		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

 $Q(\beta^{-})=-6990 \ 80; \ S(n)=10058 \ 21; \ S(p)=5210 \ 30; \ Q(\alpha)=3058 \ 29$ 2021Wa16 S(2n)=17801 16, S(2p)=8335 29 (2021Wa16).

Additional information 1. Data are from ¹⁶²Lu ε decay (primarily 2004Mc01) and in-beam γ data of studies, namely the level scheme of 2018Md01, as well as those of 1987Mo21 and 1980BeYG.

¹⁶²Yb Levels

For levels with J=20-32, the average g-factor is 0.24 5 from the evaluation of 1989Ra17 and is based on the data of 1984Ma10.

Cross Reference (XREF) Flags

			A B C	¹⁶² Lu ε decay (1.37 min+1.5 min, (HI,xnγ) 186 W(n,4p21n)
E(level)	$J^{\pi^{\dagger}}$	T _{1/2} ‡	XREF	Comments
0#	0+	18.87 min <i>19</i>	AB	$%ε+%β^+=100$ T _{1/2} : from 1972Ch23. Others: 17.3 min <i>10</i> (1969DeZZ), 14.5 min <i>5</i> (1969Pa16), and 19.0 min <i>5</i> (1972Go34). For ¹⁶⁰ Yb- ¹⁶² Yb, Δ <r<sup>2>≈0.22 fm². For ¹⁶²Yb-¹⁶⁴Yb, Δ<r<sup>2>≈0.21 fm² (1985Ne09, read from plot by the evaluator). Related calculations: 1989Ba43. Other isotope shift data: 1982Bu21. In an evaluation of nuclear rms charge radii, 2013An02 report <r<sup>2>^{1/2}=5.2054 fm 67.</r<sup></r<sup></r<sup>
166.72 [#] 4	2+	415 ps 9	ABC	J ^π : E2 γ to 0 ⁺ level. T _{1/2} : weighted average of: 439 ps 37 (1978Ba16), 401 ps 59 (1972Bo61), 400 ps 13 (1992Mc02), all from (HI,xnγ); and 428 ps 13, from ¹⁶² Lu ε decay.
487.34 [#] 5 798.42 ^c 4	4+ 2+	14.3 ps 6	ABC AB	J^{π} : E2 γ to 2 ⁺ level and expected structure of g.s. band. J^{π} : from $\gamma\gamma(\theta)$ in ¹⁶² Lu ε decay (1983Ge08). The γ branching from this level is typical of that observed from the bandheads of γ -vibrational excitations.
924.14 [#] 5	6+	3.47 ps 21	ABC	J^{π} : E2 γ to 4 ⁺ level and expected structure of g.s. band.
992.07 ^d 5	3+		AB	J ^{π} : E2 in-band γ from 5 ⁺ , γ 's to 2 ⁺ and 4 ⁺ levels.
1006.20 ^b 6	0+		Α	J^{π} : from $\gamma\gamma(\theta)$ in ¹⁶² Lu ε decay (1983Ge08). The evaluator has taken the multipolarity (Q, from the $\gamma\gamma(\theta)$ data) of the deexciting γ to be E2, rather than M2. Hence π =+.
1129.59 <mark>b</mark> 5	2+		AB	J^{π} : γ' s to 0^+ and 4^+ levels and in-band transition.
1150.21 ^C 8	4+		AB	J^{π} : E2 γ to 2 ⁺ and in-band transition.
1198.01 8	$2^+, 3, 4^+$		Α	J^{π} : γ 's to 2 ⁺ and 4 ⁺ levels.
1337.23 5	$2^+, 3, 4^+$		Α	J^{π} : γ 's to 2 ⁺ and 4 ⁺ levels.
1343.08 ^b 17	4+		AB	J^{π} : E2 in-band γ from 6 ⁺ .
1379.46 6	2+		Α	J^{π} : γ' s to 0^+ and 4^+ levels.
1393.04 ^{<i>a</i>} 19	5+		В	J^{π} : M1(+E2) γ to 4 ⁺ , g.s. band.
1398.22 5	1,2+		Α	J^{n} : γ 's to 0^{+} and 2^{+} levels.
1445.56 [#] 5 1454.87 5	8+	1.1 ps 3	BC A	J^{π} : E2 γ to 6 ⁺ . 8 ⁺ member of the g.s. band.

¹⁶²Yb Levels (continued)

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	XREF	Comments
1483.24 ^{&} 15	5-		AB	J^{π} : E1 γ to 4 ⁺ of g.s. band; bandhead of band C.
1500.69 16			Α	
1552.82 8	2+,3,4+		A	J^{π} : γ 's to 2 ⁺ and 4 ⁺ levels.
1508.11.5 1573.32° 10	6+		A	I^{π} . E2 in hand α to A^{+}
$1575.52 \ 10$	0 4 ⁻			J. EZ III-Dallu Y to 4. I_{i} stratahod D as to 2^{-} and E1 AL-0 as to 4^{+} ; hendhood of hend P
1636 59 <i>6</i>	$^{+}12^{+}$		AD A	J . Sufficience D y to 5 and E1 $\Delta J=0$ y to 4 , bandification band B. I^{π} , γ' s to 0^+ and 2^+ levels
1637.90 6	-,=		A	
1647.19 ^b 10	6+		В	J^{π} : E2 γ to 4 ⁺ of g.s. band, member of band E.
1673.06 7			Α	
1676.52 11	2+,3,4+		A	J^{n} : γ' s to 2^{+} and 4^{+} levels.
1710.79 10			A A	
$176770^{\&}13$	7-		R	I^{π} : F1 γ to 6 ⁺ of σ s hand
1853.65 21	1		A	3 . El 7 to 0 ol 5.5. build.
1860.58 10	$1,2^{+}$		Α	J^{π} : γ 's to 0 ⁺ and 2 ⁺ levels.
1879.91 ^d 21	7+		В	J^{π} : E2 in-band γ to 5 ⁺ .
1913.37 [@] 18	6-		В	J^{π} : E2 in-band γ to 4 ⁻ ; M1 γ to 5 ⁻ of band C.
1938.94 16	$2^+,3,4^+$	1.5 0	A	J^{π} : γ 's to 2 ⁺ and 4 ⁺ levels.
1985.29° 7	8+	1.5 ps 2	В	J^{n} : E2 in-band γ to 6 ⁺ .
2024.06" 6	10+	0.9 ps 3	BC	J^{n} : E2 in-band γ to 8^{+} .
2050.39 22	$2^{+}.3.4^{+}$		A	I^{π} : γ' s to 2 ⁺ and 4 ⁺ levels.
2092.36 16	= ,0,1		A	
2094.09 ^b 20	8+		В	J^{π} : E2 in-band γ from 10 ⁺ .
2099.00 8	$1,2^{+}$		Α	J^{π} : γ 's to 0^+ and 2^+ levels.
2152.95 ^{&} 12	9-	0.54 ps 5	В	J ^{π} : E2 in-band γ to 7 ⁻ ; E1 γ to 8 ⁺ of g.s. band.
2269.50 11			Α	
2280.29 ^w 21	8-	2.3 ps 5	В	J^{π} : E2 in-band γ to 6 ⁻ ; M1 γ to 7 ⁻ of band C.
2399.0 3 2424 52 [°] 7	10+	1.3 ns + 3 - 1	A B	I^{π} . E2 in-hand γ to 8^+
$2428.94^{d}24$	9+	1.0 pb 10 1	B	I^{π} : E2 in-band γ to 0 ⁺ .
2446.52 12	1,2+		A	J^{π} : γ' s to 0^+ and 2^+ levels.
2549.67 15			Α	
2572.61 [@] 21	10-	9.6 ps 8	В	J ^{π} : E2 in-band γ to 8 ⁻ ; M1 γ to 9 ⁻ of band C.
2594.85 ^b 20	10^{+}		В	J^{π} : E2 γ from 12 ⁺ of band D; E2 γ to 8 ⁺ of g.s. band.
2604.69 ^{&} 8	11-	0.62 ps 5	В	J^{π} : E2 in-band γ to 9 ⁻ ; E1 γ to 10 ⁺ of g.s. band.
2630.48 ^{<i>a</i>} 22	10^{+}		В	J^{π} : E2 in-band γ from 12 ⁺ .
2634.29 [#] 7	12^{+}	1.0 ps +5-8	В	J^{π} : E2 in-band γ to 10 ⁺ .
2789.82 15	12+	11 26	A	π , E2 w to 10 ⁺ of a s hand; E2 w to 10 ⁺ of hand E
2800.29 8	12	4.4 ps 0	A	\mathbf{J} : $\mathbf{E}\mathbf{Z}$ y to 10 of g.s. band, $\mathbf{E}\mathbf{Z}$ y to 10 of band \mathbf{E} .
2825.80 11			A	
2929.34 [°] 22	12^{+}		В	J^{π} : E2 in-band γ to 10 ⁺ .
2938.47 [@] 22	12-	8.3 ps 19	В	J^{π} : E2 in-band γ to 10^{-} .
2994.9 ^d 4	11^{+}		В	J^{π} : E2 in-band γ to 9 ⁺ .
2996.55 24			Α	
3077.18 ^{x} 8	13 ⁻	28 10	B	J^{π} : E2 in-band γ to 11 ⁻ .
$312/.01^{\circ}$ 8	14'	28 ps 10	в	J'': E2 in-band γ to 12'.
$5128.89^{\circ} 20$	(12') 14 [±]		в	J'': In-band γ to 10'.
3257.35" 10	14 '		В	J [*] : E2 in-band γ to 12 ⁺ .

