Possible γ to $(1/2)^-$. 3400 $(3/2^+, 5/2^+)$ F J^{π} : $L(d,p)=(2)$. 3404 G G G 3416 G G G	3182 1	7/2	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3182.8	(3/2,5/2,7/2)	E	J^{π} : γ' s to (5/2) and (5/2 ⁺).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3186 1		G	
3215.0 E J ^π : γ's to 5/2 ⁺ and (5/2) ⁻ . 3264 I G 3282 I G 3286 I 5/2,7/2 3314.8 E 3352.2 (1/2 ⁻ ,3/2,5/2 ⁻) 3342.49 [#] 24 37/2 ⁻ 3351.3 7 3351.5 (3/2,5/2 ⁻) G J ^π : γ's to 5/2 ⁺ and 5/2 ⁻ . 3351.5 (3/2,5/2 ⁻) G J ^π : γ's to 5/2 ⁺ and 5/2 ⁻ . 3351.5 (3/2,5/2 ⁻) G J ^π : γ's to 5/2 ⁺ and 5/2 ⁻ . 3362.3 7 5/2 G G ≈3400 (3/2 ⁺ ,5/2 ⁺) G G 3416 I G	3206 1		G	
3230.9 ($3/2, 5/2, 7/2$) E J^{n} : γ 's to $5/2^{+}$ and $(5/2)^{-}$. 3264 <i>I</i> G 3282 <i>I</i> G 3286 <i>I</i> $5/2, 7/2$ G 3301 <i>I</i> G 3314.8 E 3335.2 ($1/2^{-}, 3/2, 5/2^{-}$) E J^{π} : γ 's to $(1/2)^{-}$ and $(5/2)^{-}$. 3342.49 [#] 24 $37/2^{-}$ C J^{π} : γ to $33/2^{-}$; band member. 3351.3 7 $5/2, 7/2$ G 3351.5 ($3/2, 5/2^{-}$) E J^{π} : γ 's to $5/2^{+}$ and $5/2^{-}$. Possible γ to $(1/2)^{-}$. 3362.3 7 $5/2$ G 3390 <i>I</i> G ≈ 3400 ($3/2^{+}, 5/2^{+}$) F J^{π} : $L(d,p)=(2)$.	3215.0		E	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3230.9	(3/2, 5/2, 7/2)	E	J^{π} : γ 's to $5/2^+$ and $(5/2)^-$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3264 1		G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3282 1	בוד בו	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3200 1	5/2,7/2	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3314.8		ل ج	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3335.2	$(1/2^{-}.3/2.5/2^{-})$	Ē	J^{π} : γ' s to $(1/2)^{-}$ and $(5/2)^{-}$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3342 49# 24	37/2-		I^{π} , γ to $33/2^-$; hand member
3351.5 $(3/2,5/2^-)$ E J^{π} : γ' s to $5/2^+$ and $5/2^-$. Possible γ to $(1/2)^-$. 3362.3 7 $5/2$ G 3390 I G G ≈ 3400 $(3/2^+, 5/2^+)$ F J^{π} : $L(d,p)=(2)$. $3404 I$ G G $3416 I$ G G	3351.3 7	5/2.7/2	G	5 . 7 (5.572), baile memoer.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3351.5	$(3/2, 5/2^{-})$	E	J^{π} : γ' s to $5/2^+$ and $5/2^-$. Possible γ to $(1/2)^-$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3362.3 7	5/2	G	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3390 1		G	
3404 1 G 3416 1 G	≈3400	$(3/2^+, 5/2^+)$	F	J^{π} : L(d,p)=(2).
3416 <i>I</i> G	3404 1		G	
	3416 1		G	

¹⁶³Dy Levels (continued)

E(level)	$J^{\pi \ddagger}$	XREF	Comments
3423 <i>1</i> 3434 <i>1</i>		G G	
3459 <i>1</i> 3471 <i>1</i>	7/2	G G	
3484 <i>1</i> 3495 <i>1</i>	7/2	G G	
3497.0 3500 <i>I</i>		E G	
3508 <i>I</i> 3520 <i>I</i>		G	
3537 1	217	G	
3579 1	7/2	G	
3601.37 ^c 21	41/2+	C	J^{π} : γ to $37/2^+$; band member.
3610.39 ^{<i>a</i>} 18 3612.9	39/2 ⁺ (1/2 ⁻ ,3/2,5/2 ⁻)	C E	J^{π} : γ to 35/2 ⁺ ; band member. J^{π} : γ 's to 5/2 ⁻ and (1/2) ⁻ .
3614 <i>I</i> 3638 <i>I</i>	5/2,7/2 7/2	G G	
3649 <i>1</i> 3673 <i>1</i>	5/2,7/2	G G	
3678 <i>1</i> 3682 <i>1</i>		G G	
3685 <i>1</i> 3685 91 [@] 24	30/2-	G	I^{π} , γ to $35/2^{-}$, hand member
3690 <i>1</i> ~37002	5/2,7/2	G	5 . y (6 55/2 , band member.
3732 1		Ğ	17 / / 5/0- 1.5/0+
3738.0 3748 1	(3/2,3/2,7/2)	G	J^{*} : γ s to $5/2^{*}$ and $5/2^{*}$.
3753 1 3771 1	7/2	G	
3791 <i>I</i> 3846 <i>I</i>	7/2	G G	
3861 <i>1</i> 3866 <i>1</i>		G G	
3881 <i>1</i> 3884.6	5/2,7/2 (1/2 ⁻ ,3/2,5/2 ⁻)	G E	J^{π} : γ to $(5/2)^-$. Possible γ to $(1/2)^-$.
3895 <i>1</i> 3924 <i>1</i>	7/2	G G	
3929 <i>1</i> 3936 <i>1</i>		G G	
3943 <i>1</i> 3950 <i>1</i>		G G	
3962 <i>I</i> 3991 <i>I</i>	7/2 7/2	G	
$4020.3^{\#} 3$	$41/2^{-}$	C	J^{π} : γ to $37/2^-$; band member.
4279.58 ⁻²⁵ 4331.59 ^d 21	43/2 43/2 ⁺	c	J^{π} : γ to $39/2^+$; band member.
$4383.3^{\textcircled{0}}{3}$	$43/2^{-}$	C C	J^{π} : γ to $39/2^-$; band member.
4740.4	+J/2	E	J . γ to $41/2$, band member.
4927.9 5003.38 ^c 25	(3/2 ,5/2,7/2) 49/2 ⁺	C E	J^{π} : γ to $45/2^+$; band member.

¹⁶³Dy Levels (continued)

 † From B(E2) in Coul. ex. and adopted branchings, unless otherwise stated.

- [‡] Values from 163 Dy(γ, γ') are those reported by 2003No02. See the (γ, γ') data set for a discussion of the bases for these values.
- [#] Band(A): 5/2[523] g.s. band; $\alpha = +1/2$. A=10.54, B=-0.0037, from the energies of the 5/2⁻, 7/2⁻ and 9/2⁻ band members.
- ^{(@} Band(a): 5/2[523] g.s. band; $\alpha = -1/2$. See the comment on the $\alpha = +1/2$ branch.
- [&] Band(B): Mixed $1/2[521]+(5/2[523]-Q_{22})$ band. A=10.41, B=-0.023, a=+0.245, from the energies of the $1/2^-$ through $7/2^-$ band members. The admixture of the K-2 γ vibration in the band is expected from theoretical considerations as well as the value of the decoupling parameter, which is considerably smaller than what is observed in 1/2[521] bands in neighboring nuclides where the orbital occurs as a relatively pure one-quasiparticle excitation.
- ^{*a*} Band(C): 3/2[521] band. A=10.46, B=+0.032, from the energies of the $3/2^-$, $5/2^-$ and $7/2^-$ band members. The large positive value of B suggests that the band spacings are strongly affected by (Coriolis) mixing with other bands, most probably 1/2[521] and 1/2[530].
- ^b Band(D): Mixed (5/2[523]- Q_{22})+1/2[521] band. A=10.84, B=-0.0068, a=-0.155, from the energies of the 1/2⁻ through 7/2⁻ band members. The presence of 1/2[521] is established by (d,p) and (d,t) cross-section data, as well as the non-zero value of the decoupling parameter.
- ^c Band(E): 5/2[642] band, $\alpha = +1/2$. A=4.43, B=+0.044, from the energies of the $5/2^+$, $7/2^+$ and $9/2^+$ band members. The small value of A and the large value of B indicate that the band is strongly mixed with other bands, most probably other Nilsson orbitals originating from the $i_{13/2}$ spherical shell-model state.
- ^d Band(e): 5/2[642] band, $\alpha = -1/2$. See the comment on the $\alpha = +1/2$ branch.
- ^{*e*} Band(F): $K^{\pi}=1/2^+$, $5/2[642]-Q_{22}$ band. A=6.05, B=+0.0244, a=+0.556, from the energies of the $1/2^+$ through $7/2^+$ band members. The large value of the decoupling parameter suggests that 1/2[660] may be a significant component in the makeup of this band.
- f Band(G): 3/2[402] band. A=11.27, from the energies of the 3/2⁺ and 5/2⁺ band members. Relative population in (d,p) and (d,t) indicates that the orbital is a hole state; and strong population in these reactions establishes the assigned configuration.
- ^{*g*} Band(H): 1/2[400] band. A=8.86, a=-0.026, from the energies of the $1/2^+$, $3/2^+$ and $5/2^+$ band members. Relative population in (d,p) and (d,t) indicates that this is a hole state. Strength of population of the $1/2^+$ state in these reactions establishes the configuration assignment.
- ^h Band(I): 5/2[512] band. A=12.97, B=-0.011, from the energies of the $5/2^-$, $7/2^-$ and $9/2^-$ band members.
- ^{*i*} Band(J): 1/2[530] band. A=7.53, a=-1.30, from the energies of the $1/2^-$, $3/2^-$ and $5/2^-$ band members.
- ^{*j*} Band(K): 2⁻ octupole vibration built on the g.s. A=9.89, a=+0.713, from the energies of the $1/2^+$, $3/2^+$ and $5/2^+$ band members. The large value of the decoupling parameter suggests that 1/2[660] may be a significant component in the configuration of this band. For a discussion of the makeup of the $K^{\pi}=2^-$ octupole phonon and related items, see the ¹⁶³Tb β Decay Data Set.
- ^k Band(L): 1/2[510] band. A=12.13, a=-0.025, from the energies of the $1/2^-$, $3/2^-$ and $5/2^-$ band members. The K-2 γ vibration built on 5/2[512] may be a component in the makeup of this band.
- ¹ Band(M): 3/2[651] band. A=11.02, from the energies of the $3/2^+$ and $5/2^+$ band members.
- ^{*m*} Band(N): 11/2[505] bandhead.

