166 Os α decay (213 ms) 2015Li24,1996Pa01,1981Ho10

Type Author Citation Literature Cutoff Date
Full Evaluation N. Nica NDS 195,1 (2024) 19-Sep-2023

Parent: 166 Os: E=0.0; J^{π} =0+; $T_{1/2}$ =213 ms 5; $Q(\alpha)$ =6143 3; $\%\alpha$ decay=72 13

 166 Os-T_{1/2}: weighted average of 210 ms 6 (2015Li24), 220 ms 7 (1996Pa01; 6000 α (t)), 194 ms 17 (1991Se01) and 181 ms 38 (1981Ho10). Other: 0.3 s 1 (1978Ca11).

¹⁶⁶Os-Q(α): From 2021Wa16.

¹⁶⁶Os-%α decay: %α=72 13 for ¹⁶⁶Os α decay (1981Ho10).

1978Ca11: 166 Os produced in the 106 Cd(63 Cu,p2n) reaction on an enriched (86.22% 106 Cd) target and in the 107 Ag(63 Cu,4n) reaction on an enriched (97.87% 107 Ag) target. E(63 Cu)=380 MeV. The 63 Cu energy was degraded using thin nickel foils to obtain excitation functions and mass assignments. The reaction products were transported for study using He-jet techniques. Measured $T_{1/2}$ and $E\alpha$. See also 1977Ca23.

1981Ho10: 166 Os produced by 58 Ni bombardment. α spectra measured with Si detector following separation of the reaction products using a velocity selector. Report $T_{1/2}$, $E\alpha$ and $\%\alpha$. See also 1981HoZM.

1991Se01: 166 Os produced as a decay product of the 106 Cd+ 74 Se reaction, with E(74 Se)=340 MeV. Enriched (80% 106 Cd) target of thickness 500 μ g/cm². Reaction products were separated using the Daresbury recoil mass separator and were subsequently implanted into a position-sensitive Si surface-barrier detector. Reported $T_{1/2}$.

1996Pa01: ¹⁶⁶Ir produced as a fusion evaporation product in the ¹¹²Sn+⁵⁸Ni reaction, with E(⁵⁸Ni)=297 and 329 MeV. The ¹¹²Sn target (enrichment not given) was ≈0.9 mg/cm² thick. The recoil products were separated in flight in the Daresbury recoil mass spectrometer and implanted in a double-sided silicon-strip detector (energy resolution ≤20 keV FWHM). Reported T_{1/2}, Eα.

2015Li24: ¹⁶⁶Os produced in ⁹²Mo(⁷⁸Kr,2p2n),E(⁷⁸Kr)=380 MeV. Measured Eα, recoil-α-α-α, and half-life of ground state of ¹⁶⁶Os. Recoiling nuclei were separated using gas-filled RITU separator and implanted in GREAT spectrometer at K-130 cyclotron facility of the University of Jyvaskyla.

¹⁶²W Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}} \quad \frac{\text{T}_{1/2}}{1.19 \text{ s } 12} \quad \frac{\text{Comments}}{\text{T}_{1/2}: \text{ adopted value.}}$

α radiations

Eα E(level) $Iα^{\ddagger}$ $Iβ^{\dagger}$ $Iβ^{\dagger}$ Comments

5993 4 0.0 100 100 1.000 Eα: weighted average of: 6000 20 (1977Ca23); 5985 6 (1981Ho10); and 6000 6 (1996Pa01). In this average, the value of 1981Ho10 was increased by 4 keV due to an increase of this amount in the energy of the α line used as a calibration line in the measurement. Iα: only one α group is reported.

[†] The nuclear radius parameter $r_0(^{162}W)=1.559\ 10$ is deduced by assuming HF=1.0 for the ground-state to ground-state alpha decay branch.

[‡] For absolute intensity per 100 decays, multiply by 0.72 13.