	Туре	Author	History Citation	Literature Cutoff Date
	Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023
$Q(\beta^{-})=-4857\ 26;\ S(n)=9204\ 9;$ $S(2n)=16413\ 24,\ S(2p)=11239.7$ Additional information 1.	S(p)=6426.9 22; Q(7 3 (2021Wa16).	(α)=1648.0	23 2021Wa16	
			¹⁶² Er Levels	

Measured Coulomb displacement energies: 1983Ja03.
Theory and model calculations:
1976Fa01: description of ground-state band.
1989Gu01: B(E2) ratios between γ-vibrational and ground-state bands.
Additional information 2.

Cross Reference (XREF) Flags

			A ¹⁶² Tm B ¹⁶² Tm C ¹⁵⁴ Sm D ¹⁶⁰ Gd	$\begin{array}{lll} \varepsilon \ decay \ (21.70 \ min) & \varepsilon & {}^{162}\text{Er}(d,d') \\ \varepsilon \ decay \ (24.3 \ s) & F & {}^{165}\text{Ho}(p,4n\gamma), \text{Dy}(\alpha,xn\gamma), \\ ({}^{12}\text{C},4n\gamma) & G & \text{Coulomb excitation} \\ ({}^{9}\text{Be},7n\gamma) & \end{array}$						
E(level) ^{†‡}	Jπ @	T _{1/2}	XREF	Comments						
0.0&	0+	stable	ABCDEFG	T _{1/2} : from a cluster-model calculation, 2004Xu02 estimate T _{1/2} (α)=2.8×10 ²⁹ y. See, also, 1988A113 and 1956Po16 for discussions of the α-decay half-life. T _{1/2} : using the pseudo SU(3) model, 1999Ce12 compute a value of 2.85×10 ²² y for the half-life of the 2ε2ν decay to the g.s. of ¹⁶² Er. Subsequently, this same value is given in 2002Hi09, a work by some of the same authors. 2004Su27 discuss the neutrinoless 2ε decay of ¹⁶² Er. In an evaluation of nuclear rms charge radii, 2013An02 report <r<sup>2>^{1/2}=5.225 fm 4. Δ<r<sup>2> results (in fm²) are: for ¹⁶⁰Er-¹⁶²Er, Δ<r<sup>2>≈ 0.15 (1985Ne09) and for ¹⁶²Er-¹⁶⁴Er, Δ<r<sup>2>≈0.144 (1985Be34), ≈ 0.10 (1985Ne09), 0.143 (1987Ah03), and 0.15 (1987Ok03). Values of 1985Ne09 and 1987Ok03 were taken from plots by the evaluator. For calculations of these values see 1988SuZW. For other isotope shift data, see 1965Ha11, 1965Vo02, 1967Ca21, and 1986Ch07.</r<sup></r<sup></r<sup></r<sup>						
102.04 ^{&} 3	2+	1389 ps 21	ABCDEFG	Q<0 J ^{π} : from E2 γ to 0 ⁺ level. T _{1/2} : from weighted average lifetime, τ =2004 ps 30, of the following measured τ values: 2040 ps 30 (2020Kn03, from time distribution curve, see ¹⁵⁴ Sm(¹² C,4n γ) dataset); 2200 ps 400 (from $\beta\gamma$ (t) in 2003Ca03); 1985 ps 25 (from B(E2) \uparrow =5.01 3 in 1977Ro27); 1690 ps 150 (from ce- γ (t) in 1970Mo39); 2036 ps 104 (from B(E2) \uparrow =4.89 25 in 1963Bj04).						
329.62 ^{&} 4	4+	60.3 ps 42	ABCDEFG	B(E4) $\uparrow=0.03 + 6 - 3$ B(E4) \uparrow : computed from the E4 matrix element of 0.16 +16-26 in Coul. ex. (1977Ro27). J ^{π} : E2 γ to 2 ⁺ . Level energy consistent with that expected for the 4 ⁺ member of the g.s. band. Two: mean lifetime $\tau=87$ ps 6 (2020Kn03) in ¹⁵⁴ Sm(¹² C 4no) dataset						
666.68 ^{&} 9	6+	6.2 ps 42	ABCDEFG	$T_{1/2}$: mean lifetime τ =87 ps 6 (2020Kn03) in ^{1.54} Sm(^{1.2} C,4n γ) dataset. J ^{π} : γ to 4 ⁺ level and population in Coul. ex. Energy is consistent with that						

Continued on next page (footnotes at end of table)

¹⁶²Er Levels (continued)

E(level) ^{†‡}	J^{π} @	T _{1/2}	X	REF	Comments		
					expected for the 6 ⁺ member of the g.s. band.		
	a +				T _{1/2} : mean lifetime τ =9 ps 6 (2020Kn03) in ¹⁵⁴ Sm(¹² C,4n γ) dataset.		
900.72 ^d 5	2*	1.25 ps 7	ABC	DEFG	Q=1.8 6 I^{π} from γ to 0^+ level and direct population in Coul. ex		
					T _{1/2} : computed from B(E2) \uparrow =0.164 8 (Coul. ex.) and the adopted γ branching. Q: from the compilation of 2016St14 and based on Coulomb excitation reorientation data (1983Hu01)		
1002.06 ^{<i>a</i>} 5	3+		AB	F	J^{π} : from E2 γ to 2 ⁺ level, γ to 4 ⁺ . Energy consistent with that of the 3 ⁺ member of the γ -vibrational band.		
1087.16 ^b 7	0^+		A	E	XREF: E(1081). J^{π} : E0 transition to 0 ⁺ level.		
1096.70 ^{&} 11	8+	<3.5 ps	c	DF	J^{π} : γ to 6 ⁺ member of the g.s. band. Energy is consistent with that expected		
		Ĩ			for the 8 ⁺ member of the g.s. band. Also, from $\gamma(\theta)$ in ¹⁶⁵ Ho(p,4n γ) (1977Ja06).		
					T _{1/2} : mean lifetime τ <5 ps (2020Kn03) in ¹⁵⁴ Sm(¹² C,4n γ) dataset.		
1128.11 ^{<i>a</i>} 7	4+		AB	EF	XREF: E(1124). $I^{\pi_1} \gamma'$ s to 2 ⁺ and 6 ⁺ levels		
1171.02 ^b 9	2^{+}	1.2 ns 2	Α	EG	XREF: F(1166)		
11/1102 >	-	11 2 po 2			J^{π} : γ 's to 0 ⁺ and 4 ⁺ levels. E0 component in the γ transition to a 2 ⁺ level.		
<i>a</i> .					T _{1/2} : computed from B(E2) \uparrow =0.042 7 (Coul. ex.) and the adopted γ branching.		
1286.22 ^{<i>a</i>} 8	5+			F	J^{π} : M1 components in γ 's to 4 ⁺ and 6 ⁺ levels.		
1352.17 5	1-		A	F	J^{α} : EI γ to 2^{+} and (EI) γ to 0^{+} .		
1330.//* /	3		A	EFG	B(E3) = 0.194 XREF: $E(1351)$		
					$B(E3)\uparrow$: from 1982Ro07. Coul. ex.		
					J^{π} : γ 's to 2 ⁺ and 4 ⁺ levels; (d,d') cross-section ratios.		
≈1369 ^{#b}	(4+)			E	J^{π} : energy consistent with that expected for the 4 ⁺ member of the proposed first-excited $K^{\pi}=0^+$ band.		
1412.58 14	$1,2^+$		A		J^{π} : γ 's to 0 ⁺ and 2 ⁺ levels.		
1420.45 5	(2)		A	e	XREF: e(1423). J^{π} : γ 's to 2 ⁺ and 3 ⁺ levels suggest $J^{\pi}=1^+,2^-$. 2002Ca35, in ¹⁶² Tm ε decay, suggest $J^{\pi}=2^-$, based on the occurrence of $K^{\pi}=2^-$ octupole bands in several		
1420 70 7	2+	0.42 ps 10		~ C	neighboring nuclei.		
1429.797	2	0.45 ps 19	л	eu	J^{π} : E0 component in γ transition to 2 ⁺ .		
1459.58 ^a 8	6+			F	$T_{1/2}$: computed from B(E2) \uparrow =0.018 8 (Coul. ex.) and the adopted γ branching. J^{π} : M1 component in γ to 6 ⁺ , γ 's to 4 ⁺ and $\gamma(\theta)$. Energy consistent with		
1460 106 11	<u>-</u>				that expected for the 6 ⁺ member of the γ -vibrational band.		
1469.12° 11	5			EF	XREF: E(1464). J^{π} : γ to 4 ⁺ and $\gamma(\theta)$. Energy consistent with that expected for the 5 ⁻ member of the associated band		
1500.58 19	2+		A	G	J^{π} : from γ 's to 0 ⁺ and 3 ⁺ levels. Possible population in Coul. ex. makes 0 ⁺ unlikely.		
					T _{1/2} : from B(E2) \uparrow <0.022 (Coul. ex.) and the adopted γ branching, one computes T _{1/2} >0.32 ps, but the B(E2) may be influenced by multistep processes.		
1506.36 ^d 5	1-		A		J^{π} : γ' s to 0 ⁺ and 2 ⁺ levels. This argument also allows 1 ⁺ and 2 ⁺ assignments, but assignment as the $K^{\pi}=1^-$ bandhead supports 1 ⁻ .		
1542.62 ^e 20	(4 ⁻)			F	J^{π} : γ deexcitation and $\gamma(\theta)$ in ¹⁶⁵ Ho(p,4n γ) agree with the listed J value,		
					but other values are allowed. This assignment is that proposed by 1977Ja06 in 165 Ho(p,4n γ) from consideration of the expected octupole-band structure.		
1572.84 ^d 7	2-		A		J^{π} : E1 γ 's to 2 ⁺ and 3 ⁺ ; γ 's to 0 ⁺ and 4 ⁺ . Proposed member of the indicated band.		

