		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

 $Q(\beta^-)=294 \ 3; \ S(n)=6916 \ 4; \ S(p)=5274 \ 3; \ Q(\alpha)=1005 \ 3$ 2021Wa16 S(2n)=15801 15, S(2p)=12782 3 (2021Wa16).

¹⁶²Ho Levels

The $K^{\pi}=5^+$ band reported by 1972WaYO with levels at 286, 398, 527, and 673 keV is not included here. Measured Coulomb displacement energies: 1983Ja03.

Model calculations that may be of interest include configuration assignments 1966So02, 1982Si02, and 1992Kv01; moments and radii 1993Pa04; and level energies 1995Li40.

For discussions of the systematic features of signature inversion in the $(\pi h_{11/2})(\nu i_{13/2})$ bands in this mass region, see, e. g., 2001Ri19 and 2003Ya19.

Data for the 106 level and the lower-lying ones are from the ¹⁶²Ho IT decay data set. Values for the levels above this are from the in-beam studies.

Cross Reference (XREF) Flags

Α	160 Gd(⁷ Li,5n γ)
---	--

- **B** 162 Ho IT decay (67.0 min)
- $C \qquad {}^{162}\text{Dy}(d,2n\gamma),(p,n\gamma),$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0#	1+	15.0 min <i>10</i>	ABC	%ε+%β ⁺ =100 μ=2.32 3; Q=0.71 3 XREF: A(0.0). J ^π : J from atomic-beam magnetic resonance measurement (1969Ek01,1988NeZZ) and π from allowed ε decay (log ft=5.0 and 4.9, respectively) to the 0 ⁺ g.s. and the first 2 ⁺ level in ¹⁶² Dy. Configuration=(π 7/2[523])-(ν 5/2[523]) from expected Nilsson states for the odd particles and supported by calculated (1988Ra41) μ=2.60 and Q=0.65. T _{1/2} : average of 15.0 min 10 (1965St08) and 15 min 1 (1973Ba21). Others: 11.8 min 10 (1961Jo10), 12 min 2 (1969Ak01), and 15 min (1969Ek01). μ: from 1988NeZW as quoted in 1988Ra41. Q: from 1988NeZW as quoted in 1988Ra41. For ¹⁶² Ho- ¹⁶⁰ Ho, Δ <r<sup>2>≈0.20 fm² (taken from plot of 1989Al27 by evaluator). In an evaluation of nuclear rms charge radii, 2013An02 report <r<sup>2>^{1/2}=5.182 fm 31.</r<sup></r<sup>
38.34 [@] 2	2+	1.2 ns 2	ABC	J ^{π} : from M1 γ to 1 ⁺ level and expected structure of 1 ⁺ band. T _{1/2} : from 1978Sc10 by γ -ce coincidences following ¹⁶² Ho IT decay (67 min): also 1977AnZG by same authors.
96.07 [#] 2	3+		ABC	J^{π} : from M1 γ to 2 ⁺ level and expected structure of 1 ⁺ band.
105.87 ^{&} 6	6-	67.0 min 7	ABC	$%ε+%β^+=37$; %IT=63 μ=+3.60 4; Q=4.0 7 E(level): from ¹⁶² Ho IT decay. J ^π : J from atomic-beam magnetic resonance measurement (1969Ek01) and π from allowed ε decay (log ft=4.77) to 5 ⁻ level in ¹⁶² Dy. Configuration=(π 7/2[523])+(ν 5/2[642]) with an admixture of configuration=(π 7/2[523])+(ν 3/2[651]) from expected Nilsson states for the odd particles and supported by calculated μ=3.3 (1988Ra41). T _{1/2} : weighted average of 68 min 2 (1964Ma10), 65 min 5 (1965GrZZ), 67 min 2 (1969Ak01), 66 min 3 (1969Ho17), 63.5 min 19 (1971Wo09), and 68 min 1

Continued on next page (footnotes at end of table)