From ENSDF

γ ⁽¹⁶³Dy)

Gammas in (γ, γ') that can Be interpreted as arising from both elastic and inelastic scattering are shown as multiply placed in that Data Set. This designation is maintained here, even though some of the levels associated with the other placements are not listed here.

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
73.4448	7/2-	73.4448 4	100	0.0	5/2-	M1+E2	1.98 10	8.25 13	B(M1)(W.u.)=0.00081 8; B(E2)(W.u.)=286 12
167.3451	9/2-	93.902 <i>3</i>	17.1 7	73.4448	7/2-	M1+E2	-1.9 3	3.31 6	B(M1)(W.u.)=0.0013 5; B(E2)(W.u.)= $2.7 \times 10^2 6$ δ : from ce data in (n, γ); sign from $\gamma(\theta)$ in Coul. ex.
		167.345 4	100.0 5	0.0	$5/2^{-}$	E2		0.432	B(E2)(W.u.)=111 20
250.8896	5/2+	177.4481 <i>21</i>	10.9 <i>3</i>	73.4448	7/2-	E1		0.0666	
		250.8865 22	100.0 19	0.0	$5/2^{-}$	E1		0.0270	
281.5716	11/2-	114.20 6	7.0 8	167.3451	9/2-	M1+E2	-1.7 3	1.657	E_{γ} : weighted average of $E\gamma$ from $(n,n'\gamma)$ and Coul. ex. This γ is not reported in (n,γ) .
									Scheme. $\gamma(\theta)$ in Cour. ex. $\Delta \pi$ =no from level scheme.
									I_{γ} : in (⁷ Li,p3n γ), 2003Ju02 report
									$I\gamma(114\gamma)/I\gamma(208\gamma)=0.181$ 19.
		208.1256 24	100 3	73.4448	7/2-	E2		0.207	
285.5954	7/2+	118.2518 19	12.1 5	167.3451	9/2-	51		0.0415	
		212.1493 13	98.3 23	/3.4448	1/2 5/2-	EI E1		0.0417	
	o /e+	285.5951 18	100 2	0.0	5/2	EI		0.0195	
336.5439	9/21	50.942 ^{cc} 4	2.4 11	285.5954	7/21				
		169.203 ^{a} 4	24.3 7	167.3451	9/2-	E1		0.0756	
251 1402	(1/2) =	263.109 6	100 5	73.4448	7/2-	E1 E2		0.0239	$D(E_{2})(W_{12}) = 7.4.15$
351.1493	(1/2)	351.144 3	0.59.9	0.0	$\frac{3}{2}$	E2		0.0403	B(E2)(W.U.) = 7.4 I3
389.7532	3/2	38.6037 12	0.58 8	351.1493	(1/2) $7/2^{-}$	F2		0.0540	I_{γ} : 0.12 0 in ¹³⁵ 1b ε . B(E2)(W ₁₁)=7.3
		389 749 3	100 3	0.0	5/2-	E2 F2 M1		0.0349	B(E2)(Wu) = 3.4.12 $B(M1)(Wu) = 0.0011.4$
412.382	$11/2^{+}$	131.01.75	43	281.5716	$\frac{3}{2}$ $\frac{11}{2}$	122,1111		0.015 11	$E_{\alpha'}$ from a doublet in $(n,n'\gamma)$.
1121002		101101 10		20110/10					I_{α} : in $(^{7}\text{Li}, p_{3}n_{\gamma})$, 2003Iu02 report
									$I_{\gamma}(131\gamma)/I_{\gamma}(245\gamma)=0.25$ 3.
		245.036 4	100 5	167.3451	9/2-				
415.34	$13/2^{-}$	133.68 [#] 10	4.91 [#] 13	281.5716	$11/2^{-}$	(M1+E2) [@]	-2.9 [@] 3	0.956	$B(M1)(W.u.)=(0.0009 \ 4); B(E2)(W.u.)=(2.0\times10^2 \ 8)$
									I_{γ} : in (⁷ Li,p3nγ), 2003Ju02 report Iγ(133γ)/Iγ(247γ)=0.108 <i>14</i> .
		247.82 [#] 10	100 [#] 4	167.3451	9/2-	(E2)		0.1173	$B(E2)(W.u.)=2.1\times10^2 9$
421.8439	$(3/2)^{-}$	70.6950 9	0.64 4	351.1493	$(1/2)^{-}$	E2		10.32	$B(E2)(W.u.)=1.9\times10^2$ 7
		170.947 ^{&} 15	0.065 22	250.8896	$5/2^{+}$				
		421.848 <i>3</i>	100 2	0.0	5/2-	M1		0.0460	B(M1)(W.u.)=0.0015 5

					Ac	lopted Levels,	Gammas (continu	ied)	
						γ (¹⁶³ Dy) (continued)		
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α e	Comments
427.6796	(5/2)-	37.8 ^h 5	0.10 5	389.7532	3/2-	[M1]		6.5 3	B(M1)(W.u.)=0.0014 <i>10</i> γ from ¹⁶³ Tb ε decay only.
		76.5268 15	1.40 18	351.1493	$(1/2)^{-}$	E2		7.54	$B(E2)(W.u.)=1.9\times10^2 \ 10$
		142.0861 ^{&} 20	0.41 3	285.5954	$7/2^{+}$	E1		0.1206	$B(E1)(W.u.)=1.1\times10^{-6} 6$
		176.790 ^{&} 9 260.3291 ^c 17	0.23 <i>3</i> 17.0 9	250.8896 167.3451	5/2+ 9/2 ⁻	E2		0.1003	Mult.: (M1) from ce data in (n,γ) conflicts with ΔJ^{π} . B(E2)(W.u.)=5.1 24 Level-energy difference=260 3344
		354.227 3	100 3	73.4448	$7/2^{-}$	E2		0.0393	B(E2)(W.u.)=6.3
		427.692 ^{<i>c</i>} 3	61 <i>3</i>	0.0	5/2-	E2,M1		0.034 11	Level-energy difference=427.679.
475.3880	(5/2)-	47.7071 8 124.237 <i>3</i> 224.516 ^{<i>c</i>} <i>5</i>	2.26 21 0.71 7 1.87 9	427.6796 351.1493 250.8896	$(5/2)^{-}$ $(1/2)^{-}$ $5/2^{+}$	E2		1.227	B(E2)(W.u.)=12 + 13 - 12 Level-energy difference=224.499.
		401.952 4	94.0 22	73.4448	7/2-	M1		0.0522	B(M1)(W.u.)=0.0015 15
407.00	12/2+	475.389 4	100 4	0.0	5/2-	M1		0.0338	B(M1)(W.u.)=0.0010 10
497.02	13/2+	84.5 <i>1</i> 160.4 <i>1</i> 215.4 <i>1</i>	54.8 <i>5</i> 100 <i>7</i>	412.382 336.5439 281.5716	$11/2^+$ 9/2 ⁺ $11/2^-$				
514.5519	$7/2^{-}$	39.163 ^{&} 4	2.7 13	475.3880	$(5/2)^{-}$				
		86.875 ^{&} 3 124.7985 <i>12</i> 178.009 <i>10</i>	3.1 <i>4</i> 17.5 <i>8</i> 0.84 <i>10</i>	427.6796 389.7532 336.5439	$(5/2)^{-}$ $3/2^{-}$ $9/2^{+}$	M1,E2 E2		4.1 <i>6</i> 1.208	
		228.960 <i>4</i> 232.980 <i>4</i> 347.216 <i>5</i> 441.123 <i>6</i> 514.540 <i>4</i>	1.46 <i>15</i> 5.54 <i>6</i> 78 <i>3</i> 100 <i>3</i> 22.2 <i>4</i>	285.5954 281.5716 167.3451 73.4448 0.0	7/2+ 11/2 ⁻ 9/2 ⁻ 7/2 ⁻ 5/2 ⁻	E2 M1,E2 M1,E2 M1		0.1431 0.059 <i>18</i> 0.031 <i>10</i> 0.0276	
553.0196	7/2-	77.6298 21 131.178 4 163.269 17	8.8 <i>10</i> 3.7 <i>3</i> 1.58 <i>21</i>	475.3880 421.8439 389.7532	$(5/2)^{-}$ $(3/2)^{-}$ $3/2^{-}$	M1(+E2) E2 E2	0.23 +12-23	5.07 <i>15</i> 1.011 0.470	
		267.421 ^{&} 18 271.0 ^a 3 385.680 7 479.5749 23 553.024 5	2.6 4 1.3 8 57 2 100 3 25.0 3	285.5954 281.5716 167.3451 73.4448 0.0	7/2 ⁺ 11/2 ⁻ 9/2 ⁻ 7/2 ⁻ 5/2 ⁻	M1,E2 M1 M1		0.044 <i>14</i> 0.0330 0.0230	
568.79	15/2-	153.52 10	2.55 9	415.34	13/2-	(M1+E2) [@]	-1.65 [@] 25	0.616 <i>13</i>	B(M1)(W.u.)=(0.0022 8); B(E2)(W.u.)=($1.2 \times 10^2 4$) I _{\gamma} : in (⁷ Li,p2n _γ), 2003Ju02 report I _γ (153 _γ)/I _γ (287 _γ)=0.047 10
587.9290	(9/2)-	287.18 <i>10</i> 160.244 <i>3</i>	100 <i>3</i> 100 <i>2</i>	281.5716 427.6796	11/2 ⁻ (5/2) ⁻	(E2)		0.0738	$B(E2)(W.u.)=2.9\times10^2 7$

