¹⁶²Ho IT decay (67.0 min) 1999IsZZ Type Author Citation Literature Cutoff Date Full Evaluation N. Nica NDS 195,1 (2024) 19-Sep-2023 Parent: 162 Ho: E=105.87 6; J^{π} =6⁻; $T_{1/2}$ =67.0 min 7; %IT decay≈63 ¹⁶²Ho-%IT decay: from evaluator's analysis based on Ice(L)(38.34)/Ice(K)(184.99) ratio measured by 1961Jo10, with 38.34 γ in ¹⁶²Ho IT decay (67 min) scheme and 184.99 γ in ¹⁶²Ho ε decay (67.0 min) scheme, giving %IT=63 and % ε +% β ⁺=37. These values are also reproduced using Ice(L+M+N)(38.34)/Ice(K+L+M+N)(184.99) from 1961Jo10. One can use data from 1961Ha23 to estimate %IT and % ε +% β ⁺ from the same ratios but more scattered results are obtained, reason for which only the results based on 1961Jo10 data are adopted here. ¹⁶²Ho-%IT decay: Additional information 1. Additional information 10. 1999IsZZ: studied internal-conversion electrons using a constant-field magnetic spectrograph (resolution≈0.04%). Source material produced by proton bombardment of a Ta target followed by chemical purification. Report Ice from various subshells for four transitions, two of which are previously unreported. 1974Vi05: Produced by ¹⁶²Dy(d,2n) on an enriched target. ce and x-ray spectra measured with Si(Li) detector. For other studies, see 1961Jo10, 1961Ha23. Also, 1978Sc10, 1973St22, 1973Ba21, 1971Wo09, 1969Ak01, 1965GrZZ, 1964Ma10, 1957Mi67. Data are from 1999IsZZ, unless noted otherwise. # ¹⁶²Ho Levels | E(level) [†] | $J^{\pi \ddagger}$ | T _{1/2} | Comments | | | | | |-------------------------------|--------------------|------------------|---|--|--|--|--| | 0# | 1+ | 15.0 min 10 | $T_{1/2}$: from 162 Ho Adopted Levels. | | | | | | 38.335 [#] 18 | 2+ | 1.2 ns 2 | T _{1/2} : from 1978Sc10. Additional information 11. | | | | | | 96.071 [#] <i>21</i> | 3 ⁺ | | | | | | | | 105.87 [@] 6 | 6- | 67.0 min 7 | E(level): from a least-squares fit to the listed γ -ray energies.
T _{1/2} : from ¹⁶² Ho Adopted Levels. | | | | | [†] From a least-squares fit to the listed γ -ray energies. The uncertainties are given to only the nearest 0.01 keV. $$\frac{\text{E}_{\gamma}}{9.80\ 5} \quad \frac{\text{I}_{\gamma}^{\dagger}}{1.90\times 10^{-6}\ 23} \quad \frac{\text{E}_{i}(\text{level})}{105.87} \quad \frac{\text{J}_{i}^{\pi}}{6^{-}} \quad \frac{\text{E}_{f}}{96.071} \quad \frac{\text{J}_{f}^{\pi}}{3^{+}} \quad \frac{\text{Mult.}}{\text{E3}} \quad \frac{\alpha^{\ddagger}}{4.77\times 10^{7}\ 7} \quad \frac{\text{I}_{(\gamma+ce)}^{\dagger}}{100} \quad \frac{\text{Comments}}{\text{\%I}_{\gamma}\approx 1.2\times 10^{-6}} \\ \text{I}_{\gamma}: \text{ calculated with the formula} \\ \text{I}_{\gamma}=[\text{Ice}(\text{M2})+\alpha(\text{M3})+\alpha(\text{N2})+\alpha(\text{N3})]/[\alpha(\text{M2})+\alpha(\text{M3})+\alpha(\text{N2})+\alpha(\text{N3})]/[\alpha(\text{M2})+\alpha(\text{M3})+\alpha(\text{N2})+\alpha(\text{N3})]/[\alpha(\text{M2})+\alpha(\text{M3})+\alpha(\text{N2})+\alpha(\text{N3})]/[\alpha(\text{M2})+\alpha(\text{M3})+\alpha(\text{N2})+\alpha(\text{N3})]/[\alpha(\text{M2})+\alpha(\text{M3})+\alpha(\text{N2})+\alpha(\text{N3})]/[\alpha(\text{M2})+\alpha(\text{M3})+\alpha(\text{N2})+\alpha(\text{N3})]/[\alpha(\text{M2})+\alpha(\text{M3})+\alpha(\text{N3})+\alpha(\text{N3})+\alpha(\text{N3})]/[\alpha(\text{M2})+\alpha(\text{M3})+\alpha(\text{N3})+\alpha(\text$$ [‡] From ¹⁶²Ho Adopted Levels. [#] Band(A): $K^{\pi}=1^{+}$ band. Configuration= $(\pi 7/2[523])-(\nu 5/2[523])$. [@] Band(B): $K^{\pi}=6^{-}$ bandhead. Configuration= $(\pi 7/2[523])+(\nu 5/2[642])$ with a mixture of configuration= $(\pi 7/2[523])+(\nu 5/2[642])$ with a mixture of configuration= $(\pi 