¹⁶²Ho Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
				 (1973Ba21). Others: 1957Mi67, 68 min (1961Jo10), 65 min 5 (1965GrZZ), 68 min (1969Ek01), and 72 min (1973St22). %ε+%β⁺,%IT: from evaluator's analysis based on Ice(L)(38.34)/Ice(K)(184.99) ratio measured by 1961Jo10, with 38.34γ in ¹⁶²Ho IT decay (67 min) scheme and 184.99γ in ¹⁶²Ho ε decay (67.0 min) scheme, giving %IT=63 and %ε=37. See ¹⁶²Ho IT decay (67.0 min) dataset for details. µ: from the compilation by 2014StZZ and based on the measurement of 1989Al27, where the value is 3.59 4: other: 3.60 9 from 1988NeZW, 1988Ra41. Q: from the compilation by 2016St14 and based on the measurement of 1989Al27; others: 1988NeZW, 1988Ra41. For the 6⁻ isomer (67 min), 1989Al27 give for ¹⁶²Ho-¹⁶⁰Ho, Δ<r<sup>2>=0.156 fm² 7 and</r<sup>
171.7 [@]	4+		A C	for ¹⁰⁵ Ho- ¹⁰² Ho, $\Delta < r^2 >= 0.207$ fm ² 7. J ^{π} : from γ to 3 ⁺ level and expected structure of 1 ⁺ band.
176.5 ^{<i>a</i>} 179.8 ^{<i>c</i>}	7- 1 ⁻	8.7 ns 2	A C A C	E(level): the 179 γ has been placed from a level at 179 keV as suggested by 1978Sc10, rather than from a level at 286 keV with $J^{\pi}=5^+$ as given by 1972WaYO and others. J^{π} : J^{π} and configuration proposed by 1978Sc10; this would be the other coupling of the two orbitals in the 6 ⁻ , 106 state. T _{1/2} : from $\gamma\gamma$ (t) in ¹⁶² Dy(p,n γ) (1978Sc10). Other: 9 ns (1973GoYV).
184.8 <mark>d</mark>	(6^{+})		Α	
266.8 ^{&}	8-		A C	
270.0 [#]	5+		AC	J^{π} : γ to 4 ⁺ level and expected band structure.
301.2 ^e	(7^{+})		Α	
377.4 ^a	9-		A C	
385.9 [@]	6+		A C	J^{π} : γ' s to 4 ⁺ and 5 ⁺ levels and expected band structure.
389.7 <mark>b</mark>	(6 ⁻)		Α	
437.1 ^d	(8^{+})		Α	
476.0°	(7 ⁻)		Α	
507.8 ^{cc}	10-		AC	
521.5"	7*		Α	
563.0°	(8^{-})		A	
592.5^{-1}	(9*)		A A C	
$672.8^{@}$	8+		A	
687.4 ^C	(9 ⁻)		A	
765.8 <mark>d</mark>	(10^{+})		Α	
811.2 ^b	(10^{-})		Α	
828.2 <mark>&</mark>	12-		AC	
846.4 [#]	9+		Α	
940.1 ^e	(11^{+})		Α	
978.6 ^C	(11^{-})		Α	
1018.2 ^a	13-		AC	
1030.8 °	10+		A	
1144.0°	(12^{-})		A	
1146.7 ^u	(12 ⁺)		A	
1225.8°	14-		AC	
1244.2"	11^{+}		Α	

¹⁶²Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1355.0 ^e	(13^{+})	A	
1358.6 ^C	(13^{-})	A	
1456.2 ^{<i>a</i>}	15-	AC	
1457.2 [@]	12^{+}	Α	
1566.7 <mark>b</mark>	(14 ⁻)	A	
1598.7? ^d	(14^{+})	A	
1697.6 <mark>&</mark>	16-	Α	
1709.1 [#]	13+	Α	
1827.6 ^C	(15 ⁻)	Α	
1834.5 ^e	(15^{+})	Α	
1948.4 [@]	14^{+}	A	
1970.5 ^a	17^{-}	Α	
2078.2 ^b	(16 ⁻)	Α	
2234.6? [#]	15^{+}	A	
2241.2 ^{&}	18^{-}	A	
2380.4 [°]	(17^{-})	Α	
2559.2 ^a	19-	Α	
2672.5 ^b	(18 ⁻)	Α	
2852.7 <mark>&</mark>	20^{-}	Α	
3006.0 [°]	(19 ⁻)	Α	
3216.7 ^a	21-	Α	
3529.1 &	22-	Α	
3938.9 ^a	23-	Α	
4265.0 ^{&}	24-	Α	
4717.0 ^a	25-	A	
5053.0 ^{&}	26^{-}	Α	
5537.0 ^a	27-	A	
5882.0 ^{&}	28-	Α	
$0+x^{g}$	(5^{+})	A	Additional information 2.
101.0+x ^J	(6^{+})	Α	
$219.4 + x^{g}$	(7+)	A	
$365.2 + x^{J}$	(8^+)	A	
$521.0+x^{8}$	(9^{+})	A	
$709.6 \pm x^{3}$	(10^{+}) (11^{+})	A A	
$1129.3 \pm x f$	(11^{+})	Δ	
$0+y^i$	(12^{+})	Δ	Additional information 3
$217.2 + v^{h}$	(10^{+})	Δ	
$454.7 \pm v^{i}$	(10^{-})	Δ	
$710.3 \pm v^{h}$	(12^+)	Δ	
084.0 ± 10.3	(12)	л л	
$1070 ()^{h}$	(13)	л •	
12/2.0+y"	(14 ⁺)	A	
1581.5+y'	(15^{+})	Α	