¹⁶²Er Levels (continued)

E(level) ^{†‡}	J ^π @	T _{1/2}	XRE	Comments			
1594 ^{#d}	(1 ⁻)		E	J^{π} : from (d,d') cross-section ratios.			
1602.83 ^{&} 13	10+		C I	J^{π} : γ to 8 ⁺ level and $\gamma(\theta)$. Energy consistent with that expected for the 10 ⁺ member of the g.s. band.			
1623.24 ^{<i>d</i>} 10	3-	>0.31 ns	A E	 G B(E3)↑<0.072 XREF: E(1616). B(E3)↑: from 1982Ro07, Coul. ex. J^π: from (d,d') cross-section ratios and γ's to 0⁺, 2⁺, and 4⁺ levels. The γ to 0⁺ may suggest the presence of two levels. T_{1/2}: from B(E3)<0.072 in Coul. ex. and the adopted γ branching. 			
1669.13 ^a 11	7+		1	J^{π} : M1 component in transition to 6 ⁺ , γ 's to 5 ⁺ and 8 ⁺ , and $\gamma(\theta)$. Energy consistent with that expected for that of the 7 ⁺ member of the γ -vibrational band.			
1682.26 ^c 22	7 ⁽⁻⁾		1	J^{π} : $\gamma(\theta)$ and γ to 6 ⁺ . Energy consistent with that expected for the 7 ⁻ member of the associated band.			
1712.18 <i>^f</i> 10	4+		В	J^{π} : from γ 's to 2 ⁺ , 3 ⁺ , and 4 ⁺ levels and log $ft \approx 4.6$ for the ε transition from 24 s ¹⁶² Tm (J^{π} =5 ⁺). This fast ε transition establishes the presence of the 5/2[523] neutron orbital as a component in this state. The dominant configuration is most likely (ν 5/2[523])+(ν 3/2[521]). 1994Bu16 assign this state as a hexadecapole vibration.			
1729.63 ^d 18	(5 ⁻)		A E	XREF: E(1725). J^{π} : from (d,d') cross-section ratios. γ to 2 ⁺ level may suggest the presence of two levels.			
1740#			E				
1761.26° <i>12</i> 1805.21 9	(6 ⁻)		A	J^{n} : γ' s to 6 ⁺ and (4 ⁻). Possible member of the indicated band.			
1856.69 13			A				
1864.89 <i>21</i> 1872.66 ^{<i>a</i>} <i>14</i>	$2^+_{8^+}$		A I	J^{π} : γ 's to 0 ⁺ and 4 ⁺ levels. J^{π} : γ 's to 6 ⁺ and 10 ⁺ levels.			
1910 [#]			E				
1951.50 15 1955 [#]	(3 ⁻ ,4 ⁺)		E	J^{π} : from (d,d') cross-section ratios.			
1900				XREE : E(1066)			
1986.01 [°] 15	9-			J^{π} : E1 γ to 8 ⁺ ; energy consistent with that expected for the 9 ⁻ member of the indicated hand			
2025.57 13	7 ⁽⁻⁾	76.7 ns 39	CD I	J^{π} : γ' s to 6 ⁺ and 8 ⁺ levels, $\gamma(\theta)$. Level energy and decay path are similar to that of a 7 ⁽⁻⁾ 1985-keV isomer in ¹⁶⁴ Er (⁹ Be) (2012Sw01).			
				$T_{1/2}$: half-life τ =76.7 ns 39, weighted average of 76 ns 4 (2020Kn03, ¹² C) and 88 ns 16 (2012Sw01, ⁹ Be).			
2026.01.12				configuration= $\pi 7/2[523] \otimes \pi 7/2[404]$ (BCS calculations (⁹ Be), 2012Sw01).			
2026.01 <i>13</i> 2033 [#]			A F				
2055	(1.2^{+})		A	J^{π} : γ' s to 0 ⁺ , 2 ⁺ , and 2 ⁻ levels.			
2061.95 ^e 12	(8 ⁻)		1	J^{π} : γ to 8^+ and stretched E2 to (6 ⁻). Energy consistent with that of the 8 ⁻ member of this level sequence			
2114.11 15	(0 ⁺)		A	J^{π} : γ decay takes place to 2 ⁺ levels only.			
2121.67 8 2133.79 ^a 11	9+		A E	XREF: E(2116). J^{π} : γ 's to 7 ⁺ , 8 ⁺ , and 10 ⁺ levels. Energy consistent with that expected for			
2165.12 ^{&} 14	12+		C I	the 9' member of the indicated 2' band. J^{π} : E2 γ to the 10 ⁺ member of the g.s. (yrast) band. Energy consistent with			
2192.09 18	2+		A	that expected for the 12 ⁺ member of this band. J^{π} : γ 's to 0 ⁺ and 4 ⁺ levels.			

Continued on next page (footnotes at end of table)

¹⁶²Er Levels (continued)

E(level) ^{†‡}	J ^π @	XREF	Comments
2205.94 25		Α	
2242.21 10		Α	
2260.24 14		Α	
2288 [#]	$(3^{-},4^{+})$	Е	J^{π} : from (d,d') cross-section ratios.
2318.67 11		A E	XREF: E(2306).
2332#		Е	
2346.59 ^a 12	10+	F	J^{π} : from γ 's to 8 ⁺ and 12 ⁺ levels and $\gamma(\theta)$.
2368.19 ^c 15	11-	F	J^{π} : from E1 γ to 10 ⁺ level and $\gamma(\theta)$.
2399 [#]		Е	
2429.49 ^e 14	(10 ⁻)	F	J^{π} : γ to 10 ⁺ and stretched E2 to (8 ⁻). Level energy consistent with that of the 10 ⁻ member of this level sequence.
2449.75 16		A E	XREF: E(2444).
2520#		F	
2553#		- -	
2555		E	
2567"		E	
2598.08 14		A	
2005.8 5		A	
2618"	11+	E F	I_{π} , from I_{π} to 0^{+} and 10^{+} locals and I_{π}
2030.35 13	11	г ^	γ'' from γ s to γ'' and 10° levels and $\gamma(\theta)$.
2004.45 25	1.4+	A C F	
2/45./20 1/	14	CF	J^* : γ to 12° , $\gamma(\theta)$. Energy consistent with that expected for the 14° member of the g.s. (yrast) band.
2751.8	(6)	F	J^{n} : from γ to 6^{+} level and $\gamma(\theta)$.
2817.76° 15	13-	F	J^{α} : E1 γ to 12 ⁺ and γ to 11 ⁻ . Energy consistent with that expected for the 13 ⁻ member of the associated band.
2841.98 ^e 17	(12 ⁻)	F	J^{π} : stretched E2 to (10 ⁻). Level energy consistent with that of the 12 ⁻ member of this level sequence.
2910.85 ^a 17	12+	F	J^{π} : from γ to 10 ⁺ level and $\gamma(\theta)$.
3039.8 4		Α	
3116.84 17	2+	Α	J^{π} : from γ 's to 4 ⁺ , 2 ⁺ , and (0 ⁺) levels.
3132.52 8		A	J^{n} : γ 's to 1 ⁻ , 3 ⁻ , 2 ⁺ , 3 ⁺ , and (0 ⁺) levels suggest $J^{n}=2^{+}$, but if the (0 ⁺) assignment to the 2114 level is not correct, J^{π} could also be 2 ⁻ or 3 ⁻ .
3180.3 4		Α	
3267.60 12		Α	
3292.4 ^{&} 3	16+	F	J^{π} : γ to 14 ⁺ , $\gamma(\theta)$. Energy consistent with that expected for the 16 ⁺ member of the g.s. (yrast) band.
3293.2 3		A	
3367.95 13		Α	
3389.17 20		A	
3400.08 17		A	
3414.07 20 2425 9 4		A	
3518.00.22	(2^{+})	A	I^{π} : from α' s to 0^+ 2^+ and 4^+ levels
3676 48 13	$2^+ 3^-$	A	I^{π} : from γ' 's to 1^{-} 2^{+} and 4^{+} levels
3689.6.3	2,0	A	\mathbf{r} . From \mathbf{r} is to \mathbf{r} , \mathbf{r} , and \mathbf{r} -isotois.
3846.6 ^{&} 5	18+	F	J^{π} : γ to 16 ⁺ , $\gamma(\theta)$. Energy consistent with that expected for the 18 ⁺ member of the g.s.
4463.2 ^{&}	20^{+}	F	J^{π} : γ to 18 ⁺ , $\gamma(\theta)$. Energy consistent with that expected for the 20 ⁺ member of the g.s.
6675 ⁰	(25^{-1})	F	(yrast) band.
(7408	(25)	г 	
0/42~	(26')	F	
/108	(20)	r	

					¹⁶² Er Le	vels (continue	d)	
$E(level)^{\dagger\ddagger}$	J ^π @	XREF	$E(level)^{\ddagger\ddagger}$	J ^π @	XREF	$E(level)^{\ddagger\ddagger}$	J ^π @	XREF
7516 ^C	(27 ⁻)	F	10898 ^e	(34 ⁻)	F	16820 ^C	(45 ⁻)	F
7623 <mark>&</mark>	(28 ⁺)	F	11252 ^C	(35 ⁻)	F	17063 ^{&}	(46 ⁺)	F
8014 ^e	(28-)	F	11470 <mark>&</mark>	(36+)	F	18129 ^c	(47 ⁻)	F
8418 ^C	(29 ⁻)	F	12242 ^C	(37 ⁻)	F	18358 <mark>&</mark>	(48^{+})	F
8551 <mark>&</mark>	(30^{+})	F	12490 <mark>&</mark>	(38+)	F	19511? ^C	(49 ⁻)	F
8934 ^e	(30 ⁻)	F	13290 ^C	(39 ⁻)	F	19721 ^{&}	(50^{+})	F
9367 ^c	(31 ⁻)	F	13553 ^{&}	(40^{+})	F	21152 ^{&}	(52^+)	F
9508 <mark>&</mark>	(32 ⁺)	F	14398 ^C	(41 ⁻)	F	22659 <mark>&</mark>	(54 ⁺)	F
9916? ^e	(32 ⁻)	F	14664 <mark>&</mark>	(42^{+})	F	24237 <mark>&</mark>	(56 ⁺)	F
10302 ^c	(33 ⁻)	F	15574 ^C	(43 ⁻)	F	25883 <mark>&</mark>	(58^+)	F
10481 ^{&}	(34+)	F	15832 ^{&}	(44 ⁺)	F	27581? ^{&}	(60 ⁺)	F

[†] There are several levels, namely $J^{\pi}=22^+$ and 24^+ on band A, 15 ⁻ to 23 ⁻ on band D, and 14 ⁻ to 24 ⁻ on band F, that are missing
from the bands reported by 1990Ri03 and 1990Ri09 but which, they state, have been observed by others, and quoted as "private
communication and to be published" in the References lists of 1990Ri03,1990Ri09. However no publication with the missing
levels was found. See 1990Ri03,1990Ri09 for a discussion.

