¹⁴⁷Sm(¹⁹F,4n) 1980BeYG

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

 Additional information 1.
1980BeYG used the ¹⁴⁷Sm(¹⁹F,4n) reaction to produce ¹⁶²Lu in order to study those ¹⁶²Yb levels that were produced in the decay of ¹⁶²Lu. The center-of-mass energy of the ¹⁴⁷Sm+¹⁹F system was 80 MeV, chosen to optimize the contribution of the 4n channel relative to those of of the 3n and 5n channels. A 1 mg/cm² target of ¹⁴⁷Sm (enrichment not reported) was used. After bombardment, the target was rotated to a counting position "off-line", where the γ radiation was studied using a large-volume Ge(Li) detector. The γ spectra were measured at nine different times over a period of \approx 5.3 min to determine the half-lives of the ¹⁶²Lu parent states. Levels in ¹⁶²Lu decaying with half-lives of 81 s, 93 s and 114 s were observed.

¹⁶²Lu Levels

E(level)	J^{π}	T _{1/2} †	Comments
0	1-	1.37 min 2	$T_{1/2}$: from adopted values. J ^{π} : from the Adopted Values. Value previously suggested by 1980BeYG, by analogy with the situation in ¹⁶⁴ Lu, where 1 ⁻ and 4 ⁻ states are also expected at low energies in ¹⁶² Lu. Possible configuration is (ν 3/2[521])-(π 1/2[411]).
Х	(4 ⁻)	1.5 min	J^{π} : value suggested by 1980BeYG. By analogy with the situation in ¹⁶⁴ Lu, 1 ⁻ and 4 ⁻ states are expected at low energies in ¹⁶² Lu. The possible configuration is (π 5/2[4021)+(γ 3/2[521]).
У		1.9 min	

[†] from 1980BeYG, $\gamma(t)$, unless noted otherwise.