[†] Level energies computed from a least-squares fit to the listed $E\gamma$ values. For γ 's for which no $\Delta E\gamma$ values are given, an uncertainty of 1 keV was assumed in the fitting. For those levels for which the connecting γ 's have no listed uncertainties, no

¹⁶²Ho Levels (continued)

uncertainty is given.

- [‡] Values for those levels seen in the in-beam studies are based on the observed pattern of the deexciting γ 's and the expected rotational band structure. Specific arguments are not given for individual cases.
- [#] Band(A): $K^{\pi}=1^+$ g.s. band, $\alpha=1$ branch. Configuration=(π 7/2[523])-(ν 5/2[523]). A=9.65; B=-0.0055; A₂=+0.0183, computed from the 1⁺ through 4⁺ levels. Note that these parameters underpredict the 5⁺ and 6⁺ level energies by \approx 5 keV.
- [@] Band(a): $K^{\pi}=1^+$ g.s. band, $\alpha=0$ branch. Configuration=(π 7/2[523])-(ν 5/2[523]). See the comment of the $\alpha=1$ branch.
- [&] Band(B): $K^{\pi}=6^{-}$ band dominant configuration= $(\pi 7/2[523])+(\nu 5/2[642]), \alpha=0$ branch, with an admixture of $(\pi 7/2[523])+(\nu 3/2[651]).$
- ^{*a*} Band(b): $K^{\pi}=6^{-}$ band dominant configuration= $(\pi 7/2[523])+(\nu 5/2[642]), \alpha=1$ branch, with an admixture of $(\pi 7/2[523])+(\nu 3/2[651]).$
- ^b Band(C): $K^{\pi} = 1^{-}$ band, $\alpha = 0$ branch. Configuration= $(\pi 7/2[523]) \cdot (\nu 5/2[642])$.
- ^{*c*} Band(c): $K^{\pi}=1^{-}$ band, $\alpha=1$ branch. Configuration= $(\pi 7/2[523])-(\nu 5/2[642])$.
- ^d Band(D): $K^{\pi}=6^{+}$ band, $\alpha=0$ branch. Configuration= $(\pi 7/2[523])+(\nu 5/2[523])$.
- ^{*e*} Band(d): $K^{\pi}=6^+$ band, $\alpha=1$ branch. Configuration= $(\pi 7/2[523])+(\nu 5/2[523])$.
- ^{*f*} Band(E): K^π=5⁺ band, α=0 branch. Configuration=(π 7/2[523])+(ν 3/2[521]).
- ^g Band(e): $K^{\pi} = 5^+$ band, $\alpha = 1$ branch. Configuration= $(\pi 7/2[523]) + (\nu 3/2[521])$.
- ^{*h*} Band(F): $K^{\pi}=9^+$ band, $\alpha=0$ branch. Configuration= $(\pi 7/2[523])+(\nu 11/2[505])$.
- ^{*i*} Band(f): $K^{\pi}=9^+$ band, $\alpha=1$ branch. Configuration= $(\pi 7/2[523])+(\nu 11/2[505])$.

$\gamma(^{162}\text{Ho})$

Additional information 4.

