¹⁶⁶Pt α decay (0.3 ms) 1996Bi07

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023		

Parent: ¹⁶⁶Pt: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=0.3$ ms *1*; Q(α)=7292 *7*; % α decay=?

Additional information 1.

7110 15

0.0

100

1.000

All data are from the decay study of 1996Bi07, unless noted otherwise.

¹⁶⁶Pt produced in the ${}^{92}Mo({}^{78}Kr,4n)$ reaction, with E(${}^{78}Kr$)=348 MeV. Enriched (>97% ${}^{92}Mo$) metal-foil target of thickness

 0.565 mg/cm^2 . The recoil products were separated according to their mass-to-charge ratio in the Fragment Mass Analyzer at the ATLAS accelerator facility. After passing through a thin position-sensitive parallel-grid avalanche counter, located at the focal plane of the analyzer, the recoils were implanted in a double-sided silicon-strip detector. Both position and time correlations between the recoil nuclei and their decay products were studied. Measured $T_{1/2}$ and $E\alpha$.

¹⁶²Os Levels

E(level)	\mathbf{J}^{π}	T _{1/2} 2.06 ms 9	Comments		
0.0	0^{+}		ms 9	$T_{1/2}$: from adopted values.	
					α radiations
Eα	E(le	vel)	Iα	HF^{\dagger}	

[†] The nuclear radius parameter $r_0(^{162}Os)=1.548$ 19 is deduced by assuming HF=1.0 for the ground-state to ground-state alpha decay branch.