Continued on next page (footnotes at end of table)

¹⁶²Yb Levels (continued)

E(level)	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
3416.97 [@] 22	14-	1.8 ps +4-13	В	J^{π} : E2 in-band γ to 12^{-} .
3461.3 ^C 4	14+		В	J^{π} : E2 in-band γ to 12 ⁺ .
3561.8 ^{<i>a</i>} 5	(13 ⁺)		В	J^{π} : in-band γ to 11^+ .
3578.774 13	16'	3.3 ps 2	В	J": E2 in-band γ to 14'.
$3597.04 \ 12$	15		В	$J^{\prime\prime}$: E2 in-band γ to 13.
38/8.64" 14	16	0.0 3	В	J [*] : E2 in-band γ to 14 ⁺ .
39/2.40 - 23	10	0.8 ps 3	В	J [*] : E2 in-band γ to 14.
4137.7^{a} 0 4149 15^{a} 14	(15^{+}) 18^{+}	19 ns 3	B	J^{*} : In-band γ to (15 ⁺).
$4185 44^{\&} 15$	17^{-}	1.9 ps 5	B	
4495 29 [#] 17	18+		B	
$4562.30^{@}24$	18-		B	
4821.33 ^{&} 17	19 ⁻	0.38 ps + 16 - 31	B	
4822.28 ^{<i>a</i>} 16	20+		В	
5146.4 [#] 11	20^{+}		В	
5169.7 [@] 3	20^{-}		В	
5482.2 <mark>&</mark> 11	21-		В	
5584.76 ^a 24	22^{+}		В	
5816.6 [@] 3	22-		В	
5862.0 [#] 15	22^{+}		В	
6174.4 ^{&} 15	23-		В	
6423.1 ^a 11	24+		В	
6529.1 ^e 4	24-		В	
6651.9" <i>18</i>	24		В	
6925.8° 18	25 26 ⁺		B	
$7310.1^{@}11$	20 26 ⁻		B	
7488 0 [#]	20 26+		B	
$7755 2^{\circ} 20$	20		B	
8187 7 [@] 15	28-		B	
8234.7 ^{<i>a</i>} 18	28 ⁺		B	
8323.9? [#]	(28^{+})		В	
8660.8 ^{&} 23	29-		В	
9124.8 [@] 18	30-		В	
9153.5 ^a 21	(30^{+})		В	
9606.3 ^{&} 25	31-		В	
10067.0 [@] 21	32-		В	
10502 ^{&} 3	(33 ⁻)		В	
10969.4 [@] 23	(34-)		В	
11420 3	(35 ⁻)		В	
11917.8?	(36 ⁻)		В	
12392.? ^{&}	(37-)		В	

[†] Where no specific arguments are listed, the J^{π} and band assignments are from interpretation of the in-beam γ data of 1987Mo21

¹⁶²Yb Levels (continued)

and 2018Md01. These assignments are based on general considerations of the properties of rotational-band structure as well as γ -transition multipolarities deduced from measured DCO ratios, $\gamma(\theta)$ data and polarization asymmetry measurements supplemented in some instances with $\alpha(K)$ exp data.

- [‡] Unless otherwise noted, the $T_{1/2}$ values for the excited states are derived from the Doppler-shift recoil-distance data of 1992Mc02, measured in the ¹¹⁶Cd(⁵⁰Ti,4n) reaction. For a further discussion of the procedures used in deriving these values, see the (HI,xn γ) data set.
- [#] Band(A): $K^{\pi}=0^+$ ground-state band. From the energies of the 2⁺ and 4⁺ band members, one computes A=29.25, B=-0.244. These parameters do not give a reasonable fit to the energies of the band members; and it seems unrealistic to quote rotational-band parameters for this band.
- [@] Band(B): Negative-parity, even-spin band.
- [&] Band(C): Negative-parity, odd-spin band.
- ^{*a*} Band(D): Positive-parity, even-spin band.
- ^b Band(E): Second $K^{\pi}=0^+$ band. 10^+ for 2595 level is firmly established from E2 211.8 γ from 12⁺, 2807 level of band D. The E2 in-band 304 γ and 501 γ , as well as inter-band 1160 γ and 1149 γ to g.s. band allow firm J^{π} assignments of all levels in this band.
- ^{*c*} Band(F): Even γ band.
- ^d Band(G): Odd γ band.

$\gamma(^{162}\text{Yb})$

Additional information 2.

S

In their lifetime measurements, 1992Mc02 report only partial lifetimes (and, in some cases, reduced transition probabilities) for individual transitions, but not level lifetimes. For those levels having more than one deexciting transition, it has been necessary for the evaluator to compute the level half-life values from these reported quantities.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	$\alpha^{\&}$	Comments
166.72	2^{+}	166.71 4	100	0	0^{+}	E2		0.499 7	B(E2)(W.u.) = 134.7 30
487.34	4+	320.60 ^{<i>a</i>} 4	100	166.72	2+	E2		0.0606 8	$\begin{aligned} \alpha(N) &= 0.00952 \ 13; \ \alpha(O) &= 0.001129 \ 16; \ \alpha(P) &= 1.235 \times 10^{-5} \ 17 \\ \alpha(K) &= 0.276 \ 4; \ \alpha(L) &= 0.1707 \ 24; \ \alpha(M) &= 0.0416 \ 6 \\ B(E2)(W.u.) &= 210 \ 9 \\ \alpha(K) &= 0.0440 \ 6; \ \alpha(L) &= 0.01280 \ 18; \ \alpha(M) &= 0.00303 \ 4 \\ \alpha(N) &= 0.000699 \ 10; \ \alpha(O) &= 8.85 \times 10^{-5} \ 12; \ \alpha(P) &= 2.275 \times 10^{-6} \ 32 \end{aligned}$
798.42	2+	631.67 <i>5</i>	100.0 <i>10</i>	166.72	2+	E2		0.01008 14	Mult.: from $\gamma(\theta)$ (1980BeYG), R _{DCO} and A _P (2018Md01) in ¹⁵⁰ Sm(¹⁶ O,4n γ). See the comment in the (HI,xn γ) data set. $\alpha(K)=0.00814$ 11; $\alpha(L)=0.001511$ 21; $\alpha(M)=0.000345$ 5 $\alpha(N)=8.04\times10^{-5}$ 11; $\alpha(O)=1.091\times10^{-5}$ 15; $\alpha(P)=4.53\times10^{-7}$ 6 Mult.: mult=Q from $\gamma\gamma(\theta)$ in ¹⁶² Lu ε decay (1983Ge08). From the observed γ decay from this level, the evaluator has concluded that the deexciting γ' s are much more reasonably
		798.48 6	63.7 8	0	0^+	E2		0.00595 8	assigned as E2 than M2. $\alpha(K)=0.00489\ 7;\ \alpha(L)=0.000825\ 12;\ \alpha(M)=0.0001869\ 26$ $\alpha(N)=4.36\times10^{-5}\ 6;\ \alpha(O)=6.02\times10^{-6}\ 8;\ \alpha(P)=2.74\times10^{-7}\ 4$
924.14	6+	436.80 2	100	487.34	4+	E2 [@]		0.0254 4	B(E2)(W.u.)=191 +13-11 α (K)=0.01957 27; α (L)=0.00448 6; α (M)=0.001043 15 α (N)=0.0002419 34; α (O)=3.17×10 ⁻⁵ 4; α (P)=1.059×10 ⁻⁶ 15
992.07	3+	193.5 4	3.3 9	798.42	2^{+}				
		504.45 21	17.8 16	487.34	4^{+}				
		825.29 6	100.0 16	166.72	2+	M1+E2	1.60 +37-28	0.0072 5	$\alpha(K)=0.0060 4; \alpha(L)=0.00094 6; \alpha(M)=0.000212 12$ $\alpha(K)=4.06\times10^{-5} 20; \alpha(Q)=7.0\times10^{-6} 4; \alpha(R)=3.46\times10^{-7} 27$
1006.20	0+	839.40 5		166.72	2+	E2		0.00534 7	$\alpha(N)=4.50\times10^{-2.9}, \alpha(O)=7.5\times10^{-4}, \alpha(N)=5.40\times10^{-2.7}$ $\alpha(K)=0.00440 \ 6; \ \alpha(L)=0.000731 \ 10; \ \alpha(M)=0.0001652 \ 23$ $\alpha(N)=3.86\times10^{-5} \ 5; \ \alpha(O)=5.34\times10^{-6} \ 7; \ \alpha(P)=2.474\times10^{-7} \ 35$ Mult.: mult=Q, from $\gamma\gamma(\theta)$ in ¹⁶² Lu ε decay (1983Ge08). The evaluator has regarded mult=E2 to be a more reasonable choice than the alternative mult=M2
		1006		0	0+	E0			E_{γ} ,Mult.: observed 945 keV peak in electron spectra corresponding to K ce of 1006, E0, 0 ⁺ to 0 ⁺ γ transition (2013Bl07, ε decay).
1129.59	2+	124 ^d 642.31 6	49.3 25	1006.20 487.34	$0^+ 4^+$				· · · ·