12

¹⁶³₆₆Dy₉₇-12

From ENSDF

 $^{163}_{66} Dy_{97}$ -12

L.

γ ⁽¹⁶³Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments
587.9290	(9/2)-	306.316 14	55 7	281.5716	11/2-	M1	0.1068	
		420.598 5	60 <i>3</i>	167.3451	9/2-			
624.22	$15/2^{+}$	127.0 1	37 3	497.02	13/2+			
		209.1 <i>I</i>	52 4	415.34	$13/2^{-1}$			
(1(240	0/2-	211.8 1	100 /	412.382	$\frac{11}{2}$			I I I'M 170.0(1
646.249	9/2	1/0.901 10	23 3	4/5.3880 ((5/2)			Level-energy difference=1/0.861.
		364.71 8	43 11	281.5716	$11/2^{-}$			
		4/8.923 9	12.9	167.3451	9/2			L 1 1'0 570.902
711 4721	5/2-	5/2./80° 5	100 5	/3.4448	1/2 5/2+			Level-energy difference=572.803.
/11.4/21	J/Z	400.378 3	4.33 10	230.0090 .	2ן בוד	M1	0.01602	
		711 480 5	100 5	0.0 4	7/2 5/2-	M1	0.01002	
718.23	$(11/2^{-})$	203.72.5	100 11	514,5519	5/2 7/2	1011	0.01221	
,10120	(11/2)	302.67 6	44 8	415.34	$13/2^{-}$			
		381.99 16	11.8	336.5439	9/2 ⁺			
		436.78 6	70 7	281.5716	$11/2^{-}$			
734.91	$17/2^{+}$	110.6 1	69 <i>6</i>	624.22	$15/2^{+}$			
		165.9 <i>1</i>		568.79	$15/2^{-}$			
		237.7 1	100 7	497.02	13/2+			
/3/.6584	$1/2^{+}$	347.905 5	100 3	389.7532	$3/2^{-}$	El	0.01195	
		380.308 3	61.5 <i>11</i>	351.1493 ((1/2)	EI	0.00929	
730 07	17/2-	480.7084 20	10.77 19	230.8890	5/2 15/2-	[M1 E2]	0.46.7	
139.91	17/2	324.68 10	1.10 25	415.34	$13/2^{-1}$	E2	0.0508	$B(E2)(W.u.)=2.5\times10^2 4$
766 2071	$(3/2)^+$	290 795 & 20	0.66.6	475 3880	$(5/2)^{-}$			
700.2071	(3/2)	338.523.3	95 4	427.6796	$(5/2)^{-}$	E1	0.01277	
		344.392 17	1.39 23	421.8439	$(3/2)^{-}$			L ₂ : 8.7 22 in 163 Tb ε .
		376.463 13	14.9 10	389.7532	3/2-	E1	0.00989	
		415.060 3	100 3	351.1493 ($(1/2)^{-}$	E1	0.00786	
		480.596 ^{&c} 4	2.9 1	285.5954	$7/2^{+}$			Level-energy difference=480.611.
		515.349 13	8.2 6	250.8896	5/2+	E2	0.01401	
781.1002	$5/2^{+}$	228.074 ^{<i>f</i> &} 14	1.09 ^{<i>f</i>} 9	553.0196	7/2-			
	- /	266.548 3	53.5 13	514.5519	7/2-	E1	0.0232	
		305.710 ^{&} 10	2.3 3	475.3880 ($(5/2)^{-}$			
		353.434 22	5.2 8	427.6796	$(5/2)^{-}$			
		359.255 <mark>&</mark> 12	4.5 5	421.8439	$(3/2)^{-}$			
		391.345 6	100 2	389.7532	3/2-	E1	0.00902	
		495.510 ^{&} 6	20.1 3	285.5954	7/2+	M1,E2	0.023 8	
		530.2067 17	6.91 <i>13</i>	250.8896	5/2+	M1,E2	0.019 7	
793.3942	$(1/2)^{-}$	371.523 9	100.0 17	421.8439	$(3/2)^{-}$	M1	0.0641	

13

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{e}	Comments
793.3942	$(1/2)^{-}$	403.653 8	5.2 4	389.7532 3/2-	M1,E2	0.039 13	
		442.249 <i>3</i>	30.6 14	351.1493 (1/2)	M1	0.0407	
		793.387 8	43 <i>3</i>	$0.0 5/2^{-}$	E2	0.00500	
801.311	$(7/2)^{-}$	248.42 ^{f &} 6	<13 ^f	553.0196 7/2-			
		633.94 ^a 4		167.3451 9/2-			
		727.864 8	100 8	73.4448 7/2-	M1(+E2)	0.009 3	
		801.37 4	86 9	0.0 5/2-			
820.7954	$(3/2)^{-}$	345.405 4	86.6 25	475.3880 (5/2)	M1	0.0776	
		393.118 3	89.2 19	427.6796 (5/2)	MI	0.0553	
		398.950 4	100 3	421.8439 (3/2)	MI M1	0.0532	
		431.045 0	33.7 19	389.1332 3/2 72 1118 72-		0.0435	
		820 703 6	61 1 25	13.4440 1/2 0.0 $5/2^{-1}$	E2 (E2)	0.00371	
851 124	$(7/2^+)$	263 190 5	36.3	$587,9290,(9/2)^{-1}$. (L2)	0.00404	
0011121	()/=)	336.57 ^{<i>a</i>} 21	7.2.22	514.5519 7/2-			
		423.451 4	100 3	427.6796 (5/2)			Mult.: (M1,E2) from ce data in (n,γ) conflicts with ΔJ^{π} .
859.287	$(3/2)^+$	383.896 7	8.61 12	475.3880 (5/2)-			
		431.537 ^{&c} 22	6.0 14	427.6796 (5/2)-			Level-energy difference=431.606.
		437.450 4	17.9 11	421.8439 (3/2)-	· (E1)	0.00695	
		508.132 ^{&} 5	4.4 6	351.1493 (1/2)-	-		
		573.5 ^b 2	4.3 12	285.5954 7/2+			
		608.401 8	100 2	250.8896 5/2+	M1	0.0181	
883.0136	$(5/2)^{-}$	330.012 7	40.0 11	553.0196 7/2-	M1	0.0876	
		368.42 ^{&} 3	9.5 15	514.5519 7/2-	(M1)	0.0655	
		407.625 4	100.0 23	475.3880 (5/2)-	• M1	0.0503	
		455.341 ^{&} 6	8.1 5	427.6796 (5/2)	M1	0.0378	
		461.169 ^{&} 5	22.0 9	421.8439 (3/2)-	M1	0.0365	
		493.257 & 4	9.3 <i>3</i>	389.7532 3/2-	(M1,E2)	0.023 8	
		597.49 ^{&} 6	<2.2	285.5954 7/2+			
		809.491 ^{<i>f</i>} 25	68.5 ^f 18	73.4448 7/2-	M1	0.00888	Level-energy difference=809.57.
		883.00 ^{&} 3	26.4 11	0.0 5/2-	(M1,E2)	0.0056 17	
884.2943	$1/2^{+}$	118.062 <mark>&</mark> 9	2.9 4	766.2071 (3/2)+			
00112310	-/-	146.6342 25	1.06 10	737.6584 1/2+	M1	0.806	Mult.: M1(+E2) from ce data in (n,γ) , but E2 is not allowed by 1/2 to 1/2 transition.
		462.453 5	10.8 4	421.8439 (3/2)			
		494.546 5	100.0 17	389.7532 3/2-	E1	0.00526	
		533.142 <i>3</i>	36.2 4	351.1493 (1/2)	E1	0.00446	
		633.4 ^b 2	1.3 3	250.8896 5/2+			