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.	α [@]	Comments
38.34	2+	38.34 2	100	0	1+	M1	6.88	B(M1)(W.u.)= $0.041 + 9 - 6$ α (L)= $5.37 \ 8; \ \alpha$ (M)= $1.187 \ 17$
96.07	3+	57.74 2	100 8	38.34	2+	M1	12.63	$\alpha(N)=0.275$ 4; $\alpha(O)=0.0400$ 6; $\alpha(P)=0.00223$ 4 $\alpha(K)=10.57$ 15; $\alpha(L)=1.611$ 23; $\alpha(M)=0.356$ 5 $\alpha(N)=0.0826$ 12; $\alpha(O)=0.01199$ 17; $\alpha(P)=0.000670$ 10
		96.06 <i>3</i>	1.8 2	0	1+	E2	3.28	$\alpha(K)=1.210\ 17;\ \alpha(L)=1.591\ 23;\ \alpha(M)=0.384\ 6$ $\alpha(N)=0.0865\ 13;\ \alpha(Q)=0.01026\ 15;\ \alpha(P)=5.01\times10^{-5}\ 7$
105.87	6-	9.80 5	100	96.07	3+	E3		B(E3)(W.u.)=1.41×10 ⁴ 5 exceeds RUL=100. The computed B(E3)(W.u.) value is regarded as approximate only, since the α value cannot be reliably calculated. See the comment in the ¹⁶² Ho IT decay data set. The value listed there, 4.77×10 ⁷ 7, was used in the B(E3)(W.u.) calculation
171.7	4+	75.6	100	96.07	3+	[M1,E2]	7.1 13	$\alpha(K)=3.4\ 15;\ \alpha(L)=2.8\ 21;\ \alpha(M)=0.67\ 51$ $\alpha(N)=0.15\ 12;\ \alpha(O)=0.018\ 13;\ \alpha(P)=2\ 0\times10^{-4}\ 11$
176.5	7-	70.5	100	105.87	6-	[M1,E2]	9.1 20	$\alpha(K) = 0.12, \alpha(L) = 0.010, \alpha(L) = 0.010, \alpha(L) = 0.010, \alpha(K) = 0.010, \alpha(K) = 0.012, \alpha(L) = 0.012, \alpha(K) = 0.012, \alpha$
179.8	1-	141.5	24	38.34	2+	[E1]	0.1256	$B(E1)(W.u.)=1.66\times10^{-6} +40-36$ α(K)=0.1053 15; α(L)=0.01589 23; α(M)=0.00350 5 α(N)=0.000800 12; α(O)=0.0001101 16; α(P)=5.04×10^{-6} 7 I _γ : value computed from partial γ half-lives given by 1978Sc10; based on private communication from authors of 1972WaYO.
		179.8	100	0	1+	[E1]	0.0665	B(E1)(W.u.)= $3.37 \times 10^{-6} + 20 - 22$ α (K)= $0.0560 \ 8; \ \alpha$ (L)= $0.00827 \ 12; \ \alpha$ (M)= $0.00182 \ 3$ α (N)= $0.000417 \ 6; \ \alpha$ (O)= $5.80 \times 10^{-5} \ 9;$ α (P)= $2.76 \times 10^{-6} \ 4$

Continued on next page (footnotes at end of table)

$\gamma(^{162}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
184.8	(6^{+})	79.1		105.87	6-	
266.8	8-	90.4		176.5	7-	
		160.5		105.87	6-	
270.0	5+	98.2	100	171.7	4+	
301.2	(7^{+})	116.5		184.8	(6^{+})	
		124.7		176.5	7-	
377.4	9-	110.5		266.8	8-	
		201.0		176.5	7-	
385.9	6+	115.9		270.0	5+	
		214.3		171.7	4+	
437.1	(8^+)	136.0		301.2	(7^{+})	
		170.0		266.8	8-	
		252.5		184.8	(6^{+})	
		260.5		176.5	7-	
476.0	(7^{-})	86.5		389.7	(6 ⁻)	
507.8	10-	130.5	100	377.4	9-	
		240.9	29	266.8	8-	
521.5	7+	131.5		389.7	(6 ⁻)	
		135.5		385.9	6+	
		251.4		270.0	5+	
563.0	(8 ⁻)	87.2		476.0	(7^{-})	
		173.5		389.7	(6 ⁻)	
592.3	(9+)	155.5		437.1	(8+)	
		215.0		377.4	9-	
<		291.1	100	301.2	$('/^{+})$	
658.2	11	150.5	100	507.8	10	
(72.0	0+	280.7	32	377.4	9	
6/2.8	8'	110.0		503.0	(8)	
		151.0		521.5	(7-)	
		190.7		4/0.0	(/)	
607 1	(0-)	287.0		383.9 562.0	(9^{-})	
087.4	(9)	124.3		JUJ.U 476.0	(0)	
765 9	(10^{+})	211.3		4/0.0	(7)	
/05.0	(10)	378.5		392.3 437 1	(9)	
811.2	(10^{-})	124.0		437.1 687.4	(0^{-})	
011.2	(10)	248.0		563.0	(9)	
878 2	12-	170.0	100	658.2	11-	
020.2	12	320.4	64	507.8	10^{-11}	
846.4	0 +	159.0	01	687.4	(9^{-})	
010.1	/	173.5		672.8	8+	
		324.7		521.5	7 ⁺	
940 1	(11^{+})	174.0		765.8	(10^{+})	
710.1	(11)	348.0		592.3	(9^+)	
978.6	(11^{-})	167.4		811.2	(10^{-})	
	()	291.3		687.4	(9 ⁻)	
1018.2	13-	189.9	96	828.2	12-	
		360.0	100	658.2	11^{-}	
1030.8	10^{+}	184.5		846.4	9+	
		219.7		811.2	(10 ⁻)	
		358.2		672.8	8+	
1144.0	(12^{-})	165.3		978.6	(11^{-})	
	. /	332.7		811.2	(10-)	
1146.7	(12^{+})	206.5		940.1	(11^{+})	
		381.0		765.8	(10^{+})	