$\gamma(^{162}$ Yb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α &	Comments
1129.59	2+	962.89 6	80 8	166.72 2+	(E0+M1+E2)	0.0059 19	$\alpha(K)=0.0050 \ 17; \ \alpha(L)=7.4\times10^{-4} \ 21; \ \alpha(M)=1.7\times10^{-4} \ 5$ $\alpha(N)=3.9\times10^{-5} \ 11; \ \alpha(O)=5.5\times10^{-6} \ 17; \ \alpha(P)=2.9\times10^{-7} \ 10$ Mult.: (E2+M1) assigned from $\alpha(K)$ exp; however value is considerably larger than that predicted for E2+M1 transition, which could indicate an E0 contribution.
		1129.65 <i>19</i>	100 6	0 0+	E2	0.00290 4	$\alpha(K)=0.002424 \ 34; \ \alpha(L)=0.000371 \ 5; \ \alpha(M)=8.32\times10^{-5} \ 12 \ \alpha(N)=1.946\times10^{-5} \ 27; \ \alpha(O)=2.74\times10^{-6} \ 4; \ \alpha(P)=1.365\times10^{-7} \ 19 \ \alpha(P)=7.31\times10^{-7} \ 11 \ 11 \ 11 \ 11 \ 11 \ 11 \ 11 \ $
1150.21	4+	351.8 2	17 4	798.42 2+	E2	0.0462 7	$\alpha(K)=0.03435; \alpha(L)=0.0092213; \alpha(M)=0.00217131$ $\alpha(N)=0.0005027; \alpha(O)=6.42\times10^{-5}9; \alpha(P)=1.801\times10^{-6}25$
		662.88 8	100 9	487.34 4+	E2,M1	0.014 5	$\alpha(K) = 0.012 5; \ \alpha(L) = 0.0019 6; \ \alpha(M) = 4.2 \times 10^{-4} 12$ $\alpha(N) = 9.9 \times 10^{-5} 29; \ \alpha(O) = 1.4 \times 10^{-5} 4; \ \alpha(P) = 7.0 \times 10^{-7} 30$
		983.5 4	13 7	166.72 2+	E2	0.00384 5	$\alpha(K) = 0.00319 4; \ \alpha(L) = 0.000505 7; \ \alpha(M) = 0.0001136 16$ $\alpha(N) = 2.65 \times 10^{-5} 4; \ \alpha(Q) = 3.71 \times 10^{-6} 5; \ \alpha(P) = 1.794 \times 10^{-7} 25$
1198.01	2+,3,4+	399.59 8 1031.28 <i>11</i>	66 8 100 <i>11</i>	$\begin{array}{rrrr} 798.42 & 2^+ \\ 166.72 & 2^+ \end{array}$			
1337.23	2+,3,4+	849.85 <i>5</i> 1170.55 <i>5</i>	30 <i>3</i> 100 <i>4</i>	$\begin{array}{rrrr} 487.34 & 4^+ \\ 166.72 & 2^+ \end{array}$			
1343.08	4+	213 ^d 855.6 3 1176.61 23		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
1379.46	2+	387.39 6 581.09 20 892.13 9 1212.6 3 1370.42 24	65 5 30 7 50 5 33 7	992.07 3^+ 798.42 2^+ 487.34 4^+ 166.72 2^+			
1393.04	5+	400.7 3	100 12	992.07 3 ⁺	E2	0.0321 5	$\alpha(K)=0.02438 \ 34; \ \alpha(L)=0.00593 \ 8; \ \alpha(M)=0.001387 \ 20 \ \alpha(N)=0.000321 \ 5; \ \alpha(O)=4.16\times10^{-5} \ 6; \ \alpha(P)=1.305\times10^{-6} \ 18$
		905.9 <i>3</i>		487.34 4+	M1(+E2)	0.0068 23	$\alpha(K) = 0.0057 \ 20; \ \alpha(L) = 8.6 \times 10^{-4} \ 25; \ \alpha(M) = 1.9 \times 10^{-4} \ 6 \ \alpha(N) = 4.5 \times 10^{-5} \ 13; \ \alpha(O) = 6.4 \times 10^{-6} \ 20; \ \alpha(P) = 3.3 \times 10^{-7} \ 12$
1398.22	1,2+	1231.50 <i>4</i> 1398.19 <i>10</i>	100 8 77 <i>3</i>	$\begin{array}{ccc} 166.72 & 2^+ \\ 0 & 0^+ \end{array}$			
1445.56	8+	521.42 2	100	924.14 6+	E2 [@]	0.01604 22	B(E2)(W.u.)= $2.5 \times 10^2 + 9 - 5$ α (K)= $0.01268 \ 18; \ \alpha$ (L)= $0.00260 \ 4; \ \alpha$ (M)= $0.000600 \ 8$ α (N)= $0.0001394 \ 20; \ \alpha$ (O)= $1.858 \times 10^{-5} \ 26; \ \alpha$ (P)= $6.98 \times 10^{-7} \ 10$
1454.87		462.76 8 656.43 <i>4</i> 1288.17 <i>4</i>	18.2 <i>11</i> 100.0 <i>25</i> 66.8 <i>20</i>	992.07 3^+ 798.42 2^+ 166.72 2^+			
1483.24	5-	995.74 17	100 24	487.34 4+	E1	1.51×10 ⁻³ 2	α (K)=0.001284 <i>18</i> ; α (L)=0.0001761 <i>25</i> ; α (M)=3.89×10 ⁻⁵ <i>5</i> α (N)=9.10×10 ⁻⁶ <i>13</i> ; α (O)=1.298×10 ⁻⁶ <i>18</i> ; α (P)=6.92×10 ⁻⁸ <i>10</i>

6

$\gamma(^{162}$ Yb) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α ^{&}	Comments
1500.69		1333.96 15	100 12	166.72 2+			
1552.82	$2^{+}.3.4^{+}$	560.71 21	18 6	992.07 3+			
		1065.49 9	63 5	487.34 4+			
		1386.07 11	100 9	166.72 2+			
1568.11		575.95 18	12.7 24	992.07 3+			
		1401.38 4	100 8	166.72 2+			
1573.32	6+	423.12 6	100 6	1150.21 4+	E2	0.0276 4	$\alpha(K)=0.02121 \ 30; \ \alpha(L)=0.00496 \ 7; \ \alpha(M)=0.001158 \ 16$
							$\alpha(N)=0.000268 4; \alpha(O)=3.50\times10^{-5} 5; \alpha(P)=1.143\times10^{-6} 16$
		648.7	69 12	924.14 6+	E2,M1	0.015 6	$\alpha(K)=0.013$ 5; $\alpha(L)=0.0020$ 6; $\alpha(M)=4.5\times10^{-4}$ 13
							$\alpha(N)=1.05\times10^{-4} 30; \ \alpha(O)=1.5\times10^{-5} 5; \ \alpha(P)=7.4\times10^{-7} 31$
1609.00	4-	617.1 <i>3</i>		992.07 3+	D		
		1121.63 12	100 12	487.34 4+	E1	1.22×10^{-3} 2	$\alpha(K)=0.001034 \ 14; \ \alpha(L)=0.0001410 \ 20; \ \alpha(M)=3.11\times10^{-5} \ 4$
							α (N)=7.29×10 ⁻⁶ 10; α (O)=1.040×10 ⁻⁶ 15; α (P)=5.58×10 ⁻⁸ 8; α (IPF)=2.99×10 ⁻⁶ 4
1636.59	$1,2^{+}$	1469.88 5	100 4	166.72 2+			
		1636.39 15	75 7	$0 0^{+}$			
1637.90		1150.56 4	100 10	487.34 4+			
1647.19	6+	304.4 ^{<i>a</i>} 3		1343.08 4+	E2	0.0708 10	$\alpha(K)=0.0507\ 7;\ \alpha(L)=0.01545\ 22;\ \alpha(M)=0.00367\ 5$ $\alpha(N)=0.000846\ I2;\ \alpha(Q)=0.0001064\ I5;\ \alpha(P)=2.60\times10^{-6}\ 4$
		1160.2 4	100	487.34 4+	E2	0.00275 4	$\alpha(K)=0.002302, 32; \alpha(L)=0.000351, 5; \alpha(M)=7.85\times10^{-5}, 11$
		110012	100	10/10/1		0100270	$\alpha(N) = 1.837 \times 10^{-5} 26; \ \alpha(O) = 2.59 \times 10^{-6} 4; \ \alpha(P) = 1.296 \times 10^{-7} 18; \ \alpha(PE) = 1.909 \times 10^{-6} 34$
1673.06		680.87 8	25.5 20	992.07 3+			
		874.76 9	100 4	798.42 2+			
		1506.2 3	61 7	166.72 2+			
1676.52	$2^+, 3, 4^+$	1189.18 10	52 4	487.34 4+			
		1509.8 <i>3</i>	100 17	166.72 2+			
1716.79		587.16 12	21 5	1129.59 2+			
		918.44 <i>14</i>	100 26	798.42 2+			
1741.31		1253.97 23	100 18	487.34 4+			
1767.70	7-	284.3 <i>3</i>		1483.24 5-			
		843.0	100	924.14 6+	E1	2.07×10^{-3} 3	$\alpha(K)=0.001756\ 25;\ \alpha(L)=0.0002429\ 34;\ \alpha(M)=5.37\times10^{-5}\ 8$ $\alpha(N)=1.257\times10^{-5}\ 18;\ \alpha(O)=1.786\times10^{-6}\ 25;\ \alpha(P)=9.43\times10^{-8}\ 13$
1853.65		1686.92 20	100 19	166.72 2+			
1860.58	$1,2^{+}$	854.34 13	37 7	1006.20 0+			
		868.48 17	100 17	992.07 3+			
		1062.24 18	56 17	798.42 2+			
1879.91	7+	486.8 <i>3</i>		1393.04 5+	E2	0.01910 27	α (K)=0.01497 21; α (L)=0.00320 5; α (M)=0.000740 10 α (N)=0.0001718 24; α (O)=2.274×10 ⁻⁵ 32; α (P)=8.19×10 ⁻⁷ 12
		955.8 <i>3</i>		924.14 6+			