γ ⁽¹⁶³Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^e	Comments
915.6577	5/2+	177.964 ^{&} 16 362.650 20 440.225 21 493.823 ^{&} 7	2.4 7 8.2 11 7.8 3 9.2 4	737.6584 553.0196 475.3880 421.8439	$1/2^+$ $7/2^-$ $(5/2)^-$ $(3/2)^-$				
924.22	19/2+	579.108 <i>13</i> 630.049 5 664.767 3 184.4 1	3.9 <i>3</i> 100 <i>3</i> 33.8 9	336.5439 285.5954 250.8896 739.97 734.01	9/2 ⁺ 7/2 ⁺ 5/2 ⁺ 17/2 ⁻	M1 (M1,E2)		0.01654 0.011 <i>4</i>	
930.93	19/2-	300.0 <i>I</i> 190.7 <i>2</i> 362.28 <i>10</i>	100 6 0.9 3 100 3	624.22 739.97 568.79	$17/2^{+}$ $15/2^{+}$ $17/2^{-}$ $15/2^{-}$	(M1+E2) [@] (E2)	-1.7 [@] 5	0.305 <i>18</i> 0.0368	B(M1)(W.u.)=(0.0011 7); B(E2)(W.u.)=(44 17) B(E2)(W.u.)= $2.6 \times 10^2 4$ Mult : from $\alpha(\theta)$ in Coul. ex
935.134	(3/2)+	154.019 ^b 6 459.737 ^h 5	3.8 <i>10</i> 16.3 <i>5</i>	781.1002 475.3880	5/2 ⁺ (5/2) ⁻				Mult.: M1,E2 from ce data in (n,γ) is inconsistent with $\Delta\pi$.
		$507.454\ 7$ $545.3772^{h}\ 19$ $583.987\ 9$	56.7 6 21.1 6 100.0 24	427.6796 389.7532 351.1493	(5/2) ⁻ 3/2 ⁻ (1/2) ⁻	E1 (E1)		0.00497 0.00366	Mult.: E2 from ce data in (n,γ) is inconsistent with $\Delta \pi$.
946.003	(7/2)-	649.6 ⁰ 2 684.257 7 125.217 ^{&} 13 234.42 ^{&} 6	1.6 7 5.16 24 18 6 8 4	285.5954 250.8896 820.7954 711.4721	$7/2^+$ $5/2^+$ $(3/2)^-$ $5/2^-$				
		299.73 ^{&} 3 358.05 3 392.979 6	28.2 <i>21</i> 75 8 90 8	646.249 587.9290 553.0196	9/2 ⁻ (9/2) ⁻ 7/2 ⁻	M1,E2		0.054 17	
949.3369	(5/2)+	470.614 5 609.462 5 872.54 5 396.310 5 434.790 6 527.490 4	49.2 22 100 <i>10</i> 92 <i>13</i> 27.8 <i>3</i> 101 <i>7</i> 9.2 23	475.3880 336.5439 73.4448 553.0196 514.5519 421.8439	$(5/2)^{-}$ $9/2^{+}$ $7/2^{-}$ $7/2^{-}$ $(3/2)^{-}$	MI		0.0347	
1047.48	21/2+	559.568 <i>15</i> 663.773 ^{<i>c</i>} 8 698.424 <i>15</i> 116.6 <i>1</i> 123.2 <i>1</i> 312.6 <i>1</i>	100 4 9.9 5 5.5 7 1.6 5 36 3 100 7	389.7532 285.5954 250.8896 930.93 924.22 734.91	3/2 ⁻ 7/2 ⁺ 5/2 ⁺ 19/2 ⁻ 19/2 ⁺ 17/2 ⁺	E1		0.00401	Level-energy difference=663.739.

15

γ ⁽¹⁶³Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	α e	Comments
1049.0730	3/2-	99.738 4	1.83 24	949.3369 (5/2)			
		164.774 3	1.98 24	884.2943 1/2+			
		166.063 4	2.26 8	883.0136 (5/2)			
		247.757	0.85 17 5 87 24	$793 3942 (1/2)^{-1}$	M1	0 1735	
		267.968.3	100.0 24	781.1002 5/2+	E1	0.0228	
		311.413 3	85 4	737.6584 1/2+	E1	0.01568	
		496.072 ^{<i>f</i>} 7	5.0 ^{<i>f</i>} 3	553.0196 7/2-			
		621.397 10	11.8 7	427.6796 (5/2)	M1	0.01712	
		627.242 7	16.1 4	421.8439 (3/2)	M1	0.01672	
		697.924 10	10.5 4	351.1493 (1/2)	(M1,E2)	0.010 3	
1055 7574	$(1/2)^{-}$	975.58 4	4.4 5	73.4448 7/2			
1033.7374	(1/2)	120.33 3	0.94 219 <i>14</i>	955.154 (5/2) 884 2943 1/2 ⁺			
		234.965 8	1.99 14	$820.7954 (3/2)^{-1}$	M1	0.218	
		262.366 8	4.0 3	793.3942 (1/2)	M1	0.1618	
		289.547 4	100.0 22	766.2071 (3/2)+	E1	0.0188	
		318.103 4	71.6 22	737.6584 1/2+	E1	0.01487	
		580.371 11	2.24 8	475.3880 (5/2)		0.01(00	
		633.926 10	25.4 15	421.8439 (3/2) $351.1403 (1/2)^{-1}$	MI M1	0.01628	Mult: $M1(+E2)$ from an data in (n a), but E2 is not allowed by $1/2$ to
		704.010 13	23.8 13	331.1493 (1/2)	1111	0.01231	1/2 transition.
1058.4671	$1/2^{+}$	237.708 ^{&} 14	8.9.5	820.7954 (3/2)-			
100011071	-/-	292.250 & 8	476	$766\ 2071\ (3/2)^{+1}$	M1 E2	0 10 3	
		320.822 11	5.3 6	737.6584 1/2+	M1	0.0944	
		636.616 4	20.7 6	421.8439 (3/2)-			
		668.7126 <i>19</i>	100 3	389.7532 3/2-			
		707.320 5	56.3 18	351.1493 (1/2)	E1	0.00245	
1094 240	$(2/2)^{+}$	807.66 6	127.5	250.8896 5/2'	(E1)	0.00206	
1084.349	$(3/2)^{+}$	662 507 8	27.09	427.0790 (3/2) $421.8439 (3/2)^{-1}$	(E1)	0.00286	
		694.591 10	15.5.9	$389.7532 3/2^{-1}$			
		733.195 6	33.7 12	351.1493 (1/2)			
		833.469 9	100 4	250.8896 5/2+	M1	0.00827	
1129.759	5/2+	246.75 <mark>f</mark> & 6	<2.7 f	883.0136 (5/2)-			
		363.47 ^{&} 13	4.2 18	766.2071 (3/2)+			
		615.213 ^{&} 9	42.1 18	514.5519 7/2-			
		707.92 <mark>f&</mark> 6	<23 ^f	421.8439 (3/2)			
		740.012 ^{&} 8	63.2 14	389.7532 3/2-			

16

Adopted Levels, Gammas (continued) γ ⁽¹⁶³Dy) (continued)</sup> E_{γ}^{\dagger} I_{γ}^{\dagger} Mult.[‡] $\alpha^{\boldsymbol{e}}$ \mathbf{E}_{f} E_i (level) J_i^{π} J_{f}^{π} Comments 844.148[&] 6 $5/2^{+}$ 1129.759 100 3 285.5954 7/2+ M1 0.00801 878.886[&] 18 62.1 14 250.8896 5/2+ 186.03[&] 7 $(5/2)^{-}$ 2.7 6 1135.494 949.3369 (5/2)+ Mult.: (M1,E2) from ce data in (n,γ) conflicts with ΔJ^{π} . 276.231 & 11 5.5 5 859.287 $(3/2)^+$ 284.372 3 72.4 19 0.0197 851.124 $(7/2^+)$ E1 314.698 12 5.3 8 820.7954 (3/2)-M1,E2 0.078 22 369.267 9 100 3 766.2071 (3/2)+ E1 0.01035 620.916[&] 18 5.7 4 514.5519 7/2-660.093[&] 7 19.6 10 475.3880 (5/2)-M1 0.01472 707.92^{*f* & 6} <13.0^f 427.6796 (5/2)-745.743 8 26.5 18 389.7532 3/2-(M1,E2) 0.008 3 1137.09 $21/2^{-}$ 206.4 3 930.93 $19/2^{-}$ $B(E2)(W.u.)=2.5\times10^2 5$ 397.09 10 100 3 739.97 $17/2^{-}$ (E2) 0.0283 326.72^{*f* & 4} <1.9^f $3/2^{+}$ 1147.454 820.7954 (3/2) 381.240 & 14 2.12 22 766.2071 (3/2)+ 409.802[&] 6 8.19 22 737.6584 1/2+ M10.0496 436.004^{&h} 22 3.2.2 711.4721 5/2-Mult.: M1 from ce data in (n,γ) is inconsistent with $\Delta \pi$. Thus, the placement is questionable (evaluators). 672.060[&] 4 37.0 14 475.3880 (5/2)-725.619 6 64.0 22 0.00233 421.8439 (3/2)-E1 757.665[&] 24 4.8 10 389.7532 3/2-796.28[&] 3 4.5 5 351.1493 (1/2)-861.73[&] 6 3.3 18 285.5954 7/2+ 896.568 12 100 4 250.8896 5/2+ 0.00692 M1 276.30^{f} 4 <2.2^f 884.2943 1/2+ 1160.548 $(1/2)^{-}$ 367.14 3 4.2 6 793.3942 (1/2)-0.0661 M1 449.079^f 8 6.05^f 18 711.4721 5/2-738.69 3 4.63 9 421.8439 (3/2) 770.771 10 100 5 389.7532 3/2-0.01002 M1 809.491^{*f*} 25 47.8^f 13 351.1493 (1/2)-M1 0.00888 Level-energy difference=809.40. 246.75^{*f*} 6 <0.8^f 1196.051 (3/2)-949.3369 (5/2)+ 313.056 14 4.0 6 883.0136 (5/2)-M1,E2 0.079 22 394.745 11 2.7 3 801.311 (7/2) 0.024 8 484.580 4 4.9 5 711.4721 5/2-(M1,E2) 768.363 5 90 3 427.6796 (5/2)-M1 0.01010

774.33^c 4

3.69

421.8439 (3/2)-

From ENSDF

Level-energy difference=774.33.