[‡] From a least-squares fit to the listed γ energies where γ 's are involved.

[#] Value from 1968Tj02. Where the (d,d') levels are seen in other reactions, the values from (d,d') are systematically low, in some instances by as much as 6 to 7 keV. Thus, where the level is seen only in (d,d'), the listed energy may be smaller that the actual one.

^(a) The J^{π} assignments for those levels having J≥25 are those proposed by 1990Ri03 (and 1990Ri09) and 2000Si26 and are based on general considerations of rotational-band structure and a stretched E2 character for the deexciting transitions.

- & Band(A): $K^{\pi}=0^+$ g.s. (yrast) band. A=17.23; B=-0.038. Band parameters computed from the energies of the 0⁺, 2⁺ and 4⁺ levels.
- ^a Band(B): $K^{\pi}=2^+ \gamma$ -vibrational band. A=17.27; B=-0.051; A₄=-0.0050. Band parameters computed from the energies of the 2⁺ through 5^+ levels.
- ^b Band(C): First excited $K^{\pi}=0^+$ band. Possible β -vibrational band. A=13.9; B=+0.008.
- ^c Band(D): Negative-parity band, signature=1. At low spins, it can be considered as a $K^{\pi}=0^{-}$ octupole vibration. At the higher spins (≥ 25 , say) the configuration is more complicated. See the discussion in the heavy-ion reaction data set and comment above.
- ^{*d*} Band(E): $K^{\pi}=1^{-}$ octupole-vibrational band.
- ^e Band(F): Negative-parity band, signature=0. Probably octupole-related states. See the discussion in the heavy-ion reaction data set.
- ^f Band(G): Bandhead of a $K^{\pi}=4^+$ band. Configuration=(ν 5/2[523])+(ν 3/2[521]). Proposed as a hexadecapole vibration (1994Bu16).

1.00

$\gamma(^{162}\text{Er})$

6

Additional information 3. Data are from ¹⁶²Tm ε decay (primarily 1974De47) and in-beam studies (primarily 1977Ja06,1990Ri03 and 1990Ri09).

The α (K)exp values were normalized to the theoretical E2 values at 227 keV (1974De47), 102 keV (1975St12) and 506 keV (1976Zo02).

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult. ^{†‡}	α ^{&}	Comments
102.04	2+	102.00 3	100	0.0 0+	E2	2.73	B(E2)(W.u.)=188.6 35 α(K)=1.026 15; α(L)=1.305 19; α(M)=0.317 5 α(N)=0.0718 10; α(O)=0.00844 12; α(P)=4.27×10 ⁻⁵ 6 B(E2)(W.u.) value calculated directly from B(E2)↑=5.01 3. Mult.: from ce ratios K/L1=12.5 (1963Ab02) and 12.8 (1965Ab05), L1/L2=0.15 (1963Ab02,1965Ab05,1987BaZB), L1/L3=0.16 (1987BaZB), L2/L3=1.0 (1963Ab02) and 0.95 (1965Ab05), and L/M/N (1965Ab05), as well as α(L)exp=1.48 21 (1974De47). Also from γ(θ) in (α,2nγ) (1976We24).
329.62	4+	227.52 3	100	102.04 2+	E2	0.1647	$\alpha(K)=0.1115 \ I6; \ \alpha(L)=0.0410 \ 6; \ \alpha(M)=0.00972 \ I4$ $\alpha(N)=0.00222 \ 4; \ \alpha(O)=0.000277 \ 4; \ \alpha(P)=5.41\times10^{-6} \ 8$ B(E2)(W.u.)=253 \ I8 Mult.: from ce ratios K:L1:L2:L3=40:5.1:6.7:5.3 (1965Ab05) and $\alpha(K)$ exp=0.11 (1975St12). Also from $\gamma(\theta)$ in $(\alpha.4n\gamma)$ (1975Fe06) and $(\alpha.2n\gamma)$ (1976We24).
666.68	6+	337.51 18	100	329.62 4+	(E2)	0.0486	$\alpha(K)=0.0365\ 6;\ \alpha(L)=0.00937\ 14;\ \alpha(M)=0.00218\ 3$ $\alpha(N)=0.000500\ 7;\ \alpha(O)=6.50\times10^{-5}\ 10;\ \alpha(P)=1.92\times10^{-6}\ 3$ B(E2)(W.u.)=3.8×10 ² +41-16 Mult : evaluator's interpretation of $\gamma(\theta)$ in (α xny) studies (1975Ee06 1976We24)
900.72	2+	571.2 4	2.3 16	329.62 4+	[E2]	0.01177	B(E2)(W.u.)=1.8 +13-10 $\alpha(K)=0.00950 \ 14; \ \alpha(L)=0.001765 \ 25; \ \alpha(M)=0.000400 \ 6$ $\alpha(N)=9.25\times10^{-5} \ 13; \ \alpha(O)=1.266\times10^{-5} \ 18; \ \alpha(P)=5.31\times10^{-7} \ 8$ Mult.: $\alpha(K)\exp=0.0045 \ 3 \ (1974De47)$ for the combination of this γ and the 570 E1 from the 1572 level. See also 1975St12.
		798.68 <i>5</i>	100 3	102.04 2+	E2	0.00541	B(E2)(W.u.)=14.7 9 $\alpha(K)=0.004487; \alpha(L)=0.000729 11; \alpha(M)=0.0001633 23$ $\alpha(N)=3.79\times10^{-5} 6; \alpha(O)=5.31\times10^{-6} 8; \alpha(P)=2.54\times10^{-7} 4$ Mult.: from $\alpha(K)$ exp=0.0044 6 (1974De47) for combination of this γ and that from 1128 level; both are deduced to be E2. 1975St12 give $\alpha(K)$ exp=0.007 and deduce that one transition is M1
		900.7 4	77 3	0.0 0+	[E2]	0.00418	B(E2)(W.u.)= $6.22 + 41-39$ $\alpha(K)=0.00348 5; \alpha(L)=0.000547 8; \alpha(M)=0.0001220 18$ $\alpha(N)=2.83\times10^{-5} 4; \alpha(O)=3.99\times10^{-6} 6; \alpha(P)=1.98\times10^{-7} 3$ Mult.: $\alpha(K)\exp=0.0037 3$ (1974De47) for the combination of this γ and 899.9 from 1002 level; both are deduced to be E2. 1975St12 give $\alpha(K)\exp=0.0043$ and deduce that one component is E2,M1.