7

 $^{162}_{70} Yb_{92}\text{--}7$

$\gamma(^{162}$ Yb) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α &	Comments
1913.37	6-	304.4 ^{<i>a</i>} 3		1609.00 4-	E2	0.0708 10	$\alpha(K)=0.0507\ 7;\ \alpha(L)=0.01545\ 22;\ \alpha(M)=0.00367\ 5$
		429.8 <i>3</i>		1483.24 5-	M1	0.0607 9	$\alpha(N)=0.000846\ 12;\ \alpha(O)=0.0001064\ 13;\ \alpha(P)=2.00\times10^{-5}\ 4$ $\alpha(K)=0.0510\ 7;\ \alpha(L)=0.00756\ 11;\ \alpha(M)=0.001687\ 24$ $\alpha(N)=0.000306\ 6;\ \alpha(O)=5.68\times10^{-5}\ 8;\ \alpha(P)=3.06\times10^{-6}\ 4$
		989.8 <i>3</i>		924.14 6+	(E1)	1.53×10 ⁻³ 2	$\alpha(N)=0.000390\ 0,\ \alpha(O)=3.08\times10^{-8}\ 0,\ \alpha(I)=3.08\times10^{-4}\ 4$ $\alpha(K)=0.001298\ 18;\ \alpha(L)=0.0001781\ 25;\ \alpha(M)=3.94\times10^{-5}\ 6$ $\alpha(N)=9.21\times10^{-6}\ 13;\ \alpha(O)=1.312\times10^{-6}\ 18;\ \alpha(P)=7.00\times10^{-8}\ 10$
1938 94	2+ 3 4+	1451 60 18	100.9	487 34 4+			
1950.91	2,5,1	1772.2.3	97 16	166 72 2+			
1985.29	8+	338.12 7	59 2	1647.19 6+	E2	0.0519 7	B(E2)(W.u.)= $4.0 \times 10^2 + 6-5$ $\alpha(K)=0.0381 5; \ \alpha(L)=0.01059 15; \ \alpha(M)=0.002500 35$ $\alpha(N)=0.000577 8; \ \alpha(O)=7.35 \times 10^{-5} 10; \ \alpha(P)=1.989 \times 10^{-6} 28$ B(E2)(W.u.): computed by the evaluator from the partial lifetime of 8.4 ps 27 reported by 1992Mc02 for this transition
		412.01 <i>19</i>	100 3	1573.32 6+	E2	0.0297 4	B(E2)(W.u.)=250 +39-30 α (K)=0.02270 32; α (L)=0.00541 8; α (M)=0.001264 18 α (N)=0.000293 4; α (O)=3.81×10 ⁻⁵ 5; α (P)=1.219×10 ⁻⁶ 17 B(E2)(W.u.): computed by the evaluator from the partial lifetime of 5.7 ps 7 reported by 1992Mc02 for this transition.
		539.66 6	41 3	1445.56 8+	M1 [@]	0.0336 5	B(M1)(W.u.)=0.0158 +26-21 α (N)=0.0002182 31; α (O)=3.13×10 ⁻⁵ 4; α (P)=1.691×10 ⁻⁶ 24 α (K)=0.0283 4; α (L)=0.00417 6; α (M)=0.0000229 13
		1061.3 <i>3</i>	35 2	924.14 6+	E2	0.00329 5	B(E2)(W.u.)=0.77 +12-10 α (K)=0.00274 4; α (L)=0.000426 6; α (M)=9.56×10 ⁻⁵ 13 α (N)=2.234×10 ⁻⁵ 31; α (O)=3.13×10 ⁻⁶ 4; α (P)=1.543×10 ⁻⁷ 22 Additional information 3.
2024.06	10+	578.50 <i>3</i>	100	1445.56 8+	E2 [@]	0.01243 17	B(E2)(W.u.)= $1.8 \times 10^2 + 9 - 5$ α (K)= $0.00994 \ 14; \ \alpha$ (L)= $0.001927 \ 27; \ \alpha$ (M)= $0.000442 \ 6$ α (N)= $0.0001029 \ 14; \ \alpha$ (O)= $1.385 \times 10^{-5} \ 19; \ \alpha$ (P)= $5.51 \times 10^{-7} \ 8$
2050.39		1251.97 21	100 15	798.42 2+			
2059.49	$2^+, 3, 4^+$	1261.08 9	100 23	798.42 2+			
	_ ,= , :	1572.07 21	85 15	487.34 4+			
2092.36		1605.01 15	100 13	487.34 4+			
2094.09	8+	447.0 3		1647.19 6+			
		1170.1 3		924.14 6+			
2099.00	$1,2^{+}$	969.58 9	12 5	1129.59 2+			
		1092.44 14	22 3	1006.20 0+			
		1932.18 17	100 11	166.72 2+			
2152.95	9-	385.25 6	20.3 14	1767.70 7-	E2	0.0357 5	B(E2)(W.u.)=394 +48-40 α (K)=0.0270 4; α (L)=0.00676 9; α (M)=0.001584 22

Adopted Levels, Gammas (continued) γ ⁽¹⁶²Yb) (continued)</sup> $\alpha^{\&}$ I_{γ}^{\ddagger} E_i (level) E_{γ} Mult.# Comments \mathbf{E}_{f} $J_{\mathcal{L}}^{\pi}$ α (N)=0.000367 5; α (O)=4.73×10⁻⁵ 7; α (P)=1.437×10⁻⁶ 20 B(E2)(W.u.): computed by the evaluator from the partial lifetime of 4.6 ps 7 reported by 1992Mc02 for this transition. E1[@] B(E1)(W.u.)=0.00098 +10-8 2152.95 9-707.6 4 100 3 1445.56 8+ 0.00292 4 $\alpha(K)=0.002476\ 35;\ \alpha(L)=0.000346\ 5;\ \alpha(M)=7.66\times10^{-5}\ 11$ $\alpha(N)=1.790\times10^{-5}$ 25; $\alpha(O)=2.54\times10^{-6}$ 4; $\alpha(P)=1.322\times10^{-7}$ 19 B(E1)(W.u.): value reported for this transition by 1992Mc02. 2269.50 1277.34 21 39 7 992.07 3+ 798.42 2+ 1471.10 12 100 12 8-1913.37 6-0.0409 6 $\alpha(K)=0.0306\ 4;\ \alpha(L)=0.00795\ 11;\ \alpha(M)=0.001869\ 27$ 2280.29 367.2 3 E2 $\alpha(N)=0.000432$ 6; $\alpha(O)=5.55\times10^{-5}$ 8; $\alpha(P)=1.618\times10^{-6}$ 23 512.10 66 5 1767.70 7-M1 0.0385 5 B(M1)(W.u.)=0.028 + 12-7 α (N)=0.0002501 35; α (O)=3.59×10⁻⁵ 5; α (P)=1.937×10⁻⁶ 27 $\alpha(K)=0.0324$ 5; $\alpha(L)=0.00477$ 7; $\alpha(M)=0.001065$ 15 2.10×10⁻³ 3 $B(E1)(W.u.)=1.01\times10^{-4}+29-25$ 835.2 100 33 1445.56 8+ E1 α (K)=0.001788 25; α (L)=0.0002474 35; α (M)=5.47×10⁻⁵ 8 $\alpha(N)=1.280\times10^{-5}$ 18; $\alpha(O)=1.819\times10^{-6}$ 25; $\alpha(P)=9.60\times10^{-8}$ 13 Additional information 4. 2399.0 1600.59 25 100 19 798.42 2+ M1[@] B(M1)(W.u.)=0.0401 +42-66 2424.52 10^{+} 400.51 8 18.6 14 $2024.06 \ 10^+$ 0.0730 10 $\alpha(K)=0.0613 9; \alpha(L)=0.00911 13; \alpha(M)=0.002035 29$ $\alpha(N)=0.000478\ 7;\ \alpha(O)=6.85\times10^{-5}\ 10;\ \alpha(P)=3.68\times10^{-6}\ 5$ E2[@] 439.23 2 100 3 1985.29 8+ 0.02500 35 B(E2)(W.u.)=415 +35-62 α(K)=0.01930 27; α(L)=0.00440 6; α(M)=0.001025 14 $\alpha(N)=0.0002376 \ 33; \ \alpha(O)=3.11\times10^{-5} \ 4; \ \alpha(P)=1.045\times10^{-6} \ 15$ B(E2)(W.u.): computed by the evaluator from the partial lifetime of 2.2 ps 3 reported by 1992Mc02 for this transition. 978.5 3 1445.56 8+ $\alpha(K)=0.00322$ 5; $\alpha(L)=0.000511$ 7; $\alpha(M)=0.0001149$ 16 E2 0.00388 5 $\alpha(N)=2.69\times10^{-5}$ 4; $\alpha(O)=3.75\times10^{-6}$ 5; $\alpha(P)=1.812\times10^{-7}$ 25 $\alpha(K)=0.01123$ 16: $\alpha(L)=0.002237$ 32: $\alpha(M)=0.000515$ 7 2428.94 9^{+} 549.0 3 1879.91 7+ E2 0.01412 20 α (N)=0.0001197 17; α (O)=1.603×10⁻⁵ 23; α (P)=6.20×10⁻⁷ 9 983.4 *3* 1445.56 8+ 1129.59 2+ 2446.52 1.2^{+} 1317.17 15 100 21 1440.00 17 32 9 1006.20 0+ 2549.67 1558.00 22 88 17 992.07 3+ 1750.94 19 100 24 798.42 2+ 2572.61 10^{-} 292.33 5 100 3 2280.29 8-E2 0.0800 11 B(E2)(W.u.)=208 + 20 - 17 $\alpha(K)=0.0566 \ 8; \ \alpha(L)=0.01794 \ 25; \ \alpha(M)=0.00426 \ 6$

