160 Gd(7 Li,p3n γ) 2003Ju02

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	C. W. Reich, Balraj Singh	NDS 111, 1211 (2010)	12-Apr-2010					

Additional information 1.

Incomplete-fusion reaction, $E(^{7}Li)=56$ MeV. 3.9 mg/cm² thick target, composition and enrichment not given. γ radiation detected using the GASP array, consisting of 40 Compton-suppressed Ge detectors and an 80-element BGO inner ball As a multiplicity filter. Charged particles were detected In the Si ball ISIS, consisting of 40 Si ΔE -E telescopes. Measured E γ , I γ , $\gamma\gamma$ coin.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0#	5/2-	739.20 [#] 12	17/2-	1882.75 ^{&} 16	29/2+	3609.78 ^a 20	39/2+
73.33 [@] 8	7/2-	923.60 ^a 11	19/2+	2126.60 [#] 21	29/2-	3685.2 [@] 3	39/2-
167.07 [#] 8	9/2-	930.29 [@] 13	19/2-	2323.69 ^a 16	$31/2^{+}$	4019.4 [#] 3	$41/2^{-}$
281.22 [@] 9	$11/2^{-}$	1046.87 ^{&} 12	$21/2^{+}$	2398.26 ^{&} 18	$33/2^{+}$	4278.97 ^{&} 25	$45/2^{+}$
336.21 ^{&} 10	9/2+	1136.20 [#] 16	$21/2^{-}$	2417.70 [@] 22	31/2-	4330.98 ^{<i>a</i>} 23	$43/2^{+}$
411.93 ^a 10	$11/2^{+}$	1310.13 ^a 13	$23/2^+$	2708.90 [#] 24	33/2-	4382.6 [@] 3	$43/2^{-}$
414.70 [#] 10	$13/2^{-}$	1362.90 [@] 16	$23/2^{-}$	2936.68 ^a 18	$35/2^+$	4738.2 [#] 3	$45/2^{-}$
496.58 <mark>&</mark> 10	$13/2^{+}$	1431.00 ^{&} 14	$25/2^+$	2972.36 ^{&} 20	$37/2^+$	5002.8 ^{&} 3	$49/2^{+}$
568.21 [@] 11	$15/2^{-}$	1600.50 [#] 19	$25/2^{-}$	3028.10 [@] 24	35/2-		
623.67 ^a 10	$15/2^+$	1778.94 ^a 15	$27/2^+$	3341.6 [#] 3	37/2-		
734.25 ^{&} 11	$17/2^{+}$	1860.60 [@] 19	$27/2^{-}$	3600.77 ^{&} 23	$41/2^{+}$		

¹⁶³Dy Levels

[†] From a least-squares fit using the listed $E\gamma$ values.

^{\ddagger} Values proposed by 2003Ju02 and based on the observed γ branching, together with the usual considerations of the expected rotational-band structure.

Band(A): v5/2[523] band, $\alpha = +1/2$ branch.

[@] Band(a): v5/2[523] band, $\alpha = -1/2$ branch.

[&] Band(B): v5/2[642] band, $\alpha = +1/2$ branch.

^{*a*} Band(b): v5/2[642] band, $\alpha = -1/2$ branch.

$\gamma(^{163}\text{Dy})$

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
73.2 1		73.33	$7/2^{-}$	0.0	5/2-	184.4 <i>1</i>		923.60	$19/2^+$	739.20	$17/2^{-}$
75.7 [‡] 1		411.93	$11/2^{+}$	336.21	$9/2^{+}$	189.3 <i>1</i>	25.1 20	923.60	$19/2^{+}$	734.25	$17/2^{+}$
84.5 1		496.58	$13/2^{+}$	411.93	$11/2^{+}$	207.9 1	100 6	281.22	$11/2^{-}$	73.33	$7/2^{-}$
93.6 <i>1</i>		167.07	9/2-	73.33	$7/2^{-}$	209.1 <i>1</i>	21.4 18	623.67	$15/2^{+}$	414.70	$13/2^{-}$
110.6 <i>1</i>	37 <i>3</i>	734.25	$17/2^{+}$	623.67	$15/2^{+}$	211.8 <i>I</i>	41 3	623.67	$15/2^{+}$	411.93	$11/2^{+}$
114.0 <i>1</i>	18.1 <i>16</i>	281.22	$11/2^{-}$	167.07	9/2-	215.4 <i>I</i>	42 <i>3</i>	496.58	$13/2^{+}$	281.22	$11/2^{-}$
116.6 <i>1</i>	1.2 4	1046.87	$21/2^{+}$	930.29	19/2-	237.7 1	54 <i>4</i>	734.25	$17/2^{+}$	496.58	$13/2^{+}$
120.8 <i>1</i>	13.8 14	1431.00	$25/2^{+}$	1310.13	$23/2^{+}$	244.9 <i>1</i>	45 <i>3</i>	411.93	$11/2^{+}$	167.07	9/2-
123.2 <i>I</i>	26.5 21	1046.87	$21/2^{+}$	923.60	$19/2^{+}$	247.7 1	80 5	414.70	$13/2^{-}$	167.07	9/2-
127.0 <i>I</i>	37 <i>3</i>	623.67	$15/2^{+}$	496.58	$13/2^{+}$	262.9 1		336.21	$9/2^{+}$	73.33	$7/2^{-}$
130.6 <i>1</i>	11.4 12	411.93	$11/2^{+}$	281.22	$11/2^{-}$	263.2 I		1310.13	$23/2^{+}$	1046.87	$21/2^{+}$
133.4 <i>1</i>	8.7 10	414.70	$13/2^{-}$	281.22	$11/2^{-}$	287.0 <i>1</i>	53 4	568.21	$15/2^{-}$	281.22	$11/2^{-}$
153.4 <i>1</i>	2.5 5	568.21	$15/2^{-}$	414.70	$13/2^{-}$	300.0 1	52 <i>3</i>	923.60	$19/2^{+}$	623.67	$15/2^{+}$
160.4 <i>1</i>	22.6 19	496.58	$13/2^{+}$	336.21	9/2+	312.6 <i>1</i>	74 5	1046.87	$21/2^{+}$	734.25	$17/2^{+}$
165.9 <i>1</i>		734.25	$17/2^{+}$	568.21	$15/2^{-}$	324.5 1	56 4	739.20	$17/2^{-}$	414.70	$13/2^{-}$
167.2 <i>1</i>		167.07	9/2-	0.0	5/2-	347.9 <i>1</i>	5.3 8	1778.94	$27/2^{+}$	1431.00	$25/2^+$