Adopted Levels, Gammas (continued)										
γ ⁽¹⁶² Er) (continued)										
E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	α &	$I_{(\gamma+ce)}$	Comments		
1002.06	3+	672.35 5	32.8 23	329.62 4+	(M1,E2)	0.0122 43		$ \alpha(K)=0.0102 37; \alpha(L)=0.00156 43; \alpha(M)=3.47\times10^{-4} 93 $ $ \alpha(N)=8.1\times10^{-5} 22; \alpha(O)=1.15\times10^{-5} 34; \alpha(P)=6.0\times10^{-7} 24 $ Mult.,δ: from $\gamma(\theta)$ in (α ,2n γ), 1976We24 report δ =-0.04 +27-17 or -6.6 +44- ∞ ; evaluator assigns this as M1,E2 rather than E1,M2. $\alpha(K)$ exp=0.0029 8 (1974De47) for combination of this γ and one from the 1572 level, which indicates that the stronger γ (from the 1572 level) is E1. Also, $\alpha(K)$ exp=0.0056 (1975St12) for this combination.		
		899.9 <i>4</i>	100 6	102.04 2+	E2	0.00419		$\alpha(K)=0.00348\ 5;\ \alpha(L)=0.000548\ 8;\ \alpha(M)=0.0001222\ 18$ $\alpha(N)=2.84\times10^{-5}\ 4;\ \alpha(O)=4.00\times10^{-6}\ 6;\ \alpha(P)=1.98\times10^{-7}\ 3$ Mult.: $\alpha(K)exp=0.0037\ 3\ (1974De47)$ for the combination of this γ and the 900.7 from 900 level; both are deduced to be E2. 1975St12 give $\alpha(K)exp=0.0043$ and deduce that one component is E2,M1.		
1087.16	0+	985.12 6	100	102.04 2+	[E2]	0.00347		$\alpha(K)=0.00290$ 4; $\alpha(L)=0.000445$ 7; $\alpha(M)=9.90\times10^{-5}$ 14 $\alpha(N)=2.30\times10^{-5}$ 4; $\alpha(O)=3.26\times10^{-6}$ 5; $\alpha(P)=1.649\times10^{-7}$ 23		
1096.70	8+	1087.16 430.1 <i>1</i>	100	$\begin{array}{ccc} 0.0 & 0^+ \\ 666.68 & 6^+ \end{array}$	E0 (E2)	0.0245	1.5 5	Mult.: from α (K)exp>0.067 <i>36</i> (1974De47). α (K)=0.0191 <i>3</i> ; α (L)=0.00415 <i>6</i> ; α (M)=0.000954 <i>14</i> α (N)=0.000220 <i>3</i> ; α (O)=2.93×10 ⁻⁵ <i>5</i> ; α (P)=1.042×10 ⁻⁶ <i>15</i> Mult.: evaluator's interpretation of $\gamma(\theta)$ in (α ,4n γ) (1975Fe06) and (α 2mi) (1076Wo24)		
1128.11	4+	227		900.72 2+	[E2]	0.1660		$\alpha(X)=0.1122 \ 16; \ \alpha(L)=0.0414 \ 6; \ \alpha(M)=0.00981 \ 14$ $\alpha(N)=0.00224 \ 4; \ \alpha(O)=0.000279 \ 4; \ \alpha(P)=5.45\times10^{-6} \ 8$ E : energy is the same as the 4 ⁺ to 2 ⁺ α in ground-state hand		
		461.5 2	8.3 6	666.68 6 ⁺	[E2]	0.0203		$\alpha(\text{K})=0.01599\ 23;\ \alpha(\text{L})=0.00322\ 5;\ \alpha(\text{M})=0.000761\ 11$ $\alpha(\text{N})=0.0001754\ 25;\ \alpha(\text{O})=2.35\times10^{-5}\ 4;\ \alpha(\text{P})=8\ 78\times10^{-7}\ 13$		
		798.6 1	100 6	329.62 4+	[E2]	0.00541		$ α(K)=0.004187; α(L)=0.000729 II; α(M)=0.0001634 23 $ $ α(K)=0.00448 7; α(L)=0.000729 II; α(M)=0.0001634 23 $ $ α(N)=3.79\times10^{-5} 6; α(O)=5.31\times10^{-6} 8; α(P)=2.54\times10^{-7} 4 $ Mult.: α(K)exp=0.0044 6 (1974De47) for combination of this γ and that from the 900 level. Data are consistent with E1, E2, or M1 for components from the 1128 level. E1 is ruled out by the level scheme.		
		1026.0 2	27 6	102.04 2+	[E2]	0.00319		$\alpha(K)=0.00267 \ 4; \ \alpha(L)=0.000406 \ 6; \ \alpha(M)=9.02\times10^{-5} \ 13 \ \alpha(N)=2.10\times10^{-5} \ 3; \ \alpha(O)=2.98\times10^{-6} \ 5; \ \alpha(P)=1.519\times10^{-7} \ 22 \ I_{\gamma}$: from in-beam study (1977Ja06). From the ¹⁶² Tm ε decay, the value is 2 14 (1974De47).		
1171.02	2+	841.37 18	59 <i>3</i>	329.62 4+	[E2]	0.00483		B(E2)(W.u.)=4.8 +10-7 α (K)=0.00401 6; α (L)=0.000643 9; α (M)=0.0001437 21 α (N)=3.33×10 ⁻⁵ 5; α (O)=4.69×10 ⁻⁶ 7; α (P)=2.28×10 ⁻⁷ 4		
		1069.05 15	100 5	102.04 2+	E0+M1+E2	0.0041 12		α (K)=0.0035 <i>10</i> ; α (L)=5.0×10 ⁻⁴ <i>13</i> ; α (M)=1.10×10 ⁻⁴ <i>28</i> α (N)=2.56×10 ⁻⁵ <i>66</i> ; α (O)=3.70×10 ⁻⁶ <i>98</i> ; α (P)=2.02×10 ⁻⁷ <i>63</i>		

 $^{162}_{68}{
m Er}_{94}$ -7

 $^{162}_{68}\mathrm{Er}_{94}$ -7

From ENSDF

							Adopted Leve	els, Gammas (c	ontinued	
							$\gamma(^{162})$	Er) (continued))	
	E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f J	\int_{f}^{π} Mult.	$\div \delta^{@a}$	α ^{&}	$I_{(\gamma+ce)}$	Comments
	1171.02	2+	1171.05 <i>15</i>	100 5	0.0 0	⁺ [E2]	_	0.00245		Mult.: from α (K)exp=0.028 3 (1974De47), compared to α (K)(E2)=0.0025 and α (K)(M1)=0.0046. α : deduced by the evaluator from α (K)exp. B(E2)(W.u.)=1.57 +32-24 α (K)=0.00205 3; α (L)=0.000304 5; α (M)=6.74×10 ⁻⁵ 10 α (N)=1.565×10 ⁻⁵ 22; α (O)=2.24×10 ⁻⁶ 4;
	1006 00	5+	15017	60.8	1100 11 4	+				$\alpha(P)=1.170\times10^{-7}$ 17; $\alpha(IPF)=2.67\times10^{-6}$ 4
	1280.22	3.	284	0.9 8	1002.06 3	+ [E2]		0.0817		$\alpha(K)=0.0590 \ 9; \ \alpha(L)=0.01749 \ 25; \ \alpha(M)=0.00410 \ 6 \ \alpha(N)=0.000938 \ 14; \ \alpha(O)=0.0001199 \ 17;$
			619.6 <i>1</i>	19.8 <i>16</i>	666.68 6	⁺ M1		0.0202		$\alpha(P)=5.01\times10^{-6}5$ $\alpha(K)=0.01707\ 24;\ \alpha(L)=0.00245\ 4;$ $\alpha(M)=0.000541\ 8$
þ			956.6 <i>1</i>	100 8	329.62 4	.+ M1+E	2 -8 +4-10	0.00373 15		$\alpha(N)=0.0001261 \ 18; \ \alpha(O)=1.83 \times 10^{-5} \ 3; \alpha(P)=1.027 \times 10^{-6} \ 15 \delta: \ \delta(E2/M1)=0.00 + 16 - 10 \ from \ 1976We24 \ in (\alpha,2n\gamma). \alpha(K)=0.00312 \ 13; \ \alpha(L)=0.000481 \ 17; \alpha(M)=0.000107 \ 4 (N)=0.000107 \ 4 (N)=0.0000107 \ 4 (N)=0.000107 \ 4 (N)=0.000107 \ 4 $
	1352.17	1-	1250.01 6	100 4	102.04 2	,+ E1		9.57×10 ⁻⁴		$\begin{aligned} \alpha(N) &= 2.49 \times 10^{-5} \ 9; \ \alpha(O) &= 3.52 \times 10^{-5} \ 13; \\ \alpha(P) &= 1.78 \times 10^{-7} \ 8 \\ \delta: \ \text{from } 1976 \text{We24}, \ (\alpha, 2n\gamma). \\ \alpha(K) &= 0.000780 \ 11; \ \alpha(L) &= 0.0001042 \ 15; \\ \alpha(M) &= 2.28 \times 10^{-5} \ 4 \\ \alpha(N) &= 5.30 \times 10^{-6} \ 8; \ \alpha(O) &= 7.67 \times 10^{-7} \ 11; \end{aligned}$
			1352.20 6	71 3	0.0 0	+ (E1)		8.93×10 ⁻⁴		$\alpha(P)=4.29\times10^{-8} 6$; $\alpha(IPF)=4.37\times10^{-5} 7$ Mult.: from $\alpha(K)\exp=0.00049 90$ (1974De47). Also $\alpha(K)\exp<0.0011$ (1975St12). $\alpha(K)=0.000680 10$; $\alpha(L)=9.06\times10^{-5} 13$; $\alpha(M)=1.98\times10^{-5} 3$ $\alpha(N)=4.61\times10^{-6} 7$; $\alpha(O)=6.67\times10^{-7} 10$;
	1356.77	3-	1027.08 <i>15</i>	62 5	329.62 4	.+ [E1]		1.30×10 ⁻³		$\alpha(P)=5./4\times10^{-6} 6; \ \alpha(IPF)=9./1\times10^{-5} 14$ Mult.: from $\alpha(K)\exp=0.0011 5$ (1974De47). Also $\alpha(K)\exp<0.0014$ (1975St12). $\alpha(K)=0.001111 16; \ \alpha(L)=0.0001496 21;$ $\alpha(M)=3.28\times10^{-5} 5$ $\alpha(N)=7.62\times10^{-6} 11; \ \alpha(O)=1.099\times10^{-6} 16;$ (B) $\leq 00\times10^{-8} 0$
			1254.72 7	100 7	102.04 2	⁺ [E1]		9.53×10 ⁻⁴		$\alpha(P)=6.09\times10^{-6}$ 9 $\alpha(K)=0.000775$ 11; $\alpha(L)=0.0001035$ 15;

