¹⁶²Tm IT decay (24.3 s) 1974De47

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

Parent: ¹⁶²Tm: E=x; $J^{\pi}=5^+$; $T_{1/2}=24.3$ s *17*; %IT decay=82.5 *34* ¹⁶²Tm-E: x=129 *62*, see comment at level.

¹⁶²Tm-%IT decay: The 24-s ¹⁶²Tm level decays both by IT decay and by ε decay. The IT decay is assumed to proceed to the g.s. via a two-step cascade involving an unobserved E3 transition, followed by the 66.9 γ , which has an M1+<40% E2 character (1974De47). The total intensity of the ε decay is taken to be the sum I(γ +ce)(227)+I(γ +ce)(798)+I(γ +ce)(899)+I(γ +ce)(900). In I γ units used here and in 1974De47, the IT decay intensity is 1287 193 units, and the ε decay intensity is 274 50. The branching is thus 1287/(1287+274)=0.825 34. (This differs from the value 0.898 22 given by 1974De47.).

Additional information 1.

Data are from 1974De47, unless otherwise noted. Source produced by (p,xn) reaction on natural Er with E(p)=52 MeV and γ spectra measured with Ge detectors.

¹⁶²Tm Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0 [‡]	1-	21.70 min 19	T _{1/2} : from ¹⁶² Tm Adopted Levels and based on values of 21.5 min <i>10</i> (1963Ab02), 22.5 min <i>10</i> (1969Pa16), 21.8 min <i>3</i> (1971Ch30), and 21.6 min <i>3</i> (1974DeZF).
66.90 [#] 10	2-		
x [@]	5+	24.3 s 17	E(level): $x=129$ 62, deduced from the upper limit (125 keV) on the energy of the isomeric transition and the fact that it feeds the 2 ⁻ level at 66.9 keV. Numeric value is not adopted because its high uncertainty would make senseless the band levels built on this isomeric state (see Adopted Levels, Gammas dataset).

[†] From ¹⁶²Tm Adopted Levels.

[‡] Band(A): $K^{\pi}=1^{-}$ bandhead. Configuration=($\nu 3/2[521]$)-($\pi 1/2[411]$).

[#] Band(B): $K^{\pi}=2^{-}$ bandhead. Configuration= $(\pi 7/2[404])-(\nu 3/2[521])$.

[@] Band(C): $K^{\pi}=5^+$ bandhead. Configuration= $(\pi 7/2[523])+(\nu 3/2[521])$.

From ENSDF

$\gamma(^{162}\text{Tm})$

Iy normalization: Calculated to give 100% feeding on this IT decay branch of the ground state by the 66.9γ .

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	$I_{(\gamma+ce)}$ ‡	Comments
66.90 <i>10</i>	110 10	66.90	2-	0.0	1-	M1(+E2)	0.41 41	10.7 14		%I γ =7.1 10 α (K)=7.3 17; α (L)=2.6 23; α (M)=0.6 6 α (N)=0.14 13; α (O)=0.018 14; α (P)=0.00045 10 I $_{\gamma}$.Mult. δ : from 1974De47.
(<125)		х	5+	66.90	2-	[E3]			1.29×10 ³ 20	E_{γ} : this transition is not directly observed. This upper limit on its energy is inferred (1974De47) from the absence of K x rays in coincidence with 66.9-keV gammas and the smallness of $\alpha(K)$ relative to α for E3 transitions in Tm.

[†] Additional information 2.
[‡] For absolute intensity per 100 decays, multiply by 0.064 *10*.

¹⁶²Tm IT decay (24.3 s) 1974De47

¹⁶²Tm IT decay (24.3 s) 1974De47

x

¹⁶²₆₉Tm₉₃

1-