γ ⁽¹⁶³Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments
1196.051	(3/2)-	806.32 <i>5</i> 844 898 5	19.5 <i>15</i> 100 0 <i>15</i>	389.7532 351 1493	$3/2^{-}$ (1/2) ⁻	(M1,E2) M1	0.0069 21	
1202.529	(5/2)+	649.488 <i>18</i> 727.152 <i>11</i> 780.71 <i>4</i>	27 <i>3</i> 14.6 <i>10</i> 30 <i>4</i>	553.0196 475.3880 421.8439	$(1/2)^{-}$ $(5/2)^{-}$ $(3/2)^{-}$		0.00000	
		916.950 <i>11</i> 951.574 ^c <i>19</i> 1202.55 <i>10</i>	100.0 2 32.4 8 12.3 18	285.5954 250.8896 0.0	$7/2^+$ $5/2^+$ $5/2^-$	E2(+M1)	0.0051 16	Level-energy difference=951.636.
1253.160	$(3/2^+)$	472.111 <i>23</i> 863.43 <i>3</i> 902.016 <i>15</i>	1.4 <i>3</i> 23 <i>4</i> 20.3 <i>7</i>	781.1002 389.7532 351.1493	$5/2^+$ $3/2^-$ $(1/2)^-$			Mult.: M1,E2 from α (K)exp data in (n, γ) conflicts with
		967.54 10	3.1 6	285.5954	7/2+			ΔJ^{π} .
1258 214	5/2-	1002.261 <i>12</i> 1253.12 <i>7</i> 200.162 0	100 5 10.1 9 7 0 16	250.8896 0.0	$5/2^+$ $5/2^-$ $3/2^-$	M1,E2	0.0042 12	
1236.214	5/2	492.011 <i>13</i> 705.141 <i>23</i>	7.0 <i>6</i> 24.6 <i>12</i>	766.2071 553.0196	$(3/2)^+$ $7/2^-$			
		743.672 9 868.462 8	$100 \ 4$ 95 5	514.5519 389.7532 73.4448	$7/2^{-}$ $3/2^{-}$ $7/2^{-}$	M1 M1	0.01094 0.00748	
1277.173	$(5/2^+)$	$228.074^{f} 14$	$<15^{f}$	1049.0730 781.1002	$3/2^{-}$			
		$1026.33^{f} 4$ $1277.35^{c} 6$	$<190^{f}$ 100 23	250.8896 0.0	5/2 ⁺ 5/2 ⁺	(M1,E2)	0.0039 11	Level-energy difference=1277.167.
1310.74	23/2+	263.2 <i>1</i> 386.6 <i>1</i>		1047.48 924.22	21/2 ⁺ 19/2 ⁺			
1362.60 1430.239	23/2 ⁻ (3/2 ⁺)	432.67 <i>10</i> 177.106 <i>16</i> 649.06 <i>3</i>	100 1.9 5 6.6 <i>13</i>	930.93 1253.160 781.1002	19/2 ⁻ (3/2 ⁺) 5/2 ⁺	(E2) (M1,E2)	0.0223 0.42 <i>6</i>	B(E2)(W.u.)= $2.3 \times 10^2 5$
		692.578 ^f 8 1008.21 8 1040.47 <i>3</i>	<20 ^{<i>f</i>} 8.1 <i>11</i> 100.0 <i>17</i>	737.6584 421.8439 389.7532	1/2 ⁺ (3/2) ⁻ 3/2 ⁻	(M1,E2)	0.010 4	
1431.61	25/2+	1079.22 <i>6</i> 120.8 <i>1</i> 384.1 <i>1</i>	77 8 17.9 <i>18</i> 100 6	351.1493 1310.74 1047.48	$(1/2)^{-}$ 23/2 ⁺ 21/2 ⁺	(E1)	1.08×10^{-3}	
1439.054	(1/2 ⁻ ,3/2 ⁻)	185.875 <i>18</i> 291.625 <i>10</i> 1011.35 <i>11</i> 1017.22 <i>3</i>	4.7 7 8.8 5 8.5 15 29.4 17	1253.160 1147.454 427.6796 421.8439	$(3/2^+)$ $3/2^+$ $(5/2)^-$ $(3/2)^-$			

18

γ ⁽¹⁶³Dy) (continued)</sup>

E _i (level)	J^{π}_i	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments
1439.054	(1/2-,3/2-)	1049.239 ^c 18	78 5	389.7532	$3/2^{-}$	(M1,E2)	0.0037 10	Level-energy difference=1049.296.
1465	5/2,7/2	1392 <i>I</i>	27 4	73.4448	(1/2) $7/2^{-}$ $5/2^{-}$	(1011,122)	0.0034 9	
1483.263	(5/2 ⁻)	968.50 <i>10</i>	26 7	514.5519	$\frac{5}{2}$ $\frac{7}{2}^{-}$			L 1 1055 50
		$1055.70^{\circ} 4$ $1061.398^{f} 21$	$< 246^{f}$	427.6796 421.8439	(5/2) $(3/2)^{-}$			Level-energy difference=1055.58.
		1197.11 20 1315.89 18	39 <i>10</i> 63 <i>11</i>	285.5954 167.3451	7/2 ⁺ 9/2 ⁻			
1489.104	(3/2 ⁻)	433.377 <i>12</i>	3.8 5	1055.7574	$(1/2)^{-}$			
		1013.0 ^h	<13./J	475.3880	$5/2^{+}$ $(5/2)^{-}$			
		1061.398 ^{<i>f</i>} 21	$< 50^{f}$	427.6796	$(5/2)^{-}$			
		1077.99 <i>4</i> 1137.99 <i>4</i>	82 4	351.1493	$(1/2)^{-}$			
		1238.9	100.0	73.4448	$\frac{3}{2^{-}}$			
1501.665	$(5/2^+)$	$1489.09 \ 3$ $248.42^{f} \ 6$	100 3 < $5.7 f$	0.0 1253.160	5/2 (3/2 ⁺)			
		585.976 ^c 8 618.645 9	47 8 51.9 <i>14</i>	915.6577 883.0136	$5/2^+$ $(5/2)^-$	(M1,E2)	0.015 5	Level-energy difference=586.005.
		680.88 <i>3</i>	6.5 <i>14</i>	820.7954	$(3/2)^{-}$			
		1026.33 ⁷ 4 1073.95 <i>3</i>	<116 ⁵ 91 5	475.3880 427.6796	$(5/2)^{-}$			Mult.: (M1,E2) from ce data in (n, γ) conflicts with ΔJ^{*} .
		1150.50 <i>4</i> 1501.43 <i>13</i>	63 <i>12</i> 100 <i>11</i>	351.1493 0.0	$(1/2)^{-}$ $5/2^{-}$			
1529.326	$(1/2^-, 3/2^-)$	$252.128\ 20$ 276 30 f 4	3.89	1277.173 1253.160	$(5/2^+)$ $(3/2^+)$			Level-energy difference-276.17
		326.72^{f} 4	<5.9 ^f	1202.529	$(5/2)^+$			Level-energy difference=270.17.
		735.94 <i>3</i> 1107.450 <i>22</i>	10 <i>3</i> 72 8	793.3942 421.8439	$(1/2)^{-}$ $(3/2)^{-}$			
		1139.54 5 1178.25 3	100 8 81 6	389.7532 351.1493	$3/2^{-}$ $(1/2)^{-}$			
1531	7/2	1364 <i>1</i> 1531 <i>1</i>	117 <i>21</i> 100	167.3451 0.0	$9/2^{-}$ $5/2^{-}$			
1542 1585 249	1/2+ 3/2+	1542 1	100	0.0	$5/2^{-}$ (5/2 ⁺)			
1303.249	1/2 ,3/2	332.10 <i>4</i> 701.88 <i>3</i>	7.0 17	1253.160	$(3/2^+)$ $(3/2^+)$ $(1/2)^-$	M1(+E2)	0.067 20	
		191.00 J	195	193.3942	(1/2)			

