¹⁶⁶Ir α decay (15.1 ms) 1997Da07,1996Pa01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

Parent: ¹⁶⁶Ir: E=172 *11*; $J^{\pi}=(9^+)$; $T_{1/2}=15.1 \text{ ms } 9$; $Q(\alpha)=6722 6$; $\% \alpha$ decay=98.2 6

¹⁶⁶Ir-E: Additional information 1.

¹⁶⁶Ir-J^{π}: Additional information 2.

¹⁶⁶Ir-T_{1/2}: Additional information 3.

¹⁶⁶Ir-Q(α): Additional information 4.

¹⁶⁶Ir- $\%\alpha$ decay: Deduced from the measured proton and α intensities, assuming negligible $\varepsilon + \beta^+$ branching (1997Da07). Additional information 5.

1997Da07: ¹⁶⁶Ir produced in the ⁹²Mo(⁷⁸Kr,p3n) reaction, with E(⁷⁸Kr)=384 MeV. Enriched (>97% ⁹²Mo) target of thickness 580 μ g/cm², presumably evaporated onto a 700 μ g/cm² Al backing. The recoil nuclei were separated according to their mass-to-charge ratio in the Fragment Mass Analyzer at the ATLAS accelerator facility. After passing through a thin position-sensitive parallel-grid avalanche counter, located at the focal plane of the analyzer, the recoils were implanted into a double-sided silicon-strip detector. Both position and time correlations between the recoils and their decay products were measured, as well as energies and intensities of their emitted radiations. Results include T_{1/2}, E(p), %p, E α , % α .

1996Pa01: ¹⁶⁶Ir produced as a fusion evaporation product in the ¹¹²Sn+⁵⁸Ni reaction, with $E(^{58}Ni)=297$ and 329 MeV. The ¹¹²Sn target (enrichment not given) was $\approx 0.9 \text{ mg/cm}^2$ thick. The recoil products were separated in flight in the Daresbury recoil mass spectrometer and implanted in a double-sided silicon-strip detector. This detector (energy resolution $\leq 20 \text{ keV FWHM}$) was used to study position and time correlations of the decay events. Measured energies and intensities of the emitted particles and nuclide $T_{1/2}$ values.

¹⁶²Re Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments		
173 <i>13</i>	(9 ⁺)	77 ms 9	J^{π} : from	from adopted values. adopted values. om adopted values.	
α radiations					
Eα	E(level)) $I\alpha^{\ddagger}$	HF [†]	Comments	
6560 5	173	100	2.25 19	E α : weighted average of 6561 5 (1997Da07) and 6556 11 (1996Pa01).	

Ia: only one α group is reported.

[†] The nuclear radius parameter $r_0(^{162}\text{Re})=1.5562\ 69$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides.

[‡] For absolute intensity per 100 decays, multiply by 0.982 6.

For another study, see 1981Ho10. ¹⁶⁶Ir produced by ⁵⁸Ni bombardment. α spectrum of recoil nuclides was measured with a Si detector following velocity selection. 1981HoZM give the same data.