Adopted Levels, Gammas (continued) $\gamma(^{162}\text{Yb})$ (continued) α**&** I_{γ}^{\ddagger} Mult.# E_{γ} E_i (level) J^{π} \mathbf{E}_{f} J_{c}^{π} Comments α (N)=0.000983 14; α (O)=0.0001231 17; α (P)=2.88×10⁻⁶ 4 B(E2)(W.u.): computed by the evaluator from the partial lifetime of 32.6 ps 47 reported by 1992Mc02 for this transition. 2572.61 10-419.48 25 2152.95 9-M1 0.0647 9 B(M1)(W.u.)=0.0113 10 91 4 $\alpha(K)=0.0543 8; \alpha(L)=0.00806 11; \alpha(M)=0.001799 25$ $\alpha(N)=0.000423 6; \alpha(O)=6.06\times 10^{-5} 9; \alpha(P)=3.26\times 10^{-6} 5$ $B(E1)(W.u.)=2.73\times10^{-5}+32-28$ 548.4 0.00496 7 48 4 2024.06 10+ (E1) $\alpha(K)=0.00420$ 6; $\alpha(L)=0.000595$ 8; $\alpha(M)=0.0001320$ 18 $\alpha(N)=3.08\times10^{-5}$ 4; $\alpha(O)=4.34\times10^{-6}$ 6; $\alpha(P)=2.218\times10^{-7}$ 31 Additional information 5. 2594.85 10^{+} 501.0 3 2094.09 8+ E2 0.01775 25 $\alpha(K)=0.01396\ 20;\ \alpha(L)=0.00293\ 4;\ \alpha(M)=0.000677\ 10$ α (N)=0.0001573 22; α (O)=2.088×10⁻⁵ 29; α (P)=7.66×10⁻⁷ 11 $\alpha(K)=0.002344$ 33; $\alpha(L)=0.000358$ 5; $\alpha(M)=8.01\times10^{-5}$ 11 0.00280 4 1149.4 3 1445.56 8+ E2 $\alpha(N)=1.874\times10^{-5}$ 26; $\alpha(O)=2.64\times10^{-6}$ 4; $\alpha(P)=1.320\times10^{-7}$ 18; α (IPF)=1.393×10⁻⁶ 23 E2[@] $B(E2)(W.u.)=4.0\times10^2 6$ 2604.69 11-451.76^c 10 77^C 2152.95 9-0.02320 33 α(K)=0.01799 25; α(L)=0.00403 6; α(M)=0.000936 13 α (N)=0.0002171 30; α (O)=2.85×10⁻⁵ 4; α (P)=9.77×10⁻⁷ 14 B(E2)(W.u.): computed by the evaluator from the partial lifetime of 2.2 ps 3 reported by 1992Mc02 for this transition. E1[@] 0.00439 6 580.62 5 100 5 2024.06 10+ B(E1)(W.u.)=0.00105 +14-12 $\alpha(K)=0.00372$ 5; $\alpha(L)=0.000525$ 7; $\alpha(M)=0.0001165$ 16 $\alpha(N)=2.72\times10^{-5}$ 4; $\alpha(O)=3.84\times10^{-6}$ 5; $\alpha(P)=1.970\times10^{-7}$ 28 Additional information 6. 10^{+} 1445.56 8+ 2630.48 1185.3 3 $B(E2)(W.u.)=1.3\times10^2 + 11-5$ 2634.29 12^{+} 610.23 4 100 2024.06 10+ E2 0.01094 15 $\alpha(K)=0.00880$ 12; $\alpha(L)=0.001660$ 23; $\alpha(M)=0.000380$ 5 $\alpha(N)=8.85\times10^{-5}$ 12; $\alpha(O)=1.197\times10^{-5}$ 17; $\alpha(P)=4.89\times10^{-7}$ 7 2789.82 1116.61 18 55 5 1673.06 798.42 2+ 100 18 1991.60 21 12^{+} 176.2.3 2630.48 10+ E2 0.412 6 $\alpha(K)=0.2361 35; \alpha(L)=0.1349 21; \alpha(M)=0.0328 5$ 2806.29 α (N)=0.00751 12; α (O)=0.000895 14; α (P)=1.071×10⁻⁵ 16 211.8 3 2594.85 10+ E2 0.2221 33 α (K)=0.1402 20; α (L)=0.0628 10; α (M)=0.01516 23 $\alpha(N)=0.00348$ 5; $\alpha(O)=0.000422$ 6; $\alpha(P)=6.64\times10^{-6}$ 10 381.76 3 100 2 E2 0.0367 5 B(E2)(W.u.)=221 + 35 - 272424.52 10+ $\alpha(N)=0.0003785; \alpha(O)=4.88\times10^{-5}7; \alpha(P)=1.470\times10^{-6}21$ $\alpha(K)=0.0276$ 4; $\alpha(L)=0.00697$ 10; $\alpha(M)=0.001634$ 23 B(E2)(W.u.): computed by the evaluator from the partial lifetime of 8.4 ps 12 reported92Mc02 for this transition. 782.2 33.3 2024.06 10+ E2 0.00622 9 B(E2)(W.u.)=2.02+35-29

