106 Cd(60 Ni,2p2n γ) 2016Jo01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

2016Jo01 compiled for XUNDL batabase by B. Singh (McMaster).

2016Jo01: E=270 MeV. Target=1.0 mg/cm² thick, 96.5% enriched ¹⁰⁶Cd self-supporting foil. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO), recoil implants, (implants) γ -coin. Recoil-decay tagging technique using RITU gas-filled separator and GREAT spectrometer and JUROGAM array at University of Jyvaskyla accelerator laboratory. Deduced high-spin levels, J^{π} , bands, configurations, alignments. Comparison with predictions of cranked shell-model calculations.

¹⁶²W Levels

Quasiparticle orbital labeling scheme:

A: $v_{13/2}, \alpha = +1/2$; first orbital.

B: $vi_{13/2}, \alpha = -1/2$; first orbital.

E: $v(h_{9/2}, f_{7/2}), \alpha = +1/2$; first orbital.

F: $\nu(h_{9/2}, f_{7/2}), \alpha = -1/2$; first orbital.

G: $v(h_{9/2}, f_{7/2}), \alpha = +1/2$; second orbital.

H: $v(h_{9/2}, f_{7/2}), \alpha = -1/2$; second orbital.

e: $\pi h_{11/2}, \alpha = +1/2$; first orbital.

f: $\pi h_{11/2}, \alpha = -1/2$; first orbital.

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡
0.0#	0^{+}	2268.2 [#] 10	(8 ⁺)	2892.6 11		4123.2 [#] 18	(14^{+})
449.6 [#] 5	(2+)	2394.0 13		3048.7 15		4253.7 [@] 19	(15 ⁻)
1012.4 [#] 7	(4^{+})	2426.4 14		3120.3 [@] 13	(11 ⁻)	4833.3 [@] 22	(17 ⁻)
1639.0 [#] 9	(6 ⁺)	2508.8 14		3442.8 [#] 15	(12^{+})	4851.8 [#] 27	(16 ⁺)
1972.8 22		2824.4 [#] 11	(10^{+})	3655.3 [@] 16	(13 ⁻)	5563.7 30	

[†] From least-squares fit to $E\gamma$ values.

[‡] As proposed by 2016Jo01, based on $\gamma\gamma(\theta)$ (DCO) data.

[#] Band(A): Band based on g.s. Configuration= $vi_{13/2}^2$ before the band crossing at $\hbar\omega\approx 0.3$ MeV, $vi_{13/2}^2 \otimes vh_{9/2}^2$ after the crossing.

[@] Band(B): Band based on (11⁻). Configuration= $vi_{13/2} \otimes v(h_{9/2}, f_{7/2})$.

 $\gamma(^{162}W)$

The DCO ratios are for 90° and 158° geometry, with gates on $\Delta J=2$, quadrupole transitions. For a guide, DCO values for known transitions in ¹⁶⁴W were 0.94 9 for 490 γ , 4⁺ -> 2⁺ transition, and 0.67 14 for 752 γ , 7⁻ -> 6⁺ transition.

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
156.1 10	4.2 7	3048.7		2892.6		
295.9 5	15.0 <i>13</i>	3120.3	(11^{-})	2824.4 (10 ⁺)		
384.0 10	2.8 7	2892.6		2508.8		
449.6 5	100.0 15	449.6	(2^{+})	$0.0 \ 0^+$	(E2)	DCO=1.2 2
499.8 20	1.5 6	2892.6		2394.0		
535.0 10	9.0 9	3655.3	(13^{-})	3120.3 (11 ⁻)		
556.2 5	26.1 18	2824.4	(10 ⁺)	2268.2 (8+)		Initial level J^{π} =(10 ⁻) listed in Table III of 2016Jo01 is a misprint.
562.8 5	90.0 6	1012.4	(4+)	449.6 (2+)	(E2)	DCO=1.3 2
Continued on next page (footnotes at end of table)						

106 Cd(60 Ni,2p2n γ) 2016Jo01 (continued)							
						γ ⁽¹⁶² W) (continued)	
E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments	
579.6 10	2.3 5	4833.3	(17^{-})	4253.7	(15^{-})		
598.4 10	5.3 7	4253.7	(15-)	3655.3	(13-)		
618.4 10	7.6 10	3442.8	(12^{+})	2824.4	(10^{+})		
624.3 5	11.2 12	2892.6		2268.2	(8^+)		
626.6 5	67 4	1639.0	(6^{+})	1012.4	(4^{+})		
629.1 5	33.5 24	2268.2	(8+)	1639.0	(6+)	$(13^{-}) \rightarrow (11^{-})$ listed in Table III of 2016Jo01 seems a misprint in view of placement and I^{π} values shown in authors' Figure 5	
680.4 <i>10</i>	2.0 5	4123.2	(14 ⁺)	3442.8	(12 ⁺)	$(8^+) \rightarrow (6^+)$ listed in Table III of 2016Jo01 seems a misprint in view of placement and J^{π} values shown in authors' Figure 5.	
728.6 20	1.1 4	4851.8	(16^{+})	4123.2	(14^{+})		
730.4 20	1.1 4	5563.7		4833.3	(17^{-})		
755.3 10	6.2 11	2394.0		1639.0	(6^{+})		
787.4 10	2.0 7	2426.4		1639.0	(6^{+})		
870.5 20	0.7 6	2508.8		1639.0	(6^{+})		
960.4 20	1.6 8	1972.8		1012.4	(4^{+})		

[†] 2016Jo01 assign uncertainty of 0.5 keV for γ rays with I γ >10, up to 2 keV for weaker γ rays. Evaluator assigns 1.0 keV for γ rays with I γ =2-10, and 2.0 keV for I γ <2. [‡] From DCO value and RUL, assuming level T_{1/2}<10 ns.

2

3

¹⁰⁶Cd(⁶⁰Ni,2p2nγ) 2016Jo01

 $^{162}_{\ 74}W_{88}$