¹⁶⁶Os α decay (208 ms) 2015Li24,1996Pa01,1981Ho10

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	29-Feb-2016		

Parent: ¹⁶⁶Os: E=0; $J^{\pi}=0^+$; $T_{1/2}=208$ ms 6; $Q(\alpha)=6139$ 4; $\%\alpha$ decay=72 13

¹⁶⁶Os-T_{1/2}: Weighted average of: 181 ms 38 (1981Ho10, α-decay); 194 ms 17 (1991Se01, α-decay); 220 ms 7

(1996Pa01, α -decay), 210 ms 6 (2015Li24, recoil- α - α correlated decay curve). Other: 300 ms 100 (1977Ca23, α -decay). ¹⁶⁶Os-Q(α): From 2012Wa38.

¹⁶⁶Os-% α decay: % α =72 13 for ¹⁶⁶Os α decay (1981Ho10).

1978Ca11: ¹⁶⁶Os produced in the ¹⁰⁶Cd(63 Cu,p2n) reaction on an enriched (86.22% ¹⁰⁶Cd) target and in the ¹⁰⁷Ag(63 Cu,4n) reaction on an enriched (97.87% ¹⁰⁷Ag) target. E(63 Cu)=380 MeV. The ⁶³Cu energy was degraded using thin nickel foils to obtain excitation functions and mass assignments. The reaction products were transported for study using He-jet techniques. Measured T_{1/2} and E α . See also 1977Ca23.

1981Ho10: ¹⁶⁶Os produced by ⁵⁸Ni bombardment. α spectra measured with Si detector following separation of the reaction products using a velocity selector. Report T_{1/2}, E α and $\%\alpha$. See also 1981HoZM.

1991Se01: ¹⁶⁶Os produced as a decay product of the ¹⁰⁶Cd+⁷⁴Se reaction, with $E(^{74}Se)=340$ MeV. Enriched (80% ¹⁰⁶Cd) target of thickness 500 μ g/cm². Reaction products were separated using the Daresbury recoil mass separator and were subsequently implanted into a position-sensitive Si surface-barrier detector. Reported $T_{1/2}$.

1996Pa01: ¹⁶⁶Ir produced as a fusion evaporation product in the ¹¹²Sn+⁵⁸Ni reaction, with E(⁵⁸Ni)=297 and 329 MeV. The ¹¹²Sn target (enrichment not given) was $\approx 0.9 \text{ mg/cm}^2$ thick. The recoil products were separated in flight in the Daresbury recoil mass spectrometer and implanted in a double-sided silicon-strip detector (energy resolution≤20 keV FWHM). Reported T_{1/2}, E α .

2015Li24: ¹⁶⁶Os produced in ⁹²Mo(⁷⁸Kr,2p2n),E(⁷⁸Kr)=380 MeV. Measured Eα, recoil-α-α-α, and half-life of ground state of ¹⁶⁶Os. Recoiling nuclei were separated using gas-filled RITU separator and implanted in GREAT spectrometer at K-130 cyclotron facility of the University of Jyvaskyla.

¹⁶²W Levels

E(level)	J^{π}	T _{1/2}	
0	0^{+}	1.36 s 7	

 α radiations

Εα	E(level)	$I\alpha^{\dagger}$	Comments		
5993 4	0	100	E α : weighted average of: 6000 20 (1977Ca23); 5985 6 (1981Ho10); and 6000 6 (1996Pa01). In this		
			average, the value of 1981Ho10 was increased by 4 keV due to an increase of this amount in the		
			energy of the α line used as a calibration line in the measurement.		

I α : only one α group is reported.

[†] For absolute intensity per 100 decays, multiply by 0.72 13.