106 Cd(58 Ni,2n γ) 2004Jo12

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023	

Additional information 1. 106 Cd(58 Ni,2n γ), E(58 Ni)=270 MeV. Target was a self-supporting 106 Cd foil (enrichment=96%) of nominal thickness 0.9 mg/cm². γ radiation studied using the JUROGAM spectrometer, consisting of 43 escape-suppressed Ge detectors. The recoiling fusion-evaporation residues separated from the products of fission and the beam projectiles using the gas-filled recoil spectrometer RITU and deposited in the focal plane of the GREAT spectrometer, consisting of a multiwire proportional counter, Si and Ge detectors, and an implantation detector involving two double-sided silicon-strip detectors. Parent-daughter relations among the reaction products were established using the recoil-tagging technique. Measured E γ , E α , I γ , $\gamma\gamma$, $\alpha\gamma\gamma$.

¹⁶²Os Levels

E(level)	$J^{\pi \dagger}$	Comments
0.0	0+	
706.7 [‡] <i>3</i>	(2^{+})	
1406.5 [‡] 8	(4^{+})	
1990.6 [‡] 8	(6^{+})	
2189.5 [‡] 8	(8^{+})	E(level): regardless of the ordering of the γ 's deexciting this level and those lying below it, this energy may
		be independent of that ordering.

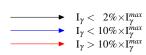
[†] Except for the g.s., the values are those suggested by 2004Jo12 based on considerations from systematics and expected nuclear

$\gamma(^{162}\text{Os})$

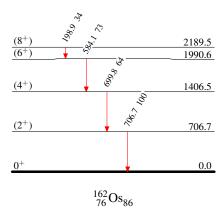
The placement of the γ 's in the level scheme is that of the authors and is based on considerations of intensity and expectations from systematics in neighboring nuclides.

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
198.9 [†] <i>1</i>	34 6	2189.5	(8 ⁺)	1990.6	(6 ⁺)	
^x 270.3 2	14 <i>4</i>					
^x 342.9 2	19 5					
^x 375.5 2	23 6					
584.1 [†] 2	73 14	1990.6	(6^{+})	1406.5	(4^{+})	E_{γ} : from $\alpha\gamma\gamma$ coin, 2004Jo12 report that this transition is a doublet.
^x 685.2 2	76 <i>15</i>					
699.8 [†] 7	64 16	1406.5	(4^{+})	706.7	(2^{+})	
706.7 [†] <i>3</i>	100 19	706.7	(2^{+})	0.0	0^{+}	
^x 715.0 4	28 8					
^x 788.7 5	61 <i>13</i>					

 $[\]dagger \gamma$ is in coin with the other placed γ' s, but its ordering in the level scheme is not established. Its placement is that proposed by 2004Jo12.


[‡] Value based on the listed placement of the deexciting γ , as reported by 2004Jo12. If the deexciting γ belongs elsewhere in the level scheme, then this energy will have to be appropriately modified.

 $^{^{}x}$ γ ray not placed in level scheme.


¹⁰⁶Cd(⁵⁸Ni,2nγ) 2004Jo12

Level Scheme

Intensities: Relative I_{γ}

Legend