$\gamma(^{162}\text{Yb}) \text{ (continued)}$										
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments		
					<u> </u>			α (K)=0.00510 7; α (L)=0.000868 12; α (M)=0.0001968 28 α (N)=4.59×10 ⁻⁵ 6; α (O)=6.33×10 ⁻⁶ 9; α (P)=2.86×10 ⁻⁷ 4 Additional information 7.		
2815.10		1360.17 <i>24</i> 1823.1 <i>3</i> 1270.00 <i>12</i>	100 22 89 25	1454.87 992.07	3+					
2825.80	12+	1833.65 <i>14</i> 505 0 <i>3</i>	100 13	992.07 2424 52	3^+ 10 ⁺	E2	0 01739 24	$\alpha(K) = 0.01369.19$; $\alpha(L) = 0.00286.4$; $\alpha(M) = 0.000661.9$		
2)2).34	12	905.1.3		2024.06	10 ⁺	112	0.01757 24	$\alpha(\text{N})=0.0001536\ 22;\ \alpha(\text{O})=2.040\times10^{-5}\ 29;\ \alpha(\text{P})=7.52\times10^{-7}\ 11$		
2938.47	12-	365.86 4	100	2572.61	10-	E2	0.0413 6	B(E2)(W.u.)= $1.9 \times 10^2 + 6 - 4$ α (K)= $0.0309 4$; α (L)= $0.00805 11$; α (M)= $0.001893 27$ α (N)= $0.000438 6$; α (O)= $5.62 \times 10^{-5} 8$; α (P)= $1.633 \times 10^{-6} 23$ B(E2)(W.u.): computed by the evaluator from the partial lifetime of 12.0 ps 24 reported by 1992Mc02 for this transition		
2994.9	11+	566.0 <i>3</i>		2428.94	9+	E2	0.01310 18	$\alpha(K)=0.01046\ 15;\ \alpha(L)=0.002050\ 29;\ \alpha(M)=0.000471\ 7$ $\alpha(N)=0.0001096\ 15;\ \alpha(O)=1.472\times10^{-5}\ 21;\ \alpha(P)=5.79\times10^{-7}\ 8$		
2996.55		2198.12 23	100 21	798.42	2^{+}					
3077.18	13-	472.49 3	100	2604.69	11-	E2 [@]	0.02063 29	α (K)=0.01610 23; α (L)=0.00350 5; α (M)=0.000812 11 α (N)=0.0001885 26; α (O)=2.487×10 ⁻⁵ 35; α (P)=8.78×10 ⁻⁷ 12		
3127.01	14+	320.72 ^{<i>a</i>} 3	100	2806.29	12+	E2	0.0606 8	B(E2)(W.u.)=1.1×10 ² +6-3 α (K)=0.0439 6; α (L)=0.01279 18; α (M)=0.00303 4 α (N)=0.000698 10; α (O)=8.84×10 ⁻⁵ 12; α (P)=2.273×10 ⁻⁶ 32		
3128.89 3257.35	(12^+) 14^+	534.04 <i>3</i> 623.06 <i>7</i>	100	2594.85 2634.29	10 ⁺ 12 ⁺	E2	0.01041	$\alpha(K)=0.00839 \ 12; \ \alpha(L)=0.001568 \ 22; \ \alpha(M)=0.000359 \ 5 \ \alpha(N)=8 \ 35\times10^{-5} \ 12; \ \alpha(\Omega)=1 \ 132\times10^{-5} \ 16; \ \alpha(P)=4 \ 67\times10^{-7} \ 7$		
3416.97	14-	478.49 <i>4</i>	100	2938.47	12-	E2	0.01997 28	B(E2)(W.u.)= $2.3 \times 10^2 + 11 - 5$ α (N)= $0.0001812 25; \alpha$ (O)= $2.394 \times 10^{-5} 34; \alpha$ (P)= $8.53 \times 10^{-7} 12$ α (K)= $0.01561 22; \alpha$ (L)= $0.00337 5; \alpha$ (M)= $0.000781 11$		
3461.3	14+	532.0 <i>3</i>		2929.34	12+	E2	0.01526 21	$\alpha(\text{K}) = 0.01209 \ 17; \ \alpha(\text{L}) = 0.002452 \ 35; \ \alpha(\text{M}) = 0.000565 \ 8 \\ \alpha(\text{N}) = 0.0001313 \ 19; \ \alpha(\text{O}) = 1.754 \times 10^{-5} \ 25; \ \alpha(\text{P}) = 6.67 \times 10^{-7} \ 9$		
3561.8	(13 ⁺)	566.9 <i>3</i>		2994.9	11^{+}					
3578.77	16+	451.76 ^b 10	100 ^b	3127.01	14+	E2 [@]	0.02320 <i>33</i>	B(E2)(W.u.)=171 10 $\alpha(K)=0.01799 25; \alpha(L)=0.00403 6; \alpha(M)=0.000936 13$		
3597.04	15-	519.86 9	100	3077.18	13-	E2	0.01616 23	$\alpha(N) = 0.0002171 \ 30; \ \alpha(O) = 2.85 \times 10^{-5} \ 4; \ \alpha(P) = 9.77 \times 10^{-7} \ 14$ $\alpha(K) = 0.01278 \ 18; \ \alpha(L) = 0.00262 \ 4; \ \alpha(M) = 0.000606 \ 8$ $\alpha(N) = 0.0001407 \ 20; \ \alpha(O) = 1.874 \times 10^{-5} \ 26; \ \alpha(P) = 7.03 \times 10^{-7} \ 10$		
3878.64	16+	621.28 10	100	3257.35	14+	E2	0.01048 15	$\alpha(K) = 0.00845 \ 12; \ \alpha(L) = 0.001580 \ 22; \ \alpha(M) = 0.000362 \ 5 \\ \alpha(N) = 8.42 \times 10^{-5} \ 12; \ \alpha(O) = 1.140 \times 10^{-5} \ 16; \ \alpha(P) = 4.70 \times 10^{-7} \ 7$		
3972.40	16-	555.43 6	100	3416.97	14-	E2 [@]	0.01372 19	$B(E2)(W.u.)=2.5\times10^2 + 15-7$		

From ENSDF

L

	Adopted Levels, Gammas (continued)										
	$\gamma(^{162}\text{Yb})$ (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	\mathbf{E}_{f} .	I_f^{π} Mult. [#]	α ^{&}	Comments				
4137.7	(15^+)	575.9 3	100	3561.8 (1	3 ⁺)	0.01296 19	$\alpha(K)=0.01093 \ 15; \ \alpha(L)=0.002163 \ 30; \ \alpha(M)=0.000498 \ 7$ $\alpha(N)=0.0001157 \ 16; \ \alpha(O)=1.551\times10^{-5} \ 22; \ \alpha(P)=6.04\times10^{-7} \ 8$ $P(E2)(W_{12})=02 \pm 18 \ 12$				
4149.15	18	570.58 4	100	5578.77 10) E2	0.01280 18	$ \alpha(\mathbf{K}) = 0.01027 \ 14; \ \alpha(\mathbf{L}) = 0.002005 \ 28; \ \alpha(\mathbf{M}) = 0.000461 \ 6 \\ \alpha(\mathbf{N}) = 0.0001072 \ 15; \ \alpha(\mathbf{O}) = 1.440 \times 10^{-5} \ 20; \ \alpha(\mathbf{P}) = 5.69 \times 10^{-7} \ 8 $				
4185.44	17-	588.40 9	100	3597.04 15	E2 [@]	0.01193 17	$\alpha(K)=0.00956 \ 13; \ \alpha(L)=0.001837 \ 26; \ \alpha(M)=0.000421 \ 6 \\ \alpha(N)=9.81\times10^{-5} \ 14; \ \alpha(O)=1.322\times10^{-5} \ 19; \ \alpha(P)=5.30\times10^{-7} \ 7$				
4495.29	18+	616.65 8	100	3878.64 16	5 ⁺ E2	0.01067 15	$\alpha(K)=0.00859 \ 12; \ \alpha(L)=0.001613 \ 23; \ \alpha(M)=0.000369 \ 5 \\ \alpha(N)=8.60\times10^{-5} \ 12; \ \alpha(O)=1.163\times10^{-5} \ 16; \ \alpha(P)=4.78\times10^{-7} \ 7$				
4562.30	18-	589.90 8	100	3972.40 16	6 ⁻ Ε2 [@]	0.01186 17	α (K)=0.00950 <i>13</i> ; α (L)=0.001824 <i>26</i> ; α (M)=0.000418 <i>6</i> α (N)=9.74×10 ⁻⁵ <i>14</i> ; α (O)=1.312×10 ⁻⁵ <i>18</i> ; α (P)=5.27×10 ⁻⁷ <i>7</i>				
4821.33	19-	635.89 8	100	4185.44 17	Ε2 [@]	0.00993 14	B(E2)(W.u.)= $2.7 \times 10^2 + 21 - 9$ α (K)= $0.00801 \ 11; \ \alpha$ (L)= $0.001484 \ 21; \ \alpha$ (M)= $0.000339 \ 5$ α (K)= $7.00 \times 10^{-5} \ 11; \ \alpha$ (Q)= $1.072 \times 10^{-5} \ 15; \ \alpha$ (D)= $4.47 \times 10^{-7} \ 6$				
4822.28	20+	673.13 8	100	4149.15 18	E ⁺ E2 [@]	0.00870 12	$\alpha(N) = 7.50 \times 10^{-5} \ 9; \ \alpha(O) = 1.072 \times 10^{-15}, \ \alpha(P) = 4.47 \times 10^{-5} \ 0$ $\alpha(N) = 6.77 \times 10^{-5} \ 9; \ \alpha(O) = 9.23 \times 10^{-6} \ 13; \ \alpha(P) = 3.94 \times 10^{-7} \ 6$ $\alpha(K) = 0.00706 \ 10; \ \alpha(L) = 0.001274 \ 18; \ \alpha(M) = 0.000291 \ 4$				
5146.4	20+	651.1	100	4495.29 18	5+ E2	0.00940 13	$\alpha(K)=0.00760 \ II; \ \alpha(L)=0.001392 \ I9; \ \alpha(M)=0.000318 \ 4 \\ \alpha(N)=7.41\times10^{-5} \ I0; \ \alpha(O)=1.007\times10^{-5} \ I4; \ \alpha(P)=4.24\times10^{-7} \ 6$				
5169.7	20-	607.40 9	100	4562.30 18	E2	0.01106 15	$\alpha(\mathbf{K}) = 0.00889 \ 12; \ \alpha(\mathbf{L}) = 0.001682 \ 24; \ \alpha(\mathbf{M}) = 0.000385 \ 5 \\ \alpha(\mathbf{N}) = 8.97 \times 10^{-5} \ 13; \ \alpha(\mathbf{O}) = 1.212 \times 10^{-5} \ 17; \ \alpha(\mathbf{P}) = 4.94 \times 10^{-7} \ 7 \\ \alpha(\mathbf{N}) = 0.00225 \ 10^{-5} $				
5482.2 5584 76	21 22+	660.9 762 48 18	100	4821.33 19) E2	0.00908 13	$\alpha(\mathbf{K})=0.00/35 \ 10; \ \alpha(\mathbf{L})=0.001338 \ 19; \ \alpha(\mathbf{M})=0.000305 \ 4$ $\alpha(\mathbf{N})=7.11\times10^{-5} \ 10; \ \alpha(\mathbf{O})=9.68\times10^{-6} \ 14; \ \alpha(\mathbf{P})=4.10\times10^{-7} \ 6$ $\alpha(\mathbf{K})=0.00539 \ 8; \ \alpha(\mathbf{L})=0.000925 \ 13; \ \alpha(\mathbf{M})=0.0002099 \ 29$				
5816.6	22-	646.85 11	100	5169.7 20	E2	0.00954 13	$\alpha(\mathbf{N}) = 0.00539$ 6, $\alpha(\mathbf{L}) = 0.000525$ 75, $\alpha(\mathbf{M}) = 0.0002039$ 25 $\alpha(\mathbf{N}) = 4.90 \times 10^{-5}$ 7; $\alpha(\mathbf{O}) = 6.74 \times 10^{-6}$ 9; $\alpha(\mathbf{P}) = 3.02 \times 10^{-7}$ 4 $\alpha(\mathbf{N}) = 7.54 \times 10^{-5}$ 11; $\alpha(\mathbf{O}) = 1.024 \times 10^{-5}$ 14; $\alpha(\mathbf{P}) = 4.30 \times 10^{-7}$ 6				
5862.0	22+	715.6	100	5146.4 20)+ E2	0.00758 11	$\alpha(K)=0.00771 \ 11; \ \alpha(L)=0.001417 \ 20; \ \alpha(M)=0.000324 \ 5 \\ \alpha(K)=0.00618 \ 9; \ \alpha(L)=0.001087 \ 15; \ \alpha(M)=0.0002472 \ 35 $				
6174.4	23-	692.2	100	5482.2 21	– E2	0.00817 11	$\alpha(N) = 5.76 \times 10^{-5} \ 8; \ \alpha(O) = 7.89 \times 10^{-6} \ 11; \ \alpha(P) = 3.46 \times 10^{-7} \ 5$ $\alpha(K) = 0.00664 \ 9; \ \alpha(L) = 0.001184 \ 17; \ \alpha(M) = 0.000270 \ 4$ $\alpha(N) = 6.20 \times 10^{-5} \ 0; \ \alpha(O) = 8.50 \times 10^{-6} \ 12; \ \alpha(D) = 2.71 \times 10^{-7} \ 5$				
6423.1	24+	838.3	100	5584.76 22	2+ E2	0.00536 8	$\alpha(N) = 6.29 \times 10^{-5} 9; \ \alpha(O) = 8.39 \times 10^{-5} 12; \ \alpha(P) = 3.11 \times 10^{-5} 5$ $\alpha(K) = 0.00441 \ 6; \ \alpha(L) = 0.000733 \ 10; \ \alpha(M) = 0.0001658 \ 23$ $\alpha(N) = 3.87 \times 10^{-5} 5; \ \alpha(O) = 5.36 \times 10^{-6} \ 8; \ \alpha(P) = 2.481 \times 10^{-7} \ 35$				
6529.1	24-	712.50 15	100	5816.6 22	E ⁻ E2 [@]	0.00765 11	$\alpha(K) = 0.00623 \ 9; \ \alpha(L) = 0.001099 \ 15; \ \alpha(M) = 0.0002500 \ 35$ $\alpha(N) = 5.83 \times 10^{-5} \ 8; \ \alpha(O) = 7.98 \times 10^{-6} \ 11; \ \alpha(P) = 3.49 \times 10^{-7} \ 5$				
6651.9	24+	789.9	100	5862.0 22	2+ E2	0.00609 9	$\alpha(K)=0.00500\ 7;\ \alpha(L)=0.000847\ 12;\ \alpha(M)=0.0001920\ 27$ $\alpha(N)=4.48\times10^{-5}\ 6;\ \alpha(O)=6.18\times10^{-6}\ 9;\ \alpha(P)=2.81\times10^{-7}\ 4$				
6925.8	25-	751.4	100	6174.4 23	E2	0.00680 10	α (K)=0.00556 8; α (L)=0.000960 13; α (M)=0.0002179 31 α (N)=5.08×10 ⁻⁵ 7; α (O)=6.99×10 ⁻⁶ 10; α (P)=3.12×10 ⁻⁷ 4				