Continued on next page (footnotes at end of table)

				160 Gd(⁷ L	$\frac{160}{\mathrm{Gd}}(^{7}\mathrm{Li},\mathrm{p3n}\gamma) \qquad 2003\mathrm{Ju02} \text{ (continued)}$					
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
362.1 <i>I</i>	47 3	930.29	$19/2^{-}$	568.21 15/2-	574.1 <i>1</i>	22.2 19	2972.36	$37/2^{+}$	2398.26	33/2+
384.1 <i>1</i>	77 5	1431.00	$25/2^+$	1046.87 21/2+	582.3 1	11.3 12	2708.90	33/2-	2126.60	29/2-
386.6 1	49 <i>3</i>	1310.13	$23/2^{+}$	923.60 19/2+	610.4 <i>1</i>		3028.10	$35/2^{-}$	2417.70	$31/2^{-}$
397.0 <i>1</i>	41 <i>3</i>	1136.20	$21/2^{-}$	739.20 17/2-	613.3 <i>1</i>		2936.68	$35/2^+$	2323.69	$31/2^+$
432.6 1	33.3 25	1362.90	$23/2^{-}$	930.29 19/2-	628.4 <i>1</i>	11.1 12	3600.77	$41/2^{+}$	2972.36	$37/2^+$
441.2 <i>1</i>		2323.69	$31/2^{+}$	1882.75 29/2+	632.7 1	5.0 8	3341.6	37/2-	2708.90	33/2-
451.7 <i>1</i>	57 4	1882.75	$29/2^{+}$	1431.00 25/2+	657.1 <i>1</i>	3.1 6	3685.2	39/2-	3028.10	$35/2^{-}$
464.3 1	28.8 22	1600.50	$25/2^{-}$	1136.20 21/2-	673.1 <i>1</i>	6.5 9	3609.78	$39/2^{+}$	2936.68	$35/2^+$
468.9 1	31.1 24	1778.94	$27/2^{+}$	1310.13 23/2+	677.8 <i>1</i>	3.0 6	4019.4	$41/2^{-}$	3341.6	37/2-
497.7 <i>1</i>	22.8 19	1860.60	$27/2^{-}$	1362.90 23/2-	678.2 <i>1</i>		4278.97	$45/2^{+}$	3600.77	$41/2^{+}$
515.2 <i>1</i>	38 <i>3</i>	2398.26	$33/2^{+}$	1882.75 29/2+	697.4 <i>1</i>		4382.6	43/2-	3685.2	39/2-
526.1 I	19.3 17	2126.60	$29/2^{-}$	1600.50 25/2-	718.8 <i>1</i>		4738.2	$45/2^{-}$	4019.4	$41/2^{-}$
538.1 <i>1</i>		2936.68	$35/2^+$	2398.26 33/2+	721.2 <i>I</i>		4330.98	$43/2^{+}$	3609.78	$39/2^+$
544.8 <i>1</i>	23.6 19	2323.69	$31/2^{+}$	1778.94 27/2+	723.8 1		5002.8	$49/2^{+}$	4278.97	$45/2^{+}$
557.1 <i>1</i>	13.1 13	2417.70	31/2-	1860.60 27/2-						

[†] In a generic statement, 2003Ju02 indicate that the uncertainties of the γ -ray energies are typically 0.1 keV for E γ <1 MeV and 0.2 keV for E γ > 1 MeV. [‡] γ not reported In other studies. IT is not included In the Adopted Gammas.

¹⁶⁰Gd(⁷Li,p3nγ) 2003Ju02

 $^{163}_{66} Dy_{97}$

¹⁶³₆₆Dy₉₇

4

¹⁶⁰Gd(⁷Li,p3nγ) 2003Ju02

¹⁶³₆₆Dy₉₇