Continued on next page (footnotes at end of table)

					<u>.</u>				
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	\mathbf{E}_{f}	${ m J}_f^\pi$
1225.8	14-	207.5	100	1018.2 13-	3216.7	21-	364.0	2852.7	20-
		397.7	93	828.2 12-			657.5	2559.2	19-
1244.2	11^{+}	213.5		1030.8 10+	3529.1	22^{-}	312.5	3216.7	21-
		397.5		846.4 9+			676.5	2852.7	20-
1355.0	(13^{+})	208.4		1146.7 (12	+) 3938.9	23-	410.0	3529.1	22^{-}
		414.7		940.1 (11	+)		722.0	3216.7	21^{-}
1358.6	(13 ⁻)	214.5		1144.0 (12	-) 4265.0	24^{-}	326	3938.9	23-
		380.1		978.6 (11	-)		736	3529.1	22^{-}
1456.2	15-	230.3	100	1225.8 14-	4717.0	25-	452	4265.0	24-
		438.0	54	1018.2 13-			778	3938.9	23-
1457.2	12^{+}	213.0		1244.2 11+	5053.0	26-	336	4717.0	25-
		426.7		1030.8 10+			788	4265.0	24^{-}
1566.7	(14^{-})	208.2		1358.6 (13-	-) 5537.0	27-	484	5053.0	26-
		422.7		1144.0 (12	-)		820	4717.0	25-
1598.7?	(14^{+})	452.0 <mark>&</mark>		1146.7 (12	⁺) 5882.0	28-	345	5537.0	27-
1697.6	16-	241.2		1456.2 15-			829	5053.0	26-
		472.0		1225.8 14-	101.0+x	(6^{+})	100.9	0+x	(5^{+})
1709.1	13+	252.0		1457.2 12+	219.4+x	(7^{+})	118.5	101.0+x	(6^{+})
		464.5		$1244.2 \ 11^+$			219.5	0+x	(5^{+})
1827.6	(15^{-})	261.0		1566.7 (14-	-) 365.2+x	(8^{+})	146.0	219.4+x	(7^{+})
		469.0		1358.6 (13	-)		264.1	101.0+x	(6^{+})
1834.5	(15^{+})	479.5		1355.0 (13	F) 521.0+x	(9+)	155.6	365.2+x	(8^+)
1948.4	14+	239.0		1709.1 13+			301.5	219.4+x	(7^{+})
		491.5		1457.2 12+	709.6+x	(10^{+})	188.7	521.0+x	(9 ⁺)
1970.5	17-	273.0		1697.6 16-		(4 4 ± 5	344.6	365.2+x	(8^+)
	(4 × -)	514.4		1456.2 15	899.5+x	(11^{+})	189.8	709.6+x	(10^{+})
2078.2	(16^{-})	250.5		1827.6 (15	-) -)	(10+)	378.3	521.0+x	(9 ⁺)
		511.5		1566.7 (14) 1129.3+x	(12^{+})	229.5	899.5+x	(11')
2234.6?	15^{+}	525.5 °		$1709.1 \ 13^+$			420.0	709.6+x	(10^{+})
2241.2	18-	270.5		1970.5 17-	217.2+y	(10^{+})	217.4	0+y	(9+)
		543.5		1697.6 16-	454.7+y	(11^{+})	237.5	217.2+y	(10^{+})
2380.4	(17^{-})	302.0		2078.2 (16	-)		454.5	0+y	(9 ⁺)
		552.9		1827.6 (15	⁻) 710.3+y	(12^{+})	255.6	454.7+y	(11^{+})
2559.2	19-	317.5		2241.2 18-			493.2	217.2+y	(10^{+})
		589.0		1970.5 17-	984.0+y	(13^{+})	273.5	710.3+y	(12^+)
2672.5	(18^{-})	292.0		2380.4 (17	-))	(1.4+)	529.2	454.7+y	(11^+)
	• • •	594.5		2078.2 (16	-) 1272.6+y	(14^{+})	288.5	984.0+y	(13^+)
2852.7	20-	293.5		2559.2 19	1501 5	(15+)	562.5	/10.3+y	(12^{+})
2006.0	(10-)	011.5		2241.2 18	-> 1581.5+y	(15')	309.0	12/2.6+y	(14')
3006.0	(19)	555.5 (25.5		20/2.5 (18)		597.5	984.0+y	(13')
		625.5		2380.4 (17)				

