## $\underline{{ }^{162} \text { Sm IT decay ( } \mathbf{( 1 . 7 8 ~} \mu \mathbf{s} \text { ) } \quad \text { 2017Pa25,2017Yo01 }}$

$\frac{\text { Type }}{\text { Full Evaluation }} \quad \frac{\text { Author }}{\text { N. Nica }} \quad$| History |
| :---: |
| Citation |$\quad$| NDS 195,1 (2024) |
| :--- |

Parent: ${ }^{162}$ Sm: $\mathrm{E}=1010.7$ 6; $\mathrm{J}^{\pi}=\left(4^{-}\right) ; \mathrm{T}_{1 / 2}=1.78 \mu \mathrm{~s} 7 ; \% \mathrm{IT}$ decay $=100$
${ }^{162} \mathrm{Sm}-\% \mathrm{IT}$ decay: \%IT=100 is assumed by the evaluator.
2017Pa25 compiled for XUNDL database by F.G. Kondev (ANL).
2017Yo01 compiled for XUNDL database by B. Singh (McMaster).
2017Pa25: ${ }^{162} \mathrm{Sm}$ produced at RIBF-RIKEN facility using the ${ }^{9} \mathrm{Be}\left({ }^{238} \mathrm{U}, \mathrm{F}\right)$ reaction at $\mathrm{E}=345 \mathrm{MeV} /$ nucleon with an average beam intensity of 10 pnA . The identification of the nuclide of interest was made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the tof- $\mathrm{B} \rho-\Delta \mathrm{E}$ method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. Measured implanted ions- $\gamma-\gamma-\mathrm{t}$ correlations within a $100 \mu$ s time window following implantation.
2017Yo01: from ${ }^{9} \mathrm{Be}\left({ }^{238} \mathrm{U}, \mathrm{F}\right), \mathrm{E}=345 \mathrm{MeV} /$ nucleon reaction at RIBF-RIKEN facility. ${ }^{162} \mathrm{Sm}$ formed by in-flight fission of 345 $\mathrm{MeV} /$ nucleon ${ }^{238} \mathrm{U}$ beam with a 3.96 to 4.93 mm thick ${ }^{9}$ Be target. Fission fragments separated and identified in the BigRIPS spectrometer by measurement of energy loss $\Delta \mathrm{E}$, time-of-flight and magnetic rigidity. Two parallel-plate avalanche counters (PPACs) used to track the position of implanted ions. $\gamma$ rays detected by four Clover HPGe detectors. Measured $\mathrm{E} \gamma, \mathrm{I} \gamma,\left({ }^{162} \mathrm{Sm}\right.$ ions) $\gamma$-coin, delayed $\gamma$-radiation, and half-life of isomer, within time window of $\approx 100 \mathrm{~ns}$ to $30 \mu \mathrm{~s}$. Comparison with theoretical calculations using deformed Hartree-Fock model with angular momentum projection.
2017Pa25 and 2017Yo01 report similar results.
$\xrightarrow{{ }^{162} \mathrm{Sm} \text { Levels }}$

| $\mathrm{E}\left(\right.$ level) ${ }^{\dagger}$ | $\mathrm{J}^{\text {a }}$ | $\mathrm{T}_{1 / 2}$ | Comments |
| :---: | :---: | :---: | :---: |
| 0.0 \# | $0^{+}$ |  |  |
| $71.4{ }^{\#} 4$ | $\left(2^{+}\right)$ |  |  |
| $235.9^{\#} 5$ | $\left(4^{+}\right)$ |  |  |
| $1010.7{ }^{@} 6$ | (4) | $1.78 \mu \mathrm{~s} 7$ | Proposed configuration $=v 7 / 2[633] \otimes v 1 / 2[521], K^{\pi}=4^{-}$from comparison with deformed Hartree-Fock with angular momentum projection model, and projection shell model (2017Yo01; same configuration proposed by 2017Pa25). |
|  |  |  | $\mathrm{T}_{1 / 2}$ : From $2017 \mathrm{Yo01}$ from likelihood fitting of time spectrum between the ${ }^{162} \mathrm{Sm}$ beam implantation and subsequent summed $71 \gamma+165 \gamma+775 \gamma$-ray spectrum. Other value: $1.7 \mu \mathrm{~s} 2$ from 2017 Pa 25 , weighted average from $165 \gamma(\mathrm{t})$ and $775 \gamma(\mathrm{t})$. |