 ∞

					Adopted	l Levels, Gam	mas (continued)
						$\gamma(^{162}\text{Er})$ (con	tinued)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	α &	Comments
							$\begin{array}{l} \alpha(\mathrm{M}) = 2.27 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 5.27 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 7.62 \times 10^{-7} \ 11; \ \alpha(\mathrm{P}) = 4.26 \times 10^{-8} \ 6; \\ \alpha(\mathrm{IPF}) = 4.59 \times 10^{-5} \ 7 \end{array}$
1412.58	$1,2^{+}$	1310.80 20	100 13	$102.04 \ 2^+$			
1420.45	(2 ⁻)	418.1 2 519.54 <i>13</i>	0.95 <i>13</i> 11.9 <i>4</i>	$\begin{array}{cccc} 0.0 & 0 \\ 1002.06 & 3^{+} \\ 900.72 & 2^{+} \end{array}$			
		1318.42 6	100 4	102.04 2+	(E1)	9.09×10 ⁻⁴	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000711 \ 10; \ \alpha(\mathrm{L}) = 9.48 \times 10^{-5} \ 14; \ \alpha(\mathrm{M}) = 2.07 \times 10^{-5} \ 3\\ \alpha(\mathrm{N}) = 4.82 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 6.98 \times 10^{-7} \ 10; \ \alpha(\mathrm{P}) = 3.91 \times 10^{-8} \ 6; \\ \alpha(\mathrm{IPF}) = 7.72 \times 10^{-5} \ 11 \end{array} $
							Mult.: from α (K)exp=0.0016 7, 1974De47, in ¹⁶² Tm ε decay, assign mult=E2. 2002Ca35 point out that this does not exclude mult=E1. E2 excluded by $\Delta \pi$. Other: α (K)exp \approx 0.002 (1975St12).
1429.79	2^{+}	1100.00 8	100 5	329.62 4+	E2	0.00277	B(E2)(W.u.)=8 + 6-3
							$\alpha(K)=0.00232 4; \alpha(L)=0.000348 5; \alpha(M)=7.72\times10^{-5} 11$ $\alpha(N)=1.79\times10^{-5} 3; \alpha(O)=2.56\times10^{-6} 4; \alpha(P)=1.323\times10^{-7} 10$
		1328.14 15	64 5	102.04 2+	E0+M1+E2	0.0025 6	$\alpha(K)=0.0021 \ 6; \ \alpha(L)=0.00030 \ 7; \ \alpha(M)=6.6\times10^{-5} \ 15$
							α (N)=1.5×10 ⁻⁵ 4; α (O)=2.2×10 ⁻⁶ 6; α (P)=1.24×10 ⁻⁷ 33; α (IPF)=2.7×10 ⁻⁵ 3
							Mult.: from $\alpha(K)$ exp=0.0081 46 (1974De47).
		1430.45 25	32 4	0.0 0+	[E2]	1.71×10^{-3}	B(E2)(W.u.)=0.7 + 5-2
							$\alpha(\mathbf{K})=0.001399\ 20;\ \alpha(\mathbf{L})=0.000200\ 3;\ \alpha(\mathbf{M})=4.42\times10^{-5}\ 7$ $\alpha(\mathbf{N})=1.028\times10^{-5}\ 15;\ \alpha(\mathbf{O})=1.478\times10^{-6}\ 21;\ \alpha(\mathbf{P})=7.97\times10^{-8}\ 12;$
1459.58	6+	173.4 <i>1</i>	7.4 15	1286.22 5+	(M1+E2)	0.50 10	$\alpha(\text{IPF})=5.04 \times 10^{-5}$ / $\alpha(\text{K})=0.37$ 13; $\alpha(\text{L})=0.100$ 26; $\alpha(\text{M})=0.0232$ 67
							α (N)=0.0053 <i>15</i> ; α (O)=0.00069 <i>14</i> ; α (P)=2.10×10 ⁻⁵ <i>99</i> δ : from $\gamma(\theta)$ in (α ,2n γ) (1976We24), δ =+0.48 +28–15 or +2.6
		331.5 <i>1</i>	35.1 23	1128.11 4+	[E2]	0.0512	+15-7; evaluator assigns M1+E2 rather than E1+M2. $\alpha(K)=0.0383 \ 6; \ \alpha(L)=0.00998 \ 14; \ \alpha(M)=0.00232 \ 4$
							$\alpha(N)=0.000532 \ 8; \ \alpha(O)=6.91\times10^{-5} \ 10; \ \alpha(P)=2.01\times10^{-6} \ 3$
		793.0 <i>1</i>	100 5	666.68 6+	(M1+E2)	0.0082 27	$\alpha(K)=0.0069\ 24;\ \alpha(L)=1.03\times10^{-3}\ 29;\ \alpha(M)=2.28\times10^{-4}\ 62$
					. ,		$\alpha(N)=5.3\times10^{-5}$ 15; $\alpha(O)=7.6\times10^{-6}$ 22; $\alpha(P)=4.1\times10^{-7}$ 15 δ : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ (1976We24), $\delta=-3.5$ +22-0 or \geq +18; evolution assigns M1+E2 rather than E1+M2
		1129.8 <i>1</i>	62 8	329.62 4+			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ (1976We24).
1469.12	5-	1139.5 <i>1</i>	100	329.62 4+			
1500.58	2^{+}	499.2 <mark>6</mark> 6	≤37 ^b	1002.06 3+			

$\gamma(^{162}\text{Er})$ (continued)

E _i (level)	J_i^{π}	Eγ	I_{γ}	$E_f = J_f^{\pi}$	Mult. ^{†‡}	α &	Comments
1500.58	2^{+}	1398.2 4	100 32	$102.04 \ 2^+$			
		1500 1	31 9	0.0 0+	[E2]	1.58×10^{-3}	$\alpha(K)=0.001279 \ 18; \ \alpha(L)=0.000182 \ 3; \ \alpha(M)=4.02\times10^{-5} \ 6 \\ \alpha(N)=9.34\times10^{-6} \ 14; \ \alpha(O)=1.344\times10^{-6} \ 19; \ \alpha(P)=7.29\times10^{-8} \ 11; \\ \alpha(IPF)=7 \ 20\times10^{-5} \ 11$
1506.36	1-	1404.23 7	100 4	102.04 2+			Mult.: from α (K)exp=0.0011 4 (1974De47), γ is E1 or E2. Also, α (K)exp<0.0018 (1975St12).
		1506.40 6	49 <i>3</i>	$0.0 0^+$			
1542.62	(4 ⁻)	1213.0 2	100	329.62 4+			
1572.84	2-	570.74 5	35 3	1002.06 3+	E1	0.00419	α(K)=0.00356 5; α(L)=0.000494 7; α(M)=0.0001085 16 α(N)=2.52×10-5 4; α(O)=3.60×10-6 5; α(P)=1.92×10-7 3 Mult.: from α(K)exp=0.0045 3 (1974De47) for the combination of this γ and that from the 900 level, this γ is deduced to be E1. Also α(K)exp≤0.0095 (1975St12).
		672.33 10	100 5	900.72 2+	E1	0.00297	$\alpha(K)=0.00253 \ 4; \ \alpha(L)=0.000348 \ 5; \ \alpha(M)=7.63\times10^{-5} \ 11 \ \alpha(N)=1.771\times10^{-5} \ 25; \ \alpha(O)=2.54\times10^{-6} \ 4; \ \alpha(P)=1.370\times10^{-7} \ 20 \ Mult.: \ \alpha(K)exp=0.0029 \ 8 \ (1974De47) \ and \ 0.0056 \ (1975St12) \ for the combination of this \ \gamma \ and one from the 1002 \ level; the lower value indicates primarily E1 and the upper one mostly E2.$
		1243 <i>I</i>	1.9 6	329.62 4+	[M2,E3]	0.0066 22	$\alpha(K)=0.0055 \ I9; \ \alpha(L)=8.5\times10^{-4} \ 24; \ \alpha(M)=1.90\times10^{-4} \ 52 \\ \alpha(N)=4.4\times10^{-5} \ I3; \ \alpha(O)=6.4\times10^{-6} \ I9; \ \alpha(P)=3.4\times10^{-7} \ I2; \\ \alpha(IPF)=3.05\times10^{-6} \ 7 \\ Mult.: mixture suggested by 1974De47 from \ ^{162}Tm \ \varepsilon \ decay \ (21.70 min)$
		1470.8 2	10.9 26	102.04 2+	[E1,M2,E3]	0.00091 5	$\alpha(K)=0.00063 5; \ \alpha(L)=8.4\times10^{-5} 7; \ \alpha(M)=1.85\times10^{-5} 14$ $\alpha(K)=4.3\times10^{-6} 4; \ \alpha(O)=6.2\times10^{-7} 5; \ \alpha(P)=3.5\times10^{-8} 3; \ \alpha(PF)=0.000175 3$ Mult.: mixture suggested by 1974De47 from ¹⁶² Tm ε decay (21.70 min)
		1573.0 10	3.3 8	0.0 0+	[M2]	0.00485	$\alpha(K)=0.00405\ 6;\ \alpha(L)=0.000590\ 9;\ \alpha(M)=0.0001307\ 19$ $\alpha(N)=3.05\times10^{-5}\ 5;\ \alpha(O)=4.43\times10^{-6}\ 7;\ \alpha(P)=2.49\times10^{-7}\ 4;$ $\alpha(IPE)=4\ 62\times10^{-5}\ 7$
1602.83	10+	506.1 2	100	1096.70 8+	(E2)	0.01594	$\alpha(\text{K})=0.01271 \ 18; \ \alpha(\text{L})=0.00251 \ 4; \ \alpha(\text{M})=0.000572 \ 8$ $\alpha(\text{N})=0.0001320 \ 19; \ \alpha(\text{O})=1.79\times10^{-5} \ 3; \ \alpha(\text{P})=7.04\times10^{-7} \ 10$ Mult.: evaluator's interpretation of $\gamma(\theta)$ in $(\alpha,4n\gamma)$ (1975Fe06) and $(\alpha,2n\gamma)$ (1976We24).
1623.24	3-	1293.42 15	80 9	329.62 4+	[E1]	9.24×10 ⁻⁴	$\alpha(K) = 0.000735 \ 11; \ \alpha(L) = 9.80 \times 10^{-5} \ 14; \ \alpha(M) = 2.14 \times 10^{-5} \ 3$ $\alpha(N) = 4.99 \times 10^{-6} \ 7; \ \alpha(O) = 7.22 \times 10^{-7} \ 11; \ \alpha(P) = 4.04 \times 10^{-8} \ 6;$ $\alpha(IPF) = 6.41 \times 10^{-5} \ 9$
		1521.32 15	100 8	102.04 2+	[E1]	8.63×10^{-4}	$\alpha(K)=0.000556 \ 8; \ \alpha(L)=7.38\times10^{-5} \ 11; \ \alpha(M)=1.613\times10^{-5} \ 23$

