166 W α decay

Type Author Citation Literature Cutoff Date

Full Evaluation N. Nica NDS 195,1 (2024) 19-Sep-2023

Parent: 166 W: E=0.0; J^{π} =0⁺; $T_{1/2}$ =19.2 s 6; $Q(\alpha)$ =4856 4; $\%\alpha$ decay=0.035 12

 166 W-T_{1/2}: Additional information 2.

 166 W-Q(α): From 2021Wa16.

 $^{166}\text{W-}\%\alpha$ decay: Additional information 1.

Additional information 3.

The experimental methods were:

1975To05: 166 W produced by 156 Dy(16 O,6n) reaction on enriched (12.6%) target. α spectra measured with Si surface-barrier detectors. Excitation function used to identify mass.

1979Ho10: 166 W produced in 58 Ni bombardment of 108 Pd target. α spectra measured with Si detector following velocity selector. α -decay sequences used to determine mass.

1989Hi04: 166 W produced in the 136 Ba(36 Ar,6n) reaction at 36 Ar energies from 177 MeV to 214 MeV. Targets were 136 BaF₂ (93% enrichment), 1.2 and 1.3 mg/cm² thick, and backed with C foils, 30 and 34 μ g/cm² thick. Recoil nuclides were transported using a He-jet tape-transport system for analysis. α particles were counted using 450 mm² surface-barrier detector. Mass assignment was determined from excitation functions. $T_{1/2}$ was obtained from multiscaled spectra.

See also 1975IjZZ and 1981HoZM for other reports on same results.

¹⁶²Hf Levels

 $\frac{\text{E(level)}}{0.0} = \frac{\text{J}^{\pi}}{0^{+}} = \frac{\text{T}_{1/2}}{39.4 \text{ s } 9} = \frac{\text{Comments}}{\text{T}_{1/2}: \text{ from } ^{162}\text{Hf Adopted Levels.}}$

α radiations

Eα E(level) $I\alpha^{\ddagger}$ HF † Comments

4739 4 0.0 100 1.000 E α : value recommended by 1991Ry01. A weighted average of the measured values 4739 5 (1975To05), 4733 10 (1979Ho10), and 4741 8 (1989Hi04) gives E α =4738 4. From Q(α) one computes E α =4739 4. $I\alpha$: only one α branch reported.

 $^{^{\}dagger}$ The nuclear radius parameter $r_0(^{162}Hf)$ =1.516 19 is deduced by assuming HF=1.0 for the ground-state to ground-state alpha decay branch.

[‡] For absolute intensity per 100 decays, multiply by 0.00035 12.