7/2[523])+(\nu 5/2[642])$. # ¹⁶²Ho IT decay (67.0 min) 1999IsZZ (continued) # γ ⁽¹⁶²Ho) (continued) | | | | | | | _ | | | | |----------------|------------------------|--------------|----------------------|----------------|----------------------|-------|---------------------|-----------------------------|--| | E_{γ} | I_{γ}^{\dagger} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbb{E}_f | \mathbf{J}_f^{π} | Mult. | α^{\ddagger} | $I_{(\gamma+ce)}^{\dagger}$ | Comments | | | | | | | | | | | Mult.: from Ice(M2)/Ice(M3)/Ice(N2,N3)=10 2/10 2/4.5 7 (1999IsZZ); α: computed using RAINE (2002Ba85). Since Eγ lies so close to the L1 and L2 subshell binding energies, α cannot be reliably calculated by standard BrIcc code, reason for which RAINE computer code package was used. | | 38.34 2 | 12.7 11 | 38.335 | 2+ | 0 | 1+ | M1 | 6.88 | 100 9 | I _(γ+ce) : I(γ +ce)=90 11 calculated from I γ and α , which covers the expected I(γ +ce)=100. ce(L)/(γ +ce)=0.682 6; ce(M)/(γ +ce)=0.151 3; | | 30.34 2 | 12.7 11 | 36.333 | 2 | O | 1 | IVII | 0.00 | 100 9 | $ce(N)/(\gamma+ce)=0.0320$, $ce(N)/(\gamma+ce)=0.1313$, $ce(N)/(\gamma+ce)=0.03507$; | | | | | | | | | | | ce(O)/(γ +ce)=0.00507 10;
ce(P)/(γ +ce)=0.000283 6
%I γ ≈ 8.0 | | | | | | | | | | | I _γ : weighted average of: 12.7 <i>14</i> , from Ice(L1)=61.5 <i>70</i> and α (L1)=4.85 <i>7</i> ; 12.8 27, from Ice(L2)=5.7 <i>12</i> and α (L2)=0.446 <i>7</i> ; and 12.5 <i>21</i> , from Ice(L3)=0.91 <i>15</i> and α (L3)=0.0726 <i>11</i> (with Ice(L1), Ice(L2) Ice(L3) measured by 1999IsZZ and α (L1), α (L2), α (L3) calculated by code BrIcc). | | | | | | | | | | | Mult., δ : from L-subshell ratios. The evaluator computes, at the 1σ level, the uncertainty in $\delta(\text{E2/M1})$ to be <0.043. Note that 1999IsZZ quote %E2=0.21 12 for this transition. | | 57.74 2 | 7.1 6 | 96.071 | 3+ | 38.335 | 2+ | M1 | 12.63 | 97 8 | ce(K)/(γ +ce)=0.775 6; ce(L)/(γ +ce)=0.1181
22; ce(M)/(γ +ce)=0.0261 5;
ce(N+)/(γ +ce)=0.00699 14
ce(N)/(γ +ce)=0.00606 12;
ce(O)/(γ +ce)=0.000880 17;
ce(P)/(γ +ce)=4.91×10 ⁻⁵ 10
%I γ ≈4.5 | | | | | | | | | | | I _γ : weighted average of: 7.3 9, from Ice(L1)=10.7 13 and α (L1)=1.459 21; 7.0 10, from Ice(L2)=0.92 13 and α (L2)=0.1310 19; and 6.7 14, from Ice(L3)=0.14 3 and α (L3)=0.0209 3 (with Ice(L1), Ice(L2) Ice(L3) measured by 1999IsZZ and α (L1), α (L2), α (L3) calculated by code BrIcc). | | 96.06 <i>3</i> | 0.131 <i>15</i> | 96.071 | 3 ⁺ | 0 | 1+ | E2 | 3.28 | 0.56 7 | Mult., δ : from L-subshell ratios. The evaluator computes, at the 1σ level, the uncertainty in δ (E2/M1) to be <0.023. 1974Vi05 report δ <0.084. However, 1999IsZZ quote %E2=0.29 <i>18</i> for this transition. α (K)=1.210 <i>17</i> ; α (L)=1.591 <i>23</i> ; α (M)=0.384 | | | | | | | | | | | 6; α (N+)=0.0968 14
α (N)=0.0865 13; α (O)=0.01026 15;
α (P)=5.01×10 ⁻⁵ 7
%Iγ≈0.083
I _γ : weighted average of: 0.124 25, from
Ice(L1)=0.15 3 and α (L1)=1.210 17; 0.135 | ### ¹⁶²Ho IT decay (67.0 min) 1999IsZZ (continued) ### γ (162Ho) (continued) E_{γ} $E_{i}(level)$ Comments 27, from Ice(L2)=0.10 2 and α (L2)=0.741 11; and 0.135 27, from Ice(L3)=0.10 2 and α (L3)=0.739 11 (with Ice(L1), Ice(L2) Ice(L3) measured by 1999IsZZ and α (L1), α (L2), α (L3) calculated by code BrIce). Mult.: from relative intensities of K, L2, L3 conversion lines. # Intensities: $I_{(\gamma+ce)}$ per 100 parent decays WIT ≈ 63 Legend $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ 2^{+} 38.335 1.2 ns 2 162 Ho_{95} [†] For absolute intensity per 100 decays, multiply by ≈ 0.63 . [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. # ¹⁶²Ho IT decay (67.0 min) 1999IsZZ