${ }^{\dagger}$ From $\mathrm{E}_{\gamma}{ }^{\prime} \mathrm{s}$ (2017Pa25).
$\ddagger$ As assigned by $2017 \mathrm{Yo01}$, based on systematic trend of even-even nuclei for the $2^{+}$and $4^{+}$states, and Hartree-Fock calculations for $4^{-}$state. Same values assigned by 2017Pa25.
\# $\operatorname{Band}(A): K^{\pi}=0^{+}$, g.s. band.
${ }^{@} \operatorname{Band}(B): \mathrm{K}^{\pi}=\left(4^{-}\right), 2-\mathrm{qp}$ state (2017Pa25).

$$
\underline{\gamma\left({ }^{162} \mathrm{Sm}\right)}
$$

I $\gamma$ normalization: From $\mathrm{I}(\gamma+\mathrm{ce})(774.1 \gamma)=100$.

| $\mathrm{E}_{\gamma}{ }^{\dagger}$ | $\mathrm{I}_{\gamma} \ddagger$ \& | $\underline{\mathrm{E}_{i}(\text { level })}$ | $\mathrm{J}_{i}^{\pi}$ | $\mathrm{E}_{f}$ | $\mathrm{J}_{f}^{\pi}$ | Mult. ${ }^{\text {\# }}$ | $\alpha^{@}$ | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 71.44 | 9.816 | 71.4 | $\left(2^{+}\right)$ | 0.0 | $0^{+}$ | [E2] | 8.2121 | $\begin{aligned} & \alpha(\mathrm{K})=2.71 \quad 5 ; \alpha(\mathrm{L})=4.26 \quad 13 ; \alpha(\mathrm{M})=0.99230 \\ & \alpha(\mathrm{~N})=0.2177 ; \alpha(\mathrm{O})=0.02698 ; \alpha(\mathrm{P})=0.000114522 \\ & \mathrm{E}_{\gamma}: 71.0 . \\ & \mathrm{I}_{\gamma}: 62 . \end{aligned}$ |
| 164.53 | 623 | 235.9 | $\left(4^{+}\right)$ | 71.4 | $\left(2^{+}\right)$ | [E2] | 0.4056 | $\alpha(\mathrm{K})=0.274$ 4; $\alpha(\mathrm{L})=0.1016$ 16; $\alpha(\mathrm{M})=0.02324$ |

[^0]
${ }^{\dagger}$ From 2017Pa25. Values from 2017Yo01 reported with no unc are given in comments.
${ }^{\ddagger}$ From $2017 \mathrm{Yo01}$ that give relatively well balanced $\mathrm{I}_{(\gamma+\mathrm{ce})}$ at each level. As stated by authors the $\mathrm{I}_{(\gamma+\mathrm{ce})}$ value from 2017 Pa 25 through the $2^{+}$level of the ground-state band does not balance, presumably due to the large uncertainty in the efficiency of the array in this energy region. Relative intensity values from 2017Pa25 are given in comments.
\# As assigned by 2017 Yo 01 , based on assigned $J^{\pi}$ values, and also from transition intensity balances for the lowest energy transitions. Same values can be adopted based on the $J^{\pi}$ values from 2017Pa25 as well.
${ }^{@}$ Additional information 2.
${ }^{\&}$ For absolute intensity per 100 decays, multiply by 1.007 .
${ }^{162}$ Sm IT decay $(\mathbf{1 . 7 8} \mu \mathrm{s}) \quad$ 2017Pa25,2017Yo01

${ }_{62}^{162} \mathrm{Sm}_{100}-3 \quad$ From ENSDF $\quad{ }_{62}^{162} \mathrm{Sm}_{100}-3$
${ }^{162}$ Sm IT decay ( $\left.1.78 \mu \mathrm{~s}\right) \quad$ 2017Pa25,2017Yo01


[^1]
[^0]:    Continued on next page (footnotes at end of table)

[^1]:    ${ }_{62}^{162} \mathrm{Sm}_{100}$