							γ ⁽¹⁶² Er) ((continued)	
E_i (level)	J_i^{π}	Eγ	Iγ	E _f	J_f^{π}	Mult. ^{†‡}	$\delta^{@a}$	α&	Comments
1623.24	3-	1622.1 10	15 5	0.0	0+	[E3]		0.00255	$\begin{aligned} &\alpha(\mathrm{N})=3.75\times10^{-6}\ 6;\ \alpha(\mathrm{O})=5.44\times10^{-7}\ 8;\ \alpha(\mathrm{P})=3.07\times10^{-8}\ 5;\\ &\alpha(\mathrm{IPF})=0.000212\ 3\\ &\alpha(\mathrm{K})=0.00208\ 3;\ \alpha(\mathrm{L})=0.000323\ 5;\ \alpha(\mathrm{M})=7.21\times10^{-5}\ 11\\ &\alpha(\mathrm{N})=1.677\times10^{-5}\ 24;\ \alpha(\mathrm{O})=2.39\times10^{-6}\ 4;\ \alpha(\mathrm{P})=1.239\times10^{-7}\ 18; \end{aligned}$
1669.13	7+	382.9 1	43 3	1286.22	5+	[E2]		0.0338	α (IPF)=5.50×10 ⁻⁵ 8 α (K)=0.0259 4; α (L)=0.00607 9; α (M)=0.001404 20 α (N)=0.000323 5; α (O)=4.25×10 ⁻⁵ 6; α (P)=1.391×10 ⁻⁶ 20 Mult.: $\gamma(\theta)$ reported in (α .2n γ) (1976We24).
		572.4 2	7.2 16	1096.70	8+	[M1,E2]		0.0182 65	α (K)=0.0152 57; α (L)=0.00238 63; α (M)=5.3×10 ⁻⁴ 14 α (N)=1.23×10 ⁻⁴ 32; α (O)=1.75×10 ⁻⁵ 50; α (P)=8.9×10 ⁻⁷ 37
		1002.3 2	100 <i>9</i>	666.68	6+	(M1+E2)	-8. +3-7	0.00339 8	$\alpha(K)=0.00283\ 7;\ \alpha(L)=0.000432\ 10;\ \alpha(M)=9.62\times10^{-5}\ 21$ $\alpha(N)=2.23\times10^{-5}\ 5;\ \alpha(O)=3.17\times10^{-6}\ 7;\ \alpha(P)=1.62\times10^{-7}\ 5$ $\delta:\ from\ \gamma(\theta)\ in\ (\alpha,2n\gamma)\ (1976We24).$ The evaluator assigns M1+E2 rather than E1+M2.
1682.26	$7^{(-)}$	1015.6 2	100	666.68	6+				
1712.18	4+	583 1	53	1128.11	4+				
		709.99 15	55 4	1002.06	3+				
		811.52 10	100 7	900.72	2+				
1729.63	(5 ⁻)	1627.60 20	100	102.04	2+	[E3]		0.00254	$\alpha(K)=0.00207 \ 3; \ \alpha(L)=0.000321 \ 5; \ \alpha(M)=7.15\times10^{-5} \ 10$ $\alpha(N)=1.664\times10^{-5} \ 24; \ \alpha(O)=2.37\times10^{-6} \ 4; \ \alpha(P)=1.231\times10^{-7} \ 18;$ $\alpha(IPF)=5.62\times10^{-5} \ 8$ Mult.: level may be a doublet, in which case γ may be [M1,E2].
1761.26	(6 ⁻)	218.8 1094.6 <i>1</i>	100	1542.62 666.68	(4 ⁻) 6 ⁺				
1805.21		453.02 8 634.5 5 1476.0 5	100 <i>12</i> 46 2 37 6	1352.17 1171.02 329.62	1 ⁻ 2 ⁺ 4 ⁺				
1856.69	ŗ	499.2 ^b 6 1754.68 <i>15</i>	≤21 ^b 100 10	1356.77 102.04	3 ⁻ 2 ⁺				
1864.89	2+	736.6 <i>4</i> 1536.1 <i>5</i> 1763.4 ^{<i>b</i>} <i>5</i> 1864.3 <i>4</i>	$15 \ 4$ $100 \ 15$ $\leq 45^{b}$ $80 \ 11$	1128.11 329.62 102.04 0.0	4^+ 4^+ 2^+ 0^+				Mult.: $\gamma(\theta)$ reported in $(\alpha, 2n\gamma)$ (1976We24).
1872.66	8+	269.6 <i>3</i> 413 776.0 <i>2</i>	35 <i>11</i> 100 <i>11</i>	1602.83 1459.58 1096.70	10 ⁺ 6 ⁺ 8 ⁺				
1931.30		$\begin{array}{c} 1205.9 \ 3 \\ 424.6 \ 5 \\ 759.6^{b} \ 4 \\ 920 \ 25 \ 20 \end{array}$	577 3.624 $\leq 20^{b}$	666.68 1506.36 1171.02	6' 1 ⁻ 2 ⁺ 2 ⁺				

$\gamma(^{162}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	α &	Comments
1931.30		1829.2 5	84 8	$102.04 2^+ 2^+$			
1974.74		1931.34 20 1872.9 6 1974.72 10	9.9 23 100 7	$\begin{array}{ccc} 0.0 & 0^{+} \\ 102.04 & 2^{+} \\ 0.0 & 0^{+} \end{array}$			
1986.01	9-	889.3 1	100	1096.70 8+	E1	1.71×10 ⁻³	$\alpha(K)=0.001455\ 2I;\ \alpha(L)=0.000197\ 3;\ \alpha(M)=4.32\times10^{-5}\ 6$ $\alpha(N)=1.005\times10^{-5}\ I4;\ \alpha(O)=1.447\times10^{-6}\ 2I;\ \alpha(P)=7.95\times10^{-8}\ I2$ Mult.: from $\alpha(K)$ exp in $(\alpha,3n\gamma)$ (1976Zo02) and $\gamma(\theta)$ in $(\alpha,4n\gamma)$ (1975Fe06).
2025.57	7 ⁽⁻⁾	928.9 2	26.9 18	1096.70 8+	[E1]	1.57×10 ⁻³	$\alpha(K)=0.001339 \ I9; \ \alpha(L)=0.000181 \ 3; \ \alpha(M)=3.97\times10^{-5} \ 6 \ \alpha(N)=9.23\times10^{-6} \ I3; \ \alpha(O)=1.330\times10^{-6} \ I9; \ \alpha(P)=7.33\times10^{-8} \ I1 \ B(E1)(W.u.)=7.8\times10^{-10} \ 7 \ E_{\gamma}: \text{ other value, } 930.1 \ 4 \ (^{9}\text{Be}) \ (2012\text{Sw01}).$ $I_{\gamma}: \text{ weighted average of } 26.1 \ I8 \ (^{9}\text{Be}) \ (2012\text{Sw01}) \text{ and } 31 \ 4 \ ((\alpha, 2n\gamma), 1976\text{We24}).$
		1358.9 <i>1</i>	100 6	666.68 6+	[E1]	8.90×10 ⁻⁴	Mult: $\gamma(\theta)$ reported in $((\alpha, 2n\gamma), 1970 \text{ We24})$. $\alpha(\text{K})=0.000674 \ 10; \ \alpha(\text{L})=8.98 \times 10^{-5} \ 13; \ \alpha(\text{M})=1.96 \times 10^{-5} \ 3$ $\alpha(\text{N})=4.57 \times 10^{-6} \ 7; \ \alpha(\text{O})=6.61 \times 10^{-7} \ 10; \ \alpha(\text{P})=3.71 \times 10^{-8} \ 6; \ \alpha(\text{IPF})=0.0001012 \ 15$ B(E1)(W.u.)=9.3×10 ⁻¹⁰ 5 E _{\gamma} : other value, 1359.6 2 (⁹ Be) (2012Sw01). I _{\gamma} : weighted average of 100 9 (⁹ Be) (2012Sw01) and 100 7 ((α ,2n γ), 1976We24). Mult: $\gamma(\theta)$ reported in ((α ,2n γ), 1976We24).
2026.01		1125.5 3	30 5	900.72 2^+			Mart. 7(0) reported in ((a,217), 1970 we21).
2061.35	(1,2 ⁺)	488.8 <i>10</i> 640.0 <i>4</i> 890.7 ^b 5 1959.25 20 2062.1 ^b 4	93 184 $\leq 17^{b}$ 1008 $< 27^{b}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
2061.95	(8 ⁻)	300.7 1	80 5	1761.26 (6 ⁻)	E2	0.0686	$\alpha(K)=0.0502 \ 7; \ \alpha(L)=0.01417 \ 20; \ \alpha(M)=0.00331 \ 5$ $\alpha(N)=0.000759 \ 11; \ \alpha(O)=9.75\times10^{-5} \ 14; \ \alpha(P)=2.59\times10^{-6} \ 4$ Mult.: from $\gamma(\theta)$ in ¹⁶⁵ Ho(p,4n γ), 1977Ja06 conclude that this γ is a stretched E2
2114.11	(0+)	965.3 <i>1</i> 1213.3 <i>3</i> 2012.30 <i>20</i>	100 8 64 11 100 10	$\begin{array}{cccc} 1096.70 & 8^+ \\ 900.72 & 2^+ \\ 102.04 & 2^+ \\ 1256.77 & 2^- \end{array}$			
2121.67		764.4 5 993.64 8 1119.6 3	34 8 70 7 21 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