19

E _i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{e}
1585.249	$1/2^+, 3/2^+$	819.061 13	23 3	766.2071	$(3/2)^+$	(M1,E2)	0.0066 20
		847.589 9	44.7 <i>13</i>	737.6584	$1/2^{+}$	M1	0.00793
		1195.44 6	100 10	389.7532	$3/2^{-}$		
		1233.92 18	17 <i>3</i>	351.1493	$(1/2)^{-}$		
1601.39	$25/2^{-}$	464.3 1	100	1137.09	$21/2^{-}$		
1615.113	$1/2^{-}, 3/2^{-}$	412.605 14	4.1 5	1202.529	$(5/2)^+$		
		467.656 4	12.1 9	1147.454	3/2+		
		485.341 15	3.2 9	1129.759	$5/2^{+}$		
		559.402 <i>23</i>	21 9	1055.7574	$(1/2)^{-}$		
		566.046 19	8.4 5	1049.0730	$3/2^{-}$		
		1187.39 7	34 4	427.6796	$(5/2)^{-}$	(M1,E2)	0.0028 7
		1193.33 7	28 <i>3</i>	421.8439	$(3/2)^{-}$		
		1614.87 10	100 12	0.0	$5/2^{-}$		
1634	5/2-,7/2-	1561 <i>1</i>	33 7	73.4448	$7/2^{-}$		
		1634 <i>1</i>	100	0.0	$5/2^{-}$		
1684		1684 <i>1</i>	100	0.0	5/2-		
1692.675	$(3/2)^{-}$	562.900 18	2.1 10	1129.759	5/2+		
		636.919 7	30 3	1055.7574	$(1/2)^{-}$	M1,E2	0.012 4
		871.79 8	4.6 10	820.7954	$(3/2)^{-}$		
		926.43 4	20.5 24	766.2071	$(3/2)^+$		
		1217.19 4	34.9 19	475.3880	$(5/2)^{-}$		
		1265.06 11	14.4 19	427.6796	$(5/2)^{-}$		0.0005 (
		1270.831 12	100 4	421.8439	(3/2)	MI(+E2)	0.0025 6
		1302.94 3	60.6	389.7532	3/2-	M1(+E2)	0.0023 6
1705	5 10- 5 10-	1620.6	100	73.4448	7/2-		
1705	5/2 ,7/2	1705 1	100	0.0	5/2		
1730		1/30 1	100	0.0	5/2		
1770 55	27/2+	1//5 1	100	0.0	5/2		
1779.55	21/21	347.91	1/3	1431.61	25/2 '		
1707	1/0.2/0=	468.9 1	100 8	1310.74	23/2		
1/9/	1/2,3/2	1/9/ 1	100	0.0	5/2 5/2-		
1031	5/0+	1651 1	100	0.0	$\frac{3}{2}$		
1830.2	5/2	1411.8		427.0790	(5/2)		
		1759.5		/3.4440	1/2		
1010		1837.9 47	100	0.0	5/2-		
1840	$(5/2^{-}, 7/2^{-})$	1840 1	100	0.0	5/2-		
1861.30	27/2-	497.77	100	1362.60	23/2-		
18/4.14	(5/2 ,7/2)	1398./5 3		475.3880	$(5/2)^{-1}$		
		1449.8 <mark>″</mark>		421.8439	$(3/2)^{-}$		
1883.36	29/2+	451.7 <i>1</i>	100	1431.61	$25/2^+$		
1902		1902 <i>1</i>	100	0.0	$5/2^{-}$		

20

γ ⁽¹⁶³Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^e	Comments
1942	5/2+	1869 <i>1</i>	39 5	73.4448	7/2-			
		1942	100	0.0	5/2-			
1950.770	3/2-	449.079 [†] 8	<11.7 ⁵	1501.665	$(5/2^+)$			Level-energy difference=449.105.
		692.578 ^f 8	<19.1 ^{<i>f</i>}	1258.214	$5/2^{-}$	(M1,E2)	0.010 4	
		815.279 14	24.1 18	1135.494	$(5/2)^{-}$			
		866.43 <i>3</i>	19.4 8	1084.349	$(3/2)^+$			
		1184.49 ^{<i>f</i>} 11	<19 ^{<i>f</i>}	766.2071	$(3/2)^+$			
		1474.2		475.3880	$(5/2)^{-}$			
		1523.02 5	73 4	427.6796	$(5/2)^{-}$			
		1528.99 4	100 12	421.8439	$(3/2)^{-}$			
		1599.66 16	31.4	351.1493	(1/2)			
		18/5.2		/3.4448	1/2			
1001		1953.8 ⁴	100	0.0	5/2-			
1981	2/2+ 5/2+	1981 1	100	0.0	5/2 5/2-			
2000	5/2 ,5/2	1984 I 2009 I	100	0.0	5/2			
2009		2009 1	100	0.0	$5/2^{-}$			
2080		2080 1	100	0.0	$5/2^{-}$			
2091		2091 1	100	0.0	5/2-			
2099		2099 1	100	0.0	5/2-			
2103	7/2	1936 <i>1</i>	$1.3 \times 10^2 4$	167.3451	9/2-			
		2103 <i>I</i>	100	0.0	$5/2^{-}$			
2109.3		1634.8		475.3880	$(5/2)^{-}$			
0110		1686.6	100	421.8439	$(3/2)^{-}$			
2112	20/2-	2112 <i>I</i>	100	0.0	5/2-			
2127.49	29/2	520.1 I 2060 8	100	1001.39	23/2 7/2-			
2133.2		2000.8		0.0	5/2-			
2158		2158.1	100	0.0	$5/2^{-}$			
2165		2165 1	100	0.0	$5/2^{-}$			
2169		2169 <i>1</i>	100	0.0	5/2-			
2180	7/2	2013 <i>I</i>	6.3 16	167.3451	9/2-			
		2107 1	37 6	73.4448	7/2-			
		2180 <i>I</i>	100	0.0	5/2-			
2191	5/2+,7/2+	2118 1	$2.3 \times 10^2 5$	73.4448	7/2-			
		2191 I	100	0.0	5/2-			
2197.0	$(3/2^{-})$	1775.07 ["] 13		421.8439	$(3/2)^{-}$			
		1808.7		389.7532	3/2-			
		1846.2		351.1493	$(1/2)^{-}$			
		1944.3		230.8896	5/2			

From ENSDF

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
2197.0 2222.2	$(3/2^{-})$ $(1/2^{-},3/2,5/2^{-})$	2196.8 1748.0 1869.8		0.0 475.3880 351 1493	$5/2^{-}$ (5/2) ⁻ (1/2) ⁻	2449 2459.9	(3/2,5/2,7/2)	2449 <i>1</i> 2208.5 2460 3	100	0.0 250.8896 0.0	5/2 ⁻ 5/2 ⁺ 5/2 ⁻
2224 2237		2224 <i>I</i> 2237 <i>I</i>	100 100	0.0	$5/2^{-}$ $5/2^{-}$	2471.6	(1/2,3/2,5/2)	2081.7 2120.5	100	389.7532 351.1493	$3/2^{-}$ (1/2) ⁻
2241.1	(1/2,3/2,5/2)	1819.5 1851.1 1894.6dh		421.8439 389.7532 351 1493	(3/2) $3/2^{-}$ $(1/2)^{-}$	2473 2475.3		2473 7 2001.7 2051.6	100	0.0 475.3880 421.8439	5/2 $(5/2)^{-}$ $(3/2)^{-}$
2242	7/2	2075 <i>1</i> 2242 <i>1</i>	110 <i>21</i> 100	167.3451 0.0	9/2 ⁻ 5/2 ⁻	2483 2493	5/2	2483 <i>1</i> 2420 <i>1</i>	100 2.9×10 ² 5	0.0 73.4448	5/2 ⁻ 7/2 ⁻
2255 2270.3	(3/2 ⁺)	2255 <i>1</i> 1843.1	100	0.0 427.6796	$5/2^{-}$ $(5/2)^{-}$	2503	(1/0.2/0.5/0=)	2493 <i>1</i> 2503 <i>1</i>	100 100	0.0 0.0	$5/2^{-}$ $5/2^{-}$
2272		1879.5 1919.7 2272 1	100	389.7532 351.1493 0.0	$\frac{3}{2}$ $(1/2)^{-}$ $\frac{5}{2^{-}}$	2525.0	(1/2,5/2,5/2)	2101.7 2175.2 2527 1	100	421.8439 351.1493 0.0	(3/2) $(1/2)^{-}$ $5/2^{-}$
2278		2278 1	100	0.0	5/2-	2542		2542 1	100	0.0	5/2-
2287		2213 <i>I</i> 2287 <i>I</i>	9.6×10^2 12 100	73.4448 0.0	$\frac{7}{2^{-}}$ 5/2 ⁻	2559 2562.1	$(1/2^{-}, 3/2, 5/2^{-})$	2559 <i>1</i> 2086.0	100	0.0 475.3880	$5/2^{-}$ $(5/2)^{-}$
2324.30	31/2+	441.2 <i>1</i> 544.8 <i>1</i>		1883.36 1779.55	29/2 ⁺ 27/2 ⁺			2141.5 2210.4		421.8439 351.1493	$(3/2)^{-}$ $(1/2)^{-}$
2329 2339.5	(1/2 ⁻ ,3/2,5/2 ⁻)	2329 <i>1</i> 1912.8	100	0.0 427.6796	$5/2^{-}$ $(5/2)^{-}$	2567 2570	5/2 7/2	2567 <i>1</i> 2570 <i>1</i>	$100 \\ 100 \\ 2 1 \times 10^{2} 8$	0.0 0.0 72.4448	5/2 ⁻ 5/2 ⁻
2344		2339.6 2344 1	100	0.0	(1/2) $5/2^{-}$ $5/2^{-}$	2584 2	5/2,7/2	2583 <i>I</i> 2108 3	3.1×10 ⁻ 8 100	73.4448 0.0 475 3880	$\frac{7}{2}$ $\frac{5}{2}^{-}$ $\frac{(5}{2})^{-}$
2350.2		1922.8 2349.9	100	427.6796	$(5/2)^{-}$ $5/2^{-}$	200112		2161.8 2190.9 ^{dh}		421.8439	$(3/2)^{-}$ $3/2^{-}$
2353 2356		2353 <i>1</i> 2356 <i>1</i>	100 100	0.0 0.0	5/2 ⁻ 5/2 ⁻	2587	7/2	2585.2 2514 <i>1</i>	28 4	0.0 73.4448	5/2 ⁻ 7/2 ⁻
2360.9	(1/2,3/2,5/2 ⁻)	1939.0 2009.7	100	421.8439 351.1493	$(3/2)^{-}$ $(1/2)^{-}$ $5/2^{-}$	2606.8	(5/2 ⁻)	2587 <i>1</i> 2216.8	100	0.0 389.7532	$5/2^{-}$ $3/2^{-}$
2367 2369	5/2- 7/2-	2367 <i>I</i> 2369 <i>I</i>	100	0.0	5/2 5/2 ⁻	2616.1		2255.8 2189.0		351.1493 427.6796	(1/2) $(5/2)^{-}$
2380 2387 2398.87 2418.40 2427	5/2 ,//2 3/2 ⁺ ,5/2 ⁺ 33/2 ⁺ 31/2 ⁻	2380 <i>I</i> 2387 <i>I</i> 515.2 <i>I</i> 557.1 <i>I</i>	100 100 100 100	0.0 0.0 1883.36 1861.30	5/2 5/2 ⁻ 29/2 ⁺ 27/2 ⁻ 5/2 ⁻	2627 2627.9		2264.4 2627 <i>1</i> 2152.9 2199.7	100	551.1493 0.0 475.3880 427.6796	(1/2) $5/2^{-}$ $(5/2)^{-}$ $(5/2)^{-}$ $3/2^{-}$
2427 2431 2432.6	(1/2 ⁻ ,3/2,5/2 ⁻)	2427 1 2431 1 2080.5 2433.5	100	0.0 0.0 351.1493 0.0	$5/2^{-}$ $(1/2)^{-}$ $5/2^{-}$	2647.7	(3/2 ⁻)	2627.9 2224.2 2575.9		0.0 421.8439 73.4448	5/2 ⁻ (3/2) ⁻ 7/2 ⁻

