161 Dy(t,p) 1985Lo19

History

Type Author Citation Literature Cutoff Date
Full Evaluation C. W. Reich, Balraj Singh NDS 111, 1211 (2010) 12-Apr-2010

 $J^{\pi}(^{161}\text{Dy g.s.})=5/2^{+}.$

1985Lo19: E= 17 MeV. Measured $\sigma(\theta)$ from 7.5° to 67.5° in 7.5° steps. FWHM \approx 15 keV. CCBA and DWBA calculations.

¹⁶³Dy Levels

Populations for L=0 states relative to 100 for 251 level and adjusted for Q value dependence are given under comments.

E(level)	$J^{\pi \ddagger}$	<u>L</u> †	$d\sigma/d\Omega$ (μb/sr) At 30°	Comments
251 [#] 5	5/2+	0	174	Relative population=100.
281 [#] 5	7/2+	\boldsymbol{b}	9	
335 [#] 5	9/2+	\boldsymbol{b}	4	
415 [#] 5	$11/2^{+}$		4	L: $\sigma(\theta)$ compared with DWBA for L=4.
712 5	5/2+	0	11	Relative population=7.
825 5	@	2	2	
910 5	$5/2^{+}$	(2)	3	
1004 5		0	4	Relative population=2.
1071 5	@	2	3	
1129 5	5/2+	(0)	2	L: from figure 4 and consultation (in 1998) with one of the authors of 1985Lo19. L=(2) is less likely.
1200 5	@	(2)	2 ^a	
1258 5	@	(2)	2 ^a	
1463 5		4	4	
1831 5	5/2+	0	26 <mark>&</mark>	Relative population=23.
1937 5	5/2+	0	33 &	Relative population=30.
2053 5	5/2+	0	40 <mark>&</mark>	Relative population=37.
2083 5	<u>@</u>	b	9	
2095 5			7	$d\sigma/d\omega$ at 60° .
2190 5		4	16 ^a	

[†] From comparison to DWBA predictions.

[‡] From Adopted Levels, unless otherwise stated.

[#] Band(A): 5/2[642] band. DWBA reproduces $\sigma(\theta)$ data for $5/2^+$ but not for the other members. From CCBA, the $7/2^+$ member may be populated by the direct route, inelastic scattering and L=0 transitions; the $9/2^+$ member, by the direct route, inelastic scattering paths, by L=2 and L=4 transitions. No CCBA calculations were performed for the $11/2^+$ member.

[@] Level may belong to γ -vibrational bands. No evidence for 738, $1/2^+$; 766, $3/2^+$; and 781, $5/2^+$, levels observed in (n,γ) and assigned by 1971Ka22 as members of the K=1/2⁺ band (from 5/2[642]-Q₂₂).

[&]amp; Note the strength of these transitions. Such strength is usually observed for pairing vibrations near shell closures or in regions of nuclei with a rapid change of deformation. However, both ¹⁶¹Dy and ¹⁶³Dy are already strongly deformed and the strongly excited 0⁺ states in even Dy nuclei do not have a pairing vibrational nature. No satisfactory explanation is offered for this strongly populated L=0 state.

a At 22.5°.

^b $\sigma(\theta)$ compared with DWBA for L=2.

 161 Dy(t,p) 1985Lo19

Band(A): 5/2[642] band

<u>11/2</u>⁺ 415

9/2+ 335

7/2+ 281

<u>5/2</u>⁺ <u>251</u>

 $^{163}_{66}\mathrm{Dy}_{97}$