From ENSDF

н

$\gamma(^{162}\text{Yb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I _γ ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
7313.8	26+	890.7	100	6423.1	24+	E2	0.00471 7	$\alpha(K)=0.003905; \alpha(L)=0.0006359; \alpha(M)=0.000143220$
7319.1	26-	790.0	100	6529.1	24-	E2	0.00609 9	$\alpha(N)=3.34\times10^{-5} 5; \ \alpha(O)=4.65\times10^{-6} 7; \ \alpha(P)=2.191\times10^{-7} 31$ $\alpha(K)=0.00500 7; \ \alpha(L)=0.000847 12; \ \alpha(M)=0.0001920 27$ $\alpha(N)=4.48\times10^{-5} 6; \ \alpha(O)=6.18\times10^{-6} 9; \ \alpha(P)=2.81\times10^{-7} 4$
7488.0	26+	835.9 ^{ad}	100	6651.9 2	24+	E2	0.00539 8	$\alpha(K)=0.00444$ 6; $\alpha(L)=0.000738$ 10; $\alpha(M)=0.0001669$ 23
7755.2	27-	829.4	100	6925.8	25-	E2	0.00548 8	$\alpha(N) = 3.90 \times 10^{-5} 5; \ \alpha(O) = 5.39 \times 10^{-6} 8; \ \alpha(P) = 2.495 \times 10^{-7} 35$ $\alpha(K) = 0.00451 6; \ \alpha(L) = 0.000752 11; \ \alpha(M) = 0.0001701 24$ $\alpha(N) = 2.07 \times 10^{-5} 6; \ \alpha(Q) = 5.50 \times 10^{-6} 8; \ \alpha(P) = 2.54 \times 10^{-7} 4$
8187.7	28-	868.6	100	7319.1	26-	E2	0.00497 7	$\alpha(N) = 3.57 \times 10^{-5} ; \ \alpha(O) = 5.50 \times 10^{-5} ; \ \alpha(P) = 2.54 \times 10^{-7} 4$ $\alpha(K) = 0.00410 ; \ \alpha(L) = 0.000673 ; \ \alpha(M) = 0.0001521 21$ $\alpha(N) = 3.55 \times 10^{-5} ; \ \alpha(O) = 4.93 \times 10^{-6} 7; \ \alpha(P) = 2.306 \times 10^{-7} 32$
8234.7	28+	920.9	100	7313.8	26+	E2	0.00439 6	$\alpha(N) = 3.05 \times 10^{-5} 4; \ \alpha(O) = 4.93 \times 10^{-7} 7; \ \alpha(I) = 2.300 \times 10^{-5} 32^{-5} \alpha(I) = 0.000587 8; \ \alpha(M) = 0.0001323 19^{-5} \alpha(I) = 3.09 \times 10^{-5} 4; \ \alpha(O) = 4.30 \times 10^{-6} 6; \ \alpha(P) = 2.047 \times 10^{-7} 29^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) = 0.0001323 19^{-5} 4; \ \alpha(I) = 0.000587 8; \ \alpha(I) $
8323.9?	(28 ⁺)	835.9 ^{ad}	100	7488.0 2	26+	E2	0.00539 8	$\alpha(K) = 0.00444 \ 6; \ \alpha(L) = 0.000738 \ 10; \ \alpha(M) = 0.0001669 \ 23$ $\alpha(K) = 3.00 \times 10^{-5} \ 5; \ \alpha(O) = 5.39 \times 10^{-6} \ 8; \ \alpha(P) = 2.495 \times 10^{-7} \ 35$
8660.8	29-	905.6	100	7755.2	27-	E2	0.00455 6	$\alpha(N) = 3.20 \times 10^{-5} 5; \ \alpha(O) = 5.59 \times 10^{-6} 6; \ \alpha(P) = 2.195 \times 10^{-5} 55$ $\alpha(K) = 0.00377 5; \ \alpha(L) = 0.000610 9; \ \alpha(M) = 0.0001377 19$ $\alpha(N) = 3.22 \times 10^{-5} 5; \ \alpha(O) = 4.47 \times 10^{-6} 6; \ \alpha(P) = 2.118 \times 10^{-7} 30$
9124.8	30-	937.1	100	8187.7	28-	E2	0.00424 6	$\alpha(N) = 2.97 \times 10^{-5} 4$; $\alpha(O) = 4.14 \times 10^{-6} 6$; $\alpha(P) = 1.977 \times 10^{-7} 28$
9153.5	(30+)	918.8	100	8234.7 2	28+	(E2)	0.00442 6	$\alpha(K)=0.00351 5; \alpha(L)=0.000564 8; \alpha(M)=0.0001270 18$ $\alpha(K)=0.00366 5; \alpha(L)=0.000590 8; \alpha(M)=0.0001330 19$
9606.3	31-	945.5	100	8660.8	29-	E2	0.00416 6	$\alpha(N)=3.11\times10^{-5} 4; \ \alpha(O)=4.33\times10^{-6} 6; \ \alpha(P)=2.05\times10^{-7} 29$ $\alpha(K)=0.00345 5; \ \alpha(L)=0.000552 8; \ \alpha(M)=0.0001244 17$ $\alpha(N)=2.01\times10^{-5} 4; \ \alpha(O)=4.05\times10^{-6} 6; \ \alpha(P)=1.041\times10^{-7} 27$
10067.0	32-	942.2	100	9124.8	30-	E2	0.00419 6	$\begin{array}{l} \alpha(N) = 2.91 \times 10^{-5} \ 4; \ \alpha(O) = 4.05 \times 10^{-6} \ 6; \ \alpha(P) = 1.941 \times 10^{-7} \ 27 \\ \alpha(N) = 2.93 \times 10^{-5} \ 4; \ \alpha(O) = 4.09 \times 10^{-6} \ 6; \ \alpha(P) = 1.955 \times 10^{-7} \ 27 \\ \alpha(K) = 0.00347 \ 5; \ \alpha(L) = 0.000557 \ 8; \ \alpha(M) = 0.0001254 \ 18 \end{array}$
10502	(33 ⁻)	896.1	100	9606.3	31-	(E2)	0.00465 7	$\alpha(\mathbf{K})=0.00385 \ 5; \ \alpha(\mathbf{L})=0.000626 \ 9; \ \alpha(\mathbf{M})=0.0001212 \ 20 \ \alpha(\mathbf{N})=3.30\times10^{-5} \ 5; \ \alpha(\mathbf{Q})=4.58\times10^{-6} \ 6; \ \alpha(\mathbf{P})=2.164\times10^{-7} \ 30$
10969.4	(34 ⁻)	902.4	100	10067.0	32-	E2	0.00458 6	$\alpha(N) = 0.003795; \alpha(L) = 0.0006159; \alpha(M) = 0.000138819$
11420	(35 ⁻)	917.2	100	10502 ((33 ⁻)	(E2)	0.00443 6	$\alpha(N)=3.24\times10^{-5}$ 5; $\alpha(O)=4.51\times10^{-6}$ 6; $\alpha(P)=2.133\times10^{-7}$ 30 $\alpha(K)=0.00367$ 5; $\alpha(L)=0.000593$ 8; $\alpha(M)=0.0001336$ 19 $\alpha(N)=3.12\times10^{-5}$ 4; $\alpha(O)=4.34\times10^{-6}$ 6; $\alpha(P)=2.064\times10^{-7}$ 29
11917.8?	(36 ⁻)	948.4 ^d	100	10969.4 ((34-)	(E2)	0.00413 6	$\alpha(K) = 0.00343 5; \ \alpha(L) = 0.000548 8; \ \alpha(M) = 0.0001235 17$ $\alpha(K) = 2.80 \times 10^{-5} 4; \ \alpha(O) = 4.03 \times 10^{-6} 6; \ \alpha(D) = 1.020 \times 10^{-7} 27$
12392.?	(37-)	972.3 ^d	100	11420 ((35-)	(E2)	0.00393 5	$\alpha(\mathbf{K}) = 2.52 \times 10^{-4}, \ \alpha(\mathbf{O}) = 4.03 \times 10^{-6}, \ \alpha(\mathbf{F}) = 1.525 \times 10^{-27}$ $\alpha(\mathbf{K}) = 0.00326 \ 5; \ \alpha(\mathbf{L}) = 0.000518 \ 7; \ \alpha(\mathbf{M}) = 0.0001166 \ 16$ $\alpha(\mathbf{N}) = 2.72 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 3.81 \times 10^{-6} \ 5; \ \alpha(\mathbf{P}) = 1.835 \times 10^{-7} \ 26$

