166 Ir α decay (10.5 ms) 1997Da07

History Citation Literature Cutoff Date Full Evaluation N. Nica NDS 195,1 (2024) 19-Sep-2023

Parent: 166 Ir: E=0.0; J^{π} =(2⁻); $T_{1/2}$ =10.5 ms 22; $Q(\alpha)$ =6722 6; $\%\alpha$ decay=93.1 29

¹⁶⁶Ir-E: Additional information 1.

 166 Ir-J^π: Additional information 2.

 166 Ir- $T_{1/2}$: Additional information 3.

¹⁶⁶Ir-Q(α): Additional information 4.

¹⁶⁶Ir- $\%\alpha$ decay: From measured proton and α intensities, assuming negligible ε + β ⁺ branching.

Additional information 5.

All data are from 1997Da07, unless noted otherwise. 166 Ir produced in the 92 Mo(78 Kr,p3n) reaction, with E(78 Kr)=384 MeV. Enriched (>97% 92 Mo) target of thickness 580 μ g/cm², presumably evaporated onto a 700 μ g/cm² Al backing. The recoil nuclei were separated according to their mass-to-charge ratio in the Fragment Mass Analyzer at the ATLAS accelerator facility. After passing through a thin position-sensitive parallel-grid avalanche counter, located at the focal plane of the analyzer, the recoils were implanted into a double-sided silicon-strip detector. Both position and time correlations between the recoils and their decay products were measured, as well as energies and intensities of their emitted radiations. Results include $T_{1/2}$, E(p), %p, $E\alpha$, % α .

¹⁶²Re Levels

Comments J^{π} : unhindered α transition from a (2⁻) level in ¹⁶⁶Ir.

α radiations

$$\frac{E\alpha}{6562 \ 6} \quad \frac{E(\text{level})}{0.0} \quad \frac{I\alpha^{\ddagger}}{100} \quad \frac{HF^{\dagger}}{1.7 \ 4}$$

[†] The nuclear radius parameter $r_0(^{162}\text{Re})=1.5562$ 69 is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides.

[‡] For absolute intensity per 100 decays, multiply by 0.931 29.