	Adopted Levels, Gammas (continued)													
						$\gamma(^{162}\text{Er})$	(continued)							
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	α &	Comments							
2121.67		1220.63 <i>14</i> 1792.3 ^b 8	$100 12 \\ \leq 35^{b}$	900.72 2^+ 329.62 4^+										
2133.79	9+	464.6 <i>1</i> 530.9 <i>3</i> 1037.1 <i>1</i>	71 5 8 4 100 7	$\begin{array}{cccc} 1669.13 & 7^{+} \\ 1602.83 & 10^{+} \\ 1096.70 & 8^{+} \end{array}$										
2165.12	12+	562.3 1	100	1602.83 10+	E2	0.01223	$\alpha(K)=0.00986 \ 14; \ \alpha(L)=0.00185 \ 3; \ \alpha(M)=0.000419 \ 6$ $\alpha(N)=9.67\times10^{-5} \ 14; \ \alpha(O)=1.322\times10^{-5} \ 19; \ \alpha(P)=5.51\times10^{-7} \ 8$ Mult.: from $\alpha(K)exp$ in $(\alpha,3n\gamma)$ (1976Zo02) and from $\gamma(\theta)$ in $(\alpha,4n\gamma)$ (1975Fe06) and in $(\alpha,2n\gamma)$ (1976We24).							
2192.09	2+	1862.0 <i>4</i> 2089.9 <i>3</i> 2192.35 25	98 12 85 17 100 12	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										
2205.94		2103.84 25 2206.5 ^b 9	100 12 < 29^{b}	$102.04 \ 2^+ \ 0.0 \ 0^+$										
2242.21		821.50 20 890.7 ^b 5 1342.7 ^b 8	$25.4 23$ $\leq 7.3^{b}$ $\leq 8.5^{b}$	1420.45 (2 ⁻) 1352.17 1 ⁻ 900.72 2 ⁺										
2260.24		2140.20 <i>11</i> 759.6 ^b 4	$100\ 5$ $<40^{b}$	$102.04 \ 2^+$ $1500.58 \ 2^+$										
		830.47 20 2158.17 23 2260 9 5	67 <i>12</i> 100 <i>12</i> 38 <i>10</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
2318.67		695.2 <i>3</i> 966.24 <i>20</i> 2216.80 <i>15</i> 2319 1 <i>4</i>	16.7 26 31 6 100 8 24 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
2346.59	10+	181.5 <i>I</i> 212.6 <i>I</i> 473.9 <i>I</i> 743.8 <i>I</i>	93 8 100 9 28.3 22 32 3	$\begin{array}{c} 0.0 & 0 \\ 2165.12 & 12^{+} \\ 2133.79 & 9^{+} \\ 1872.66 & 8^{+} \\ 1602.83 & 10^{+} \end{array}$										
2368.19	11-	381.1		1986.01 9-	(E2)	0.0342	$\alpha(K)=0.0263 \ 4; \ \alpha(L)=0.00617 \ 9; \ \alpha(M)=0.001426 \ 20$ $\alpha(N)=0.000328 \ 5; \ \alpha(O)=4.32\times10^{-5} \ 6; \ \alpha(P)=1.407\times10^{-6} \ 20$ Mult : evaluator's interpretation of $\gamma(\theta)$ in $(\alpha \ 4n\gamma)$ (1975Ee06)							
		765.4 1	100	1602.83 10+	E1	0.00229	$\alpha(K)=0.00195 \ 3; \ \alpha(L)=0.000266 \ 4; \ \alpha(M)=5.83\times10^{-5} \ 9 \ \alpha(N)=1.355\times10^{-5} \ 19; \ \alpha(O)=1.95\times10^{-6} \ 3; \ \alpha(P)=1.060\times10^{-7} \ 15 \ Mult.; from \ \alpha(K)exp in \ (\alpha, 3n\gamma) \ (1976Zo02) and \ \gamma(\theta) in \ (\alpha, 4n\gamma) \ (1975Fe06)$							
2429.49	(10 ⁻)	367.6 1	5.6 6	2061.95 (8 ⁻)	E2	0.0379	$\begin{aligned} \alpha(K) = 0.0289 \ 4; \ \alpha(L) = 0.00697 \ 10; \ \alpha(M) = 0.001614 \ 23 \\ \alpha(N) = 0.000371 \ 6; \ \alpha(O) = 4.87 \times 10^{-5} \ 7; \ \alpha(P) = 1.542 \times 10^{-6} \ 22 \\ \text{Mult.: from } \gamma(\theta) \ \text{in}^{\ 165} \text{Ho}(\text{p},4n\gamma), \ 1977\text{Ja06 conclude that this } \gamma \ \text{is a stretched} \\ \text{E2.} \end{aligned}$							

13

¹⁶²₆₈Er₉₄-13

	Adopted Levels, Gammas (continued)													
							$\gamma(^{162}\text{Er})$	(continued)						
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^{π}	Mult. ^{†‡}	α &	Comments						
2429.49	(10 ⁻)	826.6 1	100 8	1602.83	10^{+}									
2449.75		720.1 3	52 10	1729.63	(5 ⁻)									
		1036.6 5	60 8 50 12	1412.58	1,2+									
		1092.50	265b	1002.06	3 2+									
		1447.7° 3	$\leq 0.5^{\circ}$	900.72	3* 2+									
		$\frac{13+7.2}{23}$	$\sim 17^{b}$	102.04	$\frac{2}{2^{+}}$									
		2449.9 3	$\frac{1}{60}$	0.0	0^{+}									
2598.08		733.4 ^b 5	<8.4 ^b	1864.89	2+									
20/0100		1595.80 15	85 8	1002.06	<u>3</u> +									
		1698.1 4	100 14	900.72	2+									
		2269.3 ^b 5	≤20 ^b	329.62	4+									
		2496.6 10	14 4	102.04	2+									
2603.8		2502.1 5	67 13	102.04	2 ⁺									
2656 33	11+	2005.0 5	84 7	2346 59	10+									
2000.00	11	522.7 1	100 7	2133.79	9 ⁺									
		1053.4 5	19 <i>3</i>	1602.83	10^{+}									
2664.45		733.4 <mark>b</mark> 5	≤38 ^b	1931.30										
		1493.5 ^b 4	≤169 ^b	1171.02	2^{+}									
		1763.4 <mark>b</mark> 5	≤156 ^b	900.72	2^{+}									
		2335.3 9	100 25	329.62	4+									
0745 70	1.4+	2562.2 5	88 19	102.04	2^+	50	0.01121							
2745.72	14'	580.6 1	100	2165.12	121	E2	0.01131	$\alpha(\mathbf{K}) = 0.00914 \ I3; \ \alpha(\mathbf{L}) = 0.001685 \ 24; \ \alpha(\mathbf{M}) = 0.000382 \ 6$						
								$\alpha(N) = 8.85 \times 10^{-5} I_{3}; \alpha(O) = 1.210 \times 10^{-5} I_{7}; \alpha(P) = 5.12 \times 10^{-5} 8$ Mult : from $\alpha(K)$ exp in (α 3n α) (19767 o02) and $\gamma(\theta)$ in (α 4n α) (1975Fe06)						
2751.8	(6)	1292.2		1459.58	6+			(1) = (1)						
2817.76	13-	449.6 <i>1</i>	45 5	2368.19	11^{-}	(E2)	0.0217	$\alpha(K)=0.01708\ 24;\ \alpha(L)=0.00361\ 5;\ \alpha(M)=0.000827\ 12$						
								α (N)=0.000190 3; α (O)=2.55×10 ⁻⁵ 4; α (P)=9.35×10 ⁻⁷ 13						
								Mult.: evaluator's interpretation of $\gamma(\theta)$ in $(\alpha, 4n\gamma)$ (1975Fe06).						
		652.6 <i>I</i>	100 7	2165.12	12+	E1	0.00316	$\alpha(K) = 0.00268 \ 4; \ \alpha(L) = 0.000370 \ 6; \ \alpha(M) = 8.12 \times 10^{-5} \ 12$						
								$\alpha(N)=1.89\times10^{-5}$ 3; $\alpha(O)=2.70\times10^{-6}$ 4; $\alpha(P)=1.454\times10^{-7}$ 21 Mult : from $\alpha(K)$ avail (α 3na) (10767a02) and $\alpha(A)$ in (α 4na) (1075Fa06)						
2841.98	(12^{-})	412.5 1	100	2429.49	(10^{-})	E2	0.0274	$\alpha(K)=0.0213 \ 3; \ \alpha(L)=0.00475 \ 7; \ \alpha(M)=0.001094 \ 16$						
201100	(12)	11210 1	100		(10)		0.0271	$\alpha(N) = 0.000252 4; \ \alpha(O) = 3.34 \times 10^{-5} 5; \ \alpha(P) = 1.155 \times 10^{-6} 17$						
								Mult.: from $\gamma(\theta)$ in ¹⁶⁵ Ho(p,4n γ), 1977Ja06 conclude that this γ is a stretched						
								E2.						
2910.85	12^{+}	564.4 ^C 1	100	2346.59	10^{+}									
3039.8		1415.9 10	437	1623.24	5									

14

 $^{162}_{68}\mathrm{Er}_{94}$ -14

From ENSDF

 $^{162}_{68}\mathrm{Er}_{94}$ -14

L

$\gamma(^{162}\text{Er})$ (continued)