[†] The values with listed uncertainties are those reported by 2004Mc01, from ¹⁶²Lu ε decay, and by 1980BeYG, from in-beam spectroscopy. Those values for which no uncertainties are given are from in-beam spectroscopy of the ¹²²Sn(⁴⁴Ca,4n γ) reaction (1987Mo21), unless noted otherwise.

$\gamma(^{162}$ Yb) (continued)

- ^{\pm} From the ¹²²Sn(⁴⁴Ca,4n γ) reaction, with E(⁴⁴Ca)=195 MeV (1987Mo21).
- [#] From DCO ratios, $\gamma(\theta)$ data and polarization asymmetry measurements from the heavy-ion studies, unless noted otherwise.
- ^(e) From internal conversion coefficients measured in the in-beam study of the 150 Sm(16 O,4n γ) reaction (1980BeYG). Usually these data are supplemented by DCO ratios, $\gamma(\theta)$ data and polarization asymmetry measurements from the heavy-ion studies, but we mention only the conversion data, since they alone can provide a distinction between E1/M1 and E2/M2 for dipole and quadrupole transitions, respectively.
- & Additional information 8.
- ^a Multiply placed.
- ^b Multiply placed with undivided intensity.
- ^c Multiply placed with intensity suitably divided.
- ^d Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend	
Level Scheme Intensities: Relative photon branching from each level $ \rightarrow \gamma$ Decay (Uncertain)	
$(37^{-}) \qquad (36^{-}) \qquad (36^{-}) \qquad (19178)$	
(<u>35[−])</u> (<u>35[−]) (<u>35[−])</u> (<u>35[−])</u> (<u>35[−])</u> (<u>35[−])</u> (<u>35[−])</u> (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−]) (<u>35[−])</u> (<u>35[−])</u> (<u>35</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	
$(34^{-}) \qquad \bigvee \qquad \overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\circ$	
$(33^{-}) \qquad \qquad$	
$32^{-} \qquad \forall \qquad \overset{\circ}{\swarrow} \qquad \overset{\circ}{\swarrow} \qquad 10067.0$	
<u>31⁻</u> ↓ 9 <u>& </u> 9606.3 (30 ⁺) 9153.5	
$30^{-} \qquad \qquad$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.38 ps +16-31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9 ps <i>3</i> 0.8 ps <i>3</i>
15⁻ 357.04 16⁺ 3578.77	3.3 ps 2
0+ 0	18.87 min 19

 $^{162}_{70}{\rm Yb}_{92}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

16

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{162}_{70} Yb_{92}$

		Band(C): Negative-parity, odd-spin band			
	Band(B): Negative-parity, even-spin band	(37^{-}) <u>12392.</u>			
	$\underbrace{^{(36^-)}}_{-} - \underbrace{^{11917.8}}_{-}$	972			
	948	(35 ⁻) 11420			
	(34 ⁻) 10969.4	917			
	902	(33 ⁻) 10502			
	<u>32 10067.0</u> 942	896 <u>31</u> - <u>9606.3</u>	Band(D): Positive-parity, even-spin band		
Band(A): $K^{\pi}=0^+$	<u>30-</u> 9124.8	946	(30 ⁺) 9153.5		
ground-state band	937	<u>29-</u> <u>8660.8</u>	919		
$\frac{(28^+)}{1} - \frac{8323.9}{1}$	<u>28</u> - <u>8187.7</u>	906	<u>28+</u> 8234.7		
836 26 ⁺ 7488.0	869	<u>27</u> 7755.2	921		
836	<u>26-</u> <u>7319.1</u>	829 25 ⁻ 6925.8	<u>26+</u> 7313.8		
24+ 6651.9	790 <u>24</u> - <u>6529.1</u>	751	⁸⁹¹ 24 ⁺ 6423.1		
790 22+ 5862 0	712	<u>23</u> - <u>6174.4</u>	838		
716	<u>647</u>	692 21 ⁻ 5482.2	22+ 5584.76		
<u>20+</u> <u>5146.4</u>	<u>20-</u> <u>5169.7</u>	661 10- 4821 33	762 20+ 4822 28		
651 18 ⁺ 4495.29	607 <u>18</u> - <u>4562.30</u>	636	673		
617 16 ⁺ 3878.64	590 <u>16</u> <u>3972.40</u>	<u>17-</u> <u>4185.44</u> 588	<u>18+</u> <u>4149.15</u>	Double(E): Second K^{π} -0+	Band (F): Even γ band
621 14 ⁺ 3257 35	<u>14</u> <u>555</u> <u>3416.97</u>	<u>15-</u> <u>3597.04</u>	<u>16+</u> <u>3578.77</u> 452	band (E). Second R =0	<u>14⁺ 3461.3</u>
623	<u>12-</u> 478 2938.47	<u>13-</u> <u>3077.18</u> 472	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(12^+) 3128.89 534	<u>12+</u> <u>2929.34</u>
<u>12+</u> <u>2634.29</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10^+ 176 2630.48	<u>10+</u> <u>2594.85</u> 501	$10^+ \begin{array}{c} 505 \\ 2424.52 \end{array}$
	6- 367 1913.37	9 ⁻ 2152.95 7 ⁻ ³⁸⁵ 1767.70		8 ⁺ 2094.09	8 ⁺ 1985.29
8 ⁺ 1445.56	4^{-304} 1609.00	5- 284 1483.24		$\begin{array}{c c} 0 & 1647.19 \\ \hline 4^+ & 304 & 1343.08 \\ \hline 2^+ & 1129.59 \end{array}$	$\frac{6^+}{4^+} \xrightarrow{412} 1573.32}{4^+} $
6 ⁺ 924.14	/			$\underline{0^+}_{124} \underline{1006.20}_{1006.20}$	$\frac{4}{2^{+}} \frac{1150.21}{798.42}$
$\frac{4^+}{2^+} \frac{437}{321} 487.34$					·
0+ 167 0					

 $^{162}_{70} \rm{Yb}_{92}$

 $^{162}_{70} Yb_{92}$