22

 $^{163}_{66}\mathrm{Dy}_{97}$ -22

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
2658		2658 1	100	0.0	$5/2^{-}$	2918		2918 <i>1</i>	100	0.0	$5/2^{-}$
2666		2666 1	100	0.0	5/2-	2928		2928 1	100	0.0	5/2-
2669		2669 1	100	0.0	5/2-	2931		2931 <i>I</i>	100	0.0	$5/2^{-}$
2698		2698 1	100	0.0	5/2-	2937.29	35/2+	538.1 <i>1</i>		2398.87	$33/2^{+}$
2707	5/2,7/2	2634 1	41 7	73.4448	$7/2^{-}$,	613.3 <i>1</i>		2324.30	$31/2^{+}$
	1 / 1	2707 1	100	0.0	$5/2^{-}$	2942		2942 1	100	0.0	$5/2^{-}$
2709.79	33/2-	582.3 <i>1</i>	100	2127.49	$29/2^{-}$	2954	7/2	2787 1	140 20	167.3451	9/2-
2715		2715 <i>I</i>	100	0.0	$5/2^{-}$			2954 <i>1</i>	100	0.0	$5/2^{-}$
2724		2724 1	100	0.0	5/2-	2958	7/2	2885 1	27 3	73.4448	$\frac{1}{2}$
2728.6	(3/2, 5/2, 7/2)	2254.8		475.3880	$(5/2)^{-}$			2958 1	100	0.0	$5/2^{-}$
		2476.1		250.8896	$5/2^{+}$	2963		2963 1	100	0.0	5/2-
2752		2752 1	100	0.0	$5/2^{-}$	2968		2968 1	100	0.0	5/2-
2755.2	$(1/2^{-}, 3/2, 5/2^{-})$	2278.7		475.3880	$(5/2)^{-}$	2972.97	$37/2^+$	574.1 <i>1</i>	100	2398.87	$33/2^{+}$
		2332.7		421.8439	$(3/2)^{-}$	2976		2976 1	100	0.0	$5/2^{-}$
		2405.9		351.1493	$(1/2)^{-}$	2979.7	1/2,3/2,5/2	2628.3		351.1493	$(1/2)^{-}$
2765		2765 1	100	0.0	$5/2^{-}$			2724.1 ^{dh}		250.8896	$5/2^{+}$
2774		2774 1	100	0.0	$5/2^{-}$			2979.8		0.0	$5/2^{-}$
2790		2790 1	100	0.0	$5/2^{-}$	2988		2988 1	100	0.0	$5/2^{-}$
2794	7/2	2721 1	7.3×10^2 17	73 4448	7/2-	2996.6		2573.8		421 8439	$(3/2)^{-}$
_ / > .	·/=	2794 1	100	0.0	$5/2^{-}$			2997.5		0.0	$5/2^{-1}$
2808		2808 /	100	0.0	$5/2^{-}$	3020	5/2.7/2	2946 1	26.7	73.4448	$7/2^{-}$
2812	7/2	2645 1	107 17	167.3451	$9/2^{-}$			3020 /	100	0.0	$5/2^{-}$
	.,=	2739 1	1.8×10^2 3	73,4448	7/2-	3026		3026 1	100	0.0	5/2-
		2812 /	100	0.0	$5/2^{-}$	3028.80	$35/2^{-}$	610.4 /	100	2418.40	$31/2^{-}$
2819.2	7/2	2746 1	147 22	73.4448	$7/2^{-}$	3034		3034 /	100	0.0	$5/2^{-}$
	.,=	2819 <i>I</i>	100	0.0	5/2-	3037		3037 1	100	0.0	$5/2^{-}$
2830		2830 1	100	0.0	5/2-	3048.1		2698.3		351.1493	$(1/2)^{-}$
2835.3	$(3/2, 5/2^{-})$	2411.7		421.8439	$(3/2)^{-}$			3046.7		0.0	5/2-
		2484.1		351.1493	$(1/2)^{-}$	3052		3052 1	100	0.0	5/2-
		2586.3		250.8896	$5/2^{+}$	3057		3057 1	100	0.0	5/2-
		2835.1		0.0	$5/2^{-}$	3067.1	$(1/2^+, 3/2, 5/2^-)$	2676.4		389.7532	3/2-
2847		2847 <i>1</i>	100	0.0	$5/2^{-}$			2715.9		351.1493	$(1/2)^{-}$
2853		2853 <i>1</i>	100	0.0	5/2-			2816.6		250.8896	$5/2^{+}$
2859		2859 <i>1</i>	100	0.0	$5/2^{-}$			3067.6		0.0	$5/2^{-}$
2872.2	$(1/2^{-}, 3/2, 5/2^{-})$	2522.0		351.1493	$(1/2)^{-}$	3075	5/2,7/2	3002 1	$1.9 \times 10^2 4$	73.4448	$7/2^{-}$
		2871.2		0.0	5/2-			3075 1	100	0.0	5/2-
2894		2894 <i>1</i>	100	0.0	$5/2^{-}$	3087		3087 <i>1</i>	100	0.0	$5/2^{-}$
2911		2911 <i>I</i>	100	0.0	$5/2^{-}$	3099		3099 <i>1</i>	100	0.0	$5/2^{-}$
2911.6	$(1/2, 3/2, 5/2^{-})$	2489.3		421.8439	$(3/2)^{-}$	3105.0	$(1/2^{-}, 3/2, 5/2^{-})$	2630.2		475.3880	$(5/2)^{-}$
		2560.9		351.1493	$(1/2)^{-}$			2678.1		427.6796	$(5/2)^{-}$
2918		2844 1	22 6	73.4448	7/2-			2754.4		351.1493	$(1/2)^{-}$