E _i (level)	J_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{†‡}	α &	Comments
3039.8		1533.3 5	100 18	1506.36 1-			
2116.94	2+	3040.710 1402 5 d	11.5	$0.0 0^{+}$			
3110.64	2	1495.5 4	≤ 30 15 4	$1023.24 \ 3$ 1572 84 2^{-}			
		1616.3 3	44 7	1572.012 1500.58 2 ⁺			
		1696.0 4	100 14	1420.45 (2-)			
		1704.4 5	21 3	1412.58 1,2+			
2122 52		2786.9 3	5.6 14	329.62 4+			
3132.52		872.76	11.9 25	2260.24			
		890.7° 5	≤11.0°	2242.21			
		1010.56 24	35 8 3 4 25	2121.07 2114.11 (0 ⁺)			
		1107.0.3	11 9 25	2026.01			
		1776.3 5	3.4 17	1356.77 3-			
		1780.5 5	6.8 25	1352.17 1-			
		1961.5 5	22.9 25	1171.02 2+			
		2130.5 2	55 6	$1002.06 \ 3^+$			
3180.3		2231.70 8	68 12	$900.72 \ 2^{+}$ 102 04 \ 2^{+}			
5100.5		3181.2 6	100 20	$0.0 0^+$			
3267.60		1007.6 4	31 7	2260.24			
		1410.89 20	46 8	1856.69			
		1838.1 <i>3</i>	45 6	1429.79 2+			
		1846.9 3	25 5	$1420.45 (2^{-})$ $1252.17 1^{-}$			
		1914.7123	100 0	1552.17 1			
		2097.4° 4	$\leq 32^{\circ}$	$11/1.02 \ 2^{+}$ 1002 06 3 ⁺			
		2368.1.5	5.8 24	900.72 2^+			
		3165.5 4	38.6	102.04 2+			
		3267.1 8	7.1 24	$0.0 0^+$			
3292.4	16+	546.7 2	100	2745.72 14+	(E2)	0.01312	$\alpha(K)=0.01054\ 15;\ \alpha(L)=0.00200\ 3;\ \alpha(M)=0.000455\ 7$
							$\alpha(N)=0.0001050 \ 15; \ \alpha(O)=1.431\times10^{-3} \ 20; \ \alpha(P)=5.88\times10^{-7} \ 9$ Mult : evaluator's interpretation of $\gamma(\theta)$ in (α 4ny) (1975Fe06)
3293.2		1792.3 <mark>b</mark> 8	≤97 ^b	1500.58 2+			
		2206.5 ^b 9	≤40 ^b	1087.16 0+			
		3191.2 3	100 11	102.04 2+			
		3292.1 10	60 14	$0.0 0^+$			
3367.95		1342.7 <mark>b</mark> 8	≤9.5 ^b	2026.01			
		1947.5 ^b 10	≤4.4 <mark>b</mark>	1420.45 (2-)			
		2015.75 12	100 6	1352.17 1-			

15

 $^{162}_{68}\mathrm{Er}_{94}$ -15

						Adopted	Levels, Ga	mmas (continued)						
	γ ⁽¹⁶² Er) (continued)													
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. ^{†‡}	α &	Comments						
3367.95		3367.6 7	3.2 13	0.0	0^{+}									
3389.17		1969.3 <mark>b</mark> 8	≤76 b	1420.45	(2^{-})									
		2036.6 4	36 9	1352.17	1-									
		2302.5 5	18 4	1087.16	0^{+}									
		3286.9 3	76 11	102.04	2^+									
		3389.5 5	100 <i>13</i>	0.0	0									
3400.08		1969.30 8	≤37°	1429.79	2 ⁺									
		2049.2 10	23 3	102.04	$\frac{1}{2^+}$									
		3400.3 3	37 5	0.0	0^{+}									
3414.67		1096.02 22	100 10	2318.67										
		1994.7 5	13 3	1420.45	(2^{-})									
		2062.1 ^b 4	≤34 ^b	1352.17	1-									
3435.8		3333.7 8	62 12	102.04	2+									
2518.00	(2^{+})	3435.8 4	100 12	0.0	0^+									
5518.00	(2)	1199.8 J	42 22	2318.07	(2-)									
		$2097.4^{\circ}4$	$\leq 10^{b}$	1420.45	(2)									
		2347.70 10	$\leq 19^{\circ}$	11/1.02	2 · 4+									
		3415.7 4	100 14	102.04	2+									
		3517.8 10	31 6	0.0	0^{+}									
3676.48	$2^+, 3^-$	1947.5 <mark>b</mark> 10	≤12 b	1729.63	(5^{-})									
	,	2175.8 5	19 7	1500.58	2+									
		2323.7 5	17 3	1352.17	1-									
		2505.3 5	31 7	1171.02	$2^+_{4^+}$									
		2548.27 20	1/ 3	900 72	4 · 2+									
		3574.58 20	100 8	102.04	$\frac{2}{2^{+}}$									
3689.6		1447.7 <mark>b</mark> 5	<124 ^b	2242.21										
		2269.3 ^b 5	<67 ^b	1420.45	(2^{-})									
		2688.3 10	33 10	1002.06	3+									
		3587.2 4	100 14	102.04	2^{+}									
3846.6	18^{+}	554.2 5		3292.4	16+	(E2)	0.01268	$\alpha(K)=0.01020$ 15; $\alpha(L)=0.00192$ 3; $\alpha(M)=0.000437$ 7						
								$\alpha(N)=0.0001009 \ 15; \ \alpha(O)=1.377\times 10^{-3} \ 20; \ \alpha(P)=5.69\times 10^{-7} \ 8$						
4463 2	20+	616.6		3846.6	18+	(F2)	0 00978	Mult.: evaluator's interpretation of $\gamma(\theta)$ in $(\alpha, 4n\gamma)$ (19/5Fe06). $\alpha(K) = 0.00795$ 12: $\alpha(L) = 0.001426$ 20: $\alpha(M) = 0.000322$ 5						
1103.2	20	010.0		50-10.0	10	(12)	0.00270	$\alpha(N) = 7.46 \times 10^{-5}$ 11: $\alpha(O) = 1.027 \times 10^{-5}$ 15: $\alpha(P) = 4.46 \times 10^{-7}$ 7						
								Mult.: evaluator's interpretation of $\gamma(\theta)$ in $(\alpha, 4n\gamma)$ (1975Fe06).						
7516	(27^{-})	841		6675	(25^{-})	#								
		-			(~)									

From ENSDF

 $^{162}_{68}\mathrm{Er}_{94}$ -16

Т

$\gamma(^{162}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	$E_f J_f^{\pi}$	Mult. ^{†‡}	E_i (level)	\mathbf{J}_i^{π}	Eγ	E_f	\mathbf{J}_f^{π}	Mult. ^{†‡}
7623	(28 ⁺)	881	6742 (26 ⁺)	#	13553	(40^{+})	1063	12490	(38+)	#
8014	(28 ⁻)	846	7168 (26 ⁻)	#	14398	(41 ⁻)	1108	13290	(39 ⁻)	
8418	(29-)	902	7516 (27-)	#	14664	(42^{+})	1111	13553	(40^{+})	#
8551	(30 ⁺)	927	7623 (28+)	#	15574	(43 ⁻)	1176	14398	(41 ⁻)	
8934	(30-)	920	8014 (28-)	#	15832	(44^{+})	1168	14664	(42^{+})	#
9367	(31 ⁻)	949	8418 (29 ⁻)	#	16820	(45 ⁻)	1246	15574	(43 ⁻)	
9508	(32 ⁺)	958	8551 (30+)	#	17063	(46^{+})	1231	15832	(44^{+})	
9916?	(32-)	982 ^c	8934 (30-)	#	18129	(47 ⁻)	1309	16820	(45 ⁻)	
10302	(33 ⁻)	935	9367 (31 ⁻)		18358	(48^{+})	1295	17063	(46^{+})	
10481	(34+)	973	9508 (32+)	#	19511?	(49 ⁻)	1382 ^C	18129	(47 ⁻)	
10898	(34 ⁻)	982	9916? (32 ⁻)		19721	(50^{+})	1363	18358	(48 ⁺)	
11252	(35 ⁻)	950	$10302 (33^{-})$		21152	(52^+)	1431	19721	(50^{+})	
11470	(36+)	989	10481 (34+)	#	22659	(54+)	1507	21152	(52^+)	
12242	(37 ⁻)	990	11252 (35 ⁻)		24237	(56^{+})	1578	22659	(54^{+})	
12490	(38+)	1020	11470 (36+)	#	25883	(58^{+})	1646	24237	(56 ⁺)	
13290	(39 ⁻)	1048	12242 (37 ⁻)		27581?	(60^{+})	1698 ^C	25883	(58^+)	

[†] Unless noted otherwise, the multipolarities are from ce ratios (K/L1, L1/L2, etc.) (1963Ab02,1965Ab02,1987BaZB) or α (K)exp measurements (1974De47,1975St12,1976Zo02), α (L)exp and α (M)exp measurements (1974De47), and in-beam $\gamma(\theta)$ measurements (1975Fe06).

[‡] Where numerical values are given for conversion coefficients (and ratios), the listed references are from the the ¹⁶²Tm ε decay (21.70 min) data set, unless noted otherwise.

[#] Transition assumed to be a stretched E2 (1990Ri03,1990Ri09).

[@] From $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ (1976We24).

& Additional information 4.

^{*a*} If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

¹⁶²₆₈Er₉₄

Level Scheme (continued)

¹⁶²₆₈Er₉₄

Level Scheme (continued)

¹⁶²₆₈Er₉₄

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

¹⁶²₆₈Er₉₄

Level Scheme (continued)

Level Scheme (continued)

¹⁶²₆₈Er₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁶²₆₈Er₉₄

 $^{162}_{68}\mathrm{Er}_{94}$

Band(G): Bandhead of a $K^{\pi}=4^+$ band 4^+ 1712.18

¹⁶²₆₈Er₉₄