$\gamma(^{162}\text{Ho})$ (continued)

[†] The γ 's associated with the 5⁺ band of 1972WaYO are not included here because the 179 γ proposed to depopulate the bandhead at 286 keV has been shown to depopulate a level at 179 keV.

[‡] Values for the γ 's between levels in the in-beam studies quoted to tenths of a keV are from the light ion-induced reactions. 2004Es01 report $E\gamma$ values to only the nearest keV.

[#] Values for the γ 's between levels in the in-beam studies are from the light-ion induced reactions. 2004Es01 and 2005Li63 do not report $I\gamma$ values. [@] Additional information 5.

& Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

5 ⁺)			1581.5+y
4 ⁺)			1272.6+y
	2		
3 ⁺)	·		984.0+y
2 ⁺)			710.3+y
± ⁺) ▼	↓ 5 ² 5 ² 5 ²		454.7+y
)+)	↓ ↓ ⁵ . (2)		217.2+y
⁺)	<u> </u>		0+y
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1129.3+x
+)	→ ^(²⁽²⁾) → ⁽²⁾		899.5+x_
⁺)			709.6+x
)			521.0+x
)			365.2+x
)	↓ ↓ ⁷ ² ³ ⁶ ³		219.4+x
)		-x-	<u>101.0+x</u>
)			<u> </u>
		↓ ² ² ³	5537.0
-		↓ ² ² ² ²	5053.0
-		× × ×	4717.0
		× × ×	4265.0
			3938.9
			3529.1
-		Ļ	3216.7
			0

7

#### **Adopted Levels, Gammas** Legend Level Scheme (continued) Intensities: Relative photon branching from each level $\gamma = - - - \rightarrow \gamma$ Decay (Uncertain) 37.55 37.25 $22^{-}$ 3529.1 ^{364,0} 3216.7 $21^{-}$ ین ب_ی ب <u>(19</u>⁻) 3006.0 6115 2935 335 $20^{-}$ 2852.7 5945 292.0 (18-) 2672.5 0.680 0.51E 19-2559.2 0.5° 0.0° (17⁻) 2380.4 543. 270.5 18-2241.2 15+ 2234.6 511.5 230.5 (16⁻) 2078.2 5144 273.0 1970.5 $17^{-}$ $14^{+}$ 1948.4 2. S. $(15^+)$ 1834.5 (15⁻) ¥ 1827.6 464.5 252.0 $\frac{13^+}{16^-}$ 1709.1 1697.6 20°-7-7-7- $\frac{(14^+)}{(14^-)}$ 1<u>598.7</u> 1566.7 -~~ 22.3 $\frac{12^+}{15^-}$ 1457.2 1456.2 $\frac{(13^{-})}{(13^{+})}$ 1358.6 1355.0 $11^{+}$ 1244.2 $\frac{14^{-}}{(12^{+})}$ 1225.8 ¥ 1146.7 $(12^{-})$ ¥ 1144.0 $10^{+}$ 1030.8 13-1018.2 $1^+$

0 15.0 min 10

¹⁶²₆₇Ho₉₅

### Level Scheme (continued)

Intensities: Relative photon branching from each level



15.0 min 10

¹⁶²₆₇Ho₉₅

Level Scheme (continued)

Intensities: Relative photon branching from each level



¹⁶²₆₇Ho₉₅



¹⁶²₆₇Ho₉₅





¹⁶²₆₇Ho₉₅