From ENSDF

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
3105.0 3107 3119.3	$(1/2^-, 3/2, 5/2^-)$ $(1/2^-, 3/2, 5/2^-)$	3102.9 3107 <i>1</i> 2693.1 2729.1	100	0.0 0.0 427.6796 389.7532	5/2 ⁻ 5/2 ⁻ (5/2) ⁻ 3/2 ⁻	3423 3434 3459 3471	7/2.	3423 <i>1</i> 3434 <i>1</i> 3459 <i>1</i> 3398 <i>1</i>	100 100 100 100 27	0.0 0.0 0.0 73.4448	5/2 ⁻ 5/2 ⁻ 5/2 ⁻ 7/2 ⁻
3125 3137 3142 3173		2767.1 3125 <i>I</i> 3137 <i>I</i> 3142 <i>I</i> 3173 <i>I</i>	100 100 100	351.1493 0.0 0.0 0.0 0.0	(1/2) ⁻ 5/2 ⁻ 5/2 ⁻ 5/2 ⁻ 5/2 ⁻	3484	7/2	3471 ^{<i>f</i>} <i>I</i> 3317 <i>I</i> 3411 <i>I</i> 3484 <i>I</i> 3495 <i>I</i>	91^{f} $1.0 \times 10^{2} \ 3$ $1.1 \times 10^{2} \ 3$ 100 100	0.0 167.3451 73.4448 0.0 0.0	5/2 ⁻ 9/2 ⁻ 7/2 ⁻ 5/2 ⁻ 5/2 ⁻
3182	7/2	3015 <i>I</i> 3182 <i>I</i>	$1.9 \times 10^3 6$ 100	167.3451 0.0	$9/2^{-}$ $5/2^{-}$	3497.0		3074.6 3497.4	100	421.8439	$(3/2)^{-}$ $5/2^{-}$
3182.8 3186 3206 3215.0	(3/2,5/2,7/2)	2755.5 2931.5 3186 <i>I</i> 3206 <i>I</i> 2793.1	100 100	427.6796 250.8896 0.0 0.0 421.8439	$(5/2)^{-}$ $5/2^{+}$ $5/2^{-}$ $5/2^{-}$ $(3/2)^{-}$	3500 3508 3520 3537 3565	7/2	3500 <i>I</i> 3508 <i>I</i> 3520 <i>I</i> 3537 <i>I</i> 3398 <i>I</i>	$ 100 \\ 100 \\ 100 \\ 100 \\ 1.30 \times 10^2 \ 4 $	0.0 0.0 0.0 0.0 167.3451	5/2 ⁻ 5/2 ⁻ 5/2 ⁻ 5/2 ⁻ 5/2 ⁻ 9/2 ⁻
3230.9	(3/2,5/2,7/2)	3214.3 ^{dh} 2756.2		0.0 475.3880	$5/2^{-}$ $(5/2)^{-}$	3579	7/2	3565 ^g 1 3506 ^f 1	100^{g} $1.1 \times 10^{2f} 6$	0.0 73.4448	5/2 ⁻ 7/2 ⁻
3264 3282		2979.2 3264 1 3282 1	100 100	250.8896 0.0 0.0	5/2+ 5/2- 5/2-	3596 3601.37	41/2+	3579 1 3596 1 628.4 1	100 100 100	0.0 0.0 2972.97	5/2 ⁻ 5/2 ⁻ 37/2 ⁺
3286 3301 3314 8	5/2,7/2	3212 <i>I</i> 3286 <i>I</i> 3301 <i>I</i> 3063 7	$1.6 \times 10^2 6$ 100 100	73.4448 0.0 0.0 250.8896	7/2 ⁻ 5/2 ⁻ 5/2 ⁻ 5/2 ⁺	3610.39 3612.9	39/2 ⁺ (1/2 ⁻ ,3/2,5/2 ⁻)	673.1 <i>I</i> 3259.9 3614.7	100	2937.29 351.1493 0.0 73.4448	$35/2^+$ (1/2) ⁻ $5/2^-$ $7/2^-$
5514.8		3241.5		73.4448	5/2 7/2 ⁻	5014	5/2,7/2	3614 <i>I</i>	1.4×10 0 100	0.0	5/2 ⁻
3335.2	(1/2 ⁻ ,3/2,5/2 ⁻)	2859.3 2907.1 2946.1 2984.3		475.3880 427.6796 389.7532 351.1493	$(5/2)^{-}$ $(5/2)^{-}$ $3/2^{-}$ $(1/2)^{-}$	3638	7/2	3471 <i>J I</i> 3565 <i>⁸ 1</i> 3638 <i>I</i> 3576 <i>I</i>	$1.5 \times 10^{2}J$ 5 $1.3 \times 10^{2}g$ 5 100 $3.1 \times 10^{2}g$ 8	167.3451 73.4448 0.0 73.4448	9/2 ⁻ 7/2 ⁻ 5/2 ⁻ 7/2-
3342.49	37/2-	632.7 1	100	2709.79	$(1/2)^{-}$	5049	5/2,7/2	3649 1	100	0.0	$5/2^{-}$
3351.3	5/2,7/2	3278 <i>I</i> 3351 <i>I</i>	49 <i>12</i> 100	73.4448 0.0	7/2 ⁻ 5/2 ⁻	3673		3506 ^J 1 3673 1	1.1×10^{2} <i>f</i> 6 100	167.3451 0.0	9/2 ⁻ 5/2 ⁻
3351.5	(3/2,5/2 ⁻)	3004.9 ^{dh} 3099.9 3352.1		351.1493 250.8896 0.0	(1/2) ⁻ 5/2 ⁺ 5/2 ⁻	3678 3682 3685		3678 3682 <i>1</i> 3685 <i>1</i>	100 100 100	0.0 0.0 0.0	5/2 ⁻ 5/2 ⁻ 5/2 ⁻
3362.3 3390 3404 3416	5/2	3289 <i>1</i> 3362 <i>1</i> 3390 <i>1</i> 3404 <i>1</i> 3416 <i>1</i>	53 9 100 100 100 100	73.4448 0.0 0.0 0.0 0.0 0.0	7/2 ⁻ 5/2 ⁻ 5/2 ⁻ 5/2 ⁻ 5/2 ⁻	3685.91 3690 3732	39/2 ⁻ 5/2,7/2	657.1 <i>I</i> 3617 <i>I</i> 3690 <i>I</i> 3565 ^g <i>I</i> 3732 <i>I</i>	$ 100 \\ 35 9 \\ 100 \\ 1.0 \times 10^{2g} 3 \\ 100 $	3028.80 73.4448 0.0 167.3451 0.0	35/2 ⁻ 7/2 ⁻ 5/2 ⁻ 9/2 ⁻ 5/2 ⁻

24

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
3738.0	(3/2,5/2,7/2)	3347.9		389.7532	3/2-	3929		3929 1	100	0.0	5/2-
		3488.7		250.8896	$5/2^{+}$	3936		3936 <i>1</i>	100	0.0	5/2-
		3736.5		0.0	$5/2^{-}$	3943		3776 1	$1.5 \times 10^2 5$	167.3451	9/2-
3748		3748 <i>1</i>	100	0.0	$5/2^{-}$			3943 <i>1</i>	100	0.0	5/2-
3753		3753 1	100	0.0	$5/2^{-}$	3950		3950 <i>1</i>	100	0.0	5/2-
3771	7/2	3604 1	$1.6 \times 10^2 4$	167.3451	9/2-	3962	7/2	3795 1	2.3×10^2 7	167.3451	9/2-
		3771 <i>I</i>	100	0.0	$5/2^{-}$			3962 <i>1</i>	100	0.0	5/2-
3791	7/2	3624 1	$2.2 \times 10^2 5$	167.3451	9/2-	3991	7/2	3824	$1.5 \times 10^2 5$	167.3451	9/2-
		3791 <i>I</i>	100	0.0	$5/2^{-}$			3991 <i>I</i>	100	0.0	$5/2^{-}$
3846		3846 <i>1</i>	100	0.0	$5/2^{-}$	4020.3	41/2-	677.8 <i>1</i>	100	3342.49	$37/2^{-}$
3861		3861 <i>I</i>	100	0.0	$5/2^{-}$	4279.58	45/2+	678.2 <i>1</i>	100	3601.37	$41/2^{+}$
3866		3866 1	100	0.0	$5/2^{-}$	4331.59	$43/2^{+}$	721.2 <i>I</i>	100	3610.39	$39/2^{+}$
3881	5/2,7/2	3808 <i>I</i>	1.9×10^2 7	73.4448	$7/2^{-}$	4383.3	43/2-	697.4 <i>1</i>	100	3685.91	39/2-
		3881 <i>I</i>	100	0.0	$5/2^{-}$	4739.1	45/2-	718.8 <i>1</i>	100	4020.3	$41/2^{-}$
3884.6	$(1/2^{-}, 3/2, 5/2^{-})$	3410.7		475.3880	$(5/2)^{-}$	4740.4		4264.8		475.3880	$(5/2)^{-}$
		3461.2		421.8439	$(3/2)^{-}$			4312.8		427.6796	$(5/2)^{-}$
		3536.1 ^{dh}		351.1493	$(1/2)^{-}$			4349.2		389.7532	$3/2^{-}$
		3880.6 ^{dh}		0.0	$5/2^{-}$			4741.6		0.0	$5/2^{-}$
3895		3895 1	100	0.0	$5/2^{-}$	4927.9	$(3/2^{-}, 5/2, 7/2^{-})$	4506.3		421.8439	$(3/2)^{-}$
3924	7/2	3757 1	$1.7 \times 10^2 6$	167.3451	9/2-			4854.1		73.4448	$7/2^{-}$
		3924 1	100	0.0	5/2-	5003.38	49/2+	723.8 1	100	4279.58	$45/2^{+}$

[†] From (n,γ) , unless otherwise stated. When a level is not populated in (n,γ) , the values are from Coul. ex., $(n,n'\gamma)$ or (γ,γ') .

[‡] From ce data in (n,γ) , unless otherwise stated.

[#] From Coulomb excitation. [@] From $\gamma(\theta)$ in Coulomb excitation.

[&] From (n,γ) only.

25

^{*a*} From $(n,n'\gamma)$ only.

^b From β^- decay only.

^c Least-squares adjustment procedure suggests somewhat poor fit. For comparison, the level-energy difference is given under comments.

^d The evaluators regard the placement of this γ as uncertain, since its energy differs from the level-energy difference by several keV. See the related comment in the (n,γ) Data Set.

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Multiply placed with undivided intensity.

^{*g*} Multiply placed with intensity suitably divided.

^h Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Scheme

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{163}_{66}\text{Dy}_{97}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $---- \sim \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{163}_{66}\text{Dy}_{97}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{163}_{66}\text{Dy}_{97}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{163}_{66}$ Dy₉₇

 $^{163}_{66}$ Dy₉₇

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

¹⁶³₆₆Dy₉₇

 $^{163}_{66} Dy_{97}$

(1/2)- 793.3942

¹⁶³₆₆Dy₉₇

¹⁶³₆₆Dy₉₇

Band(L): 1/2[510] band

5/2- 1258.214

Band(M): 3/2[651] band

(5/2)+ 1202.529

(3/2)- 1196.051

(1/2)⁻ 1160.548

<u>3/2+</u> 1147.454

Band(N): 11/2[505] bandhead

11/2- 851.5