¹⁶²Ho ε+β⁺ decay (67.0 min) 1999Za15,1971Wo09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

Parent: ¹⁶²Ho: E=105.87 6; $J^{\pi}=6^-$; $T_{1/2}=67.0 \text{ min } 7$; $Q(\varepsilon)=2141 3$; $\%\varepsilon+\%\beta^+$ decay ≈ 37

¹⁶²Ho-E: Additional information 1.

¹⁶²Ho-J^{π}: Additional information 2.

¹⁶²Ho-T_{1/2}: Additional information 3.

¹⁶²Ho-Q(ε): From 2021Wa16.

¹⁶²Ho- $\%\epsilon+\%\beta^+$ decay: from evaluator's analysis based on Ice(L)(38.34)/Ice(K)(184.99) ratio measured by 1961Jo10, with 38.34 γ in ¹⁶²Ho IT decay (67 min) scheme and 184.99 γ in ¹⁶²Ho ε decay (67.0 min) scheme, giving %IT=63 and $\%\epsilon$ =37. See ¹⁶²Ho IT decay (67.0 min) dataset for details.

1999Za15: ¹⁶²Ho produced using the ¹⁵⁹Tb(α ,n) reaction. Both 15-min and 67-min activities were present in the sources. γ 's detected using a Clover detector and a 70% Ge detector. Measured E γ , I γ for mixed sources, $\gamma\gamma$. Emphasis was on this 67-min activity, but new data were also obtained for the 15-min activity. See, also, the ¹⁶²Ho ε decay (15.0 min) Data Set. Other reports from this same group are given in 2000Za03 and 1998LiZR.

1973Ch28: ¹⁶²Ho (67 min) from ¹⁵⁹Tb(α ,n). Measured T_{1/2} for the 80 and 1485 levels, using NaI(Tl) and/or plastic scintillators.

1971Wo09: ¹⁶²Ho produced in the ¹⁵⁹Tb(α ,n) reaction, with chemical extraction of the rare-earth activities. Samples contained both ¹⁶²Ho activities. γ 's measured using Ge detectors. Measured E γ , I γ for both activities. 42 γ 's reported. See, also, the ¹⁶²Ho ε decay (15.0 min) Data Set.

1969Ho17: 162 Ho (67 min) produced in 162 Dy(d,2n). Measured T_{1/2}(1485, 5⁻, level) using NaI(Tl) and/or plastic scintillators. 1963Li04: 162 Ho (67 min) from 159 Tb(α ,n). Measured T_{1/2} for the 80 and 265 levels, using plastic scintillators.

1961Jo10: ¹⁶²Ho produced in ¹⁵⁹Tb(α ,n). Some sources were isotope separated. γ singles and $\gamma\gamma$ coincidences measured using NaI(TI) detectors. ce, β^+ , and ce γ coincidences measured using magnetic spectrometer. 7 γ 's reported.

Others: 1957Mi67; 1961Ha23; 1969Ak01; 1976Ko34.

These data are primarily from 1999Za15, with some input from those of 1971Wo09 and the ¹⁶²Dy Adopted Levels, Gammas dataset.

Level scheme is incomplete: the sum of energies is 550 7, while $Q \times (\% \varepsilon + \% \beta^+ \text{ decay}) = 831.3 \ 11$. For this reason no $\varepsilon \beta^+$ radiations table is given for this dataset.

Additional information 4.

¹⁶²Dy Levels

Additional information 5.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0@	0+	stable	
80.670 [@] 20	2+	2.19 ns 2	$T_{1/2}$: adopted value. 2.25 ns 7 from 1963Li04 from electron- γ coincidences with two plastic scintillators. Other: 3.05 ns 20 (1973Ch28).
265.661 [@] 27	4+	0.132 ns 5	$T_{1/2}$: adopted value. 0.132 ns 8 from 1963Li04 from electron- γ coincidences with two plastic scintillators.
548.544 [@] 35	6+		
888.36 ^{&} 5	2^{+}		
962.99 <mark>&</mark> 4	3+		
1061.02 ^{&} 4	4+		
1148.36 ^a 21	2-		
1182.79 ^{&} 4	5+		
1210.136 ^a 35	3-		
1296.95 ^a 4	4-		
1324.51 ^{&} 5	6+		

¹⁶²Ho ε + β ⁺ decay (67.0 min) 1999Za15,1971Wo09 (continued)

¹⁶²Dy Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	Comments
1390.54 ^{<i>a</i>} 5	5-		
1485.705 ^b 34	5-	1.92 ns 11	 T_{1/2}: Weighted average of 1.91 ns <i>19</i> (1969Ho17) and 1.93 ns <i>13</i> (1973Ch28 from x-γ coincidences with plastic scintillators). Additional information 6.
1530.26 ^a 11	6-		
1575.64 ^b 5	6-		J ^{π} : from expected band structure. 1999Za15 suggest $J^{\pi}=5^{-},6^{-}$.

[†] From least-squares fit to γ energies.
[‡] J^π and band assignments are from ¹⁶²Dy Adopted Levels. Arguments for each assignment are given there.
[#] From measurements following decay of ¹⁶²Ho (67 min) only. See ¹⁶²Dy Adopted Levels for a summary of all half-life results.

^(a) Band(C): $K^{\pi}=2^{-}$ octupole-vibrational band. Dominant configuration=(π 7/2[523])-(π 3/2[411]).

^b Band(D): $K^{\pi}=5^{-}$ band, Configuration=(ν 5/2[523])+(ν 5/2[642]).

$\gamma(^{162}\mathrm{Dy})$

I γ normalization: computed by requiring that the total γ +ce intensity in the ε + β ⁺ decay that passes through 100 keV be 100%. In computing this, the evaluator has used the total intensity of the γ 's feeding the 265 level rather than the I(γ +ce) value of the deexciting 185 γ , since this latter value is significantly smaller than the former.

Coincidence data on the drawing are from 1961Jo10.

1971Wo09 report γ 's having E γ =205.5 3, 467.9 2, 1276.0 10, and 1806.0 10. These have not been placed in the proposed level scheme. Unplaced transitions from the ce data of 1961Ha23 are not listed. These latter γ 's could be from ¹⁶²Ho (15 min) or some other nuclide.

E_{γ}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$\alpha^{\&}$	Comments
80.67 2	187 6	80.670	2+	0.0	0+	E2		6.13	$\alpha(K)=1.82 \ 3; \ \alpha(L)=3.32 \ 5; \ \alpha(M)=0.796 \ 12; \ \alpha(N+)=0.200 \ 3$ $\alpha(N)=0.178 \ 3; \ \alpha(O)=0.0212 \ 3; \ \alpha(P)=7.66\times10^{-5} \ 11 \ \%I\gamma\approx4.5$ $I_{\gamma}: computed from the intensity balance at the 80.7 level, assuming no$
89.98 10	9.6 [‡] 3	1575.64	6-	1485.705	5-	M1+E2	0.53 3	3.42 6	$\varepsilon + \beta^+$ feeding. $\alpha(K)=2.45 5; \ \alpha(L)=0.75 4; \ \alpha(M)=0.174 8; \ \alpha(N+)=0.0447 20$ $\alpha(N)=0.0394 \ 18; \ \alpha(O)=0.00514 \ 21; \ \alpha(P)=0.000146 \ 3$ $\% I\gamma \approx 0.23$ $I_{\gamma}: \text{ computed from } I\gamma(90\gamma)/I\gamma(329.8\gamma) \text{ in } (\alpha,2n\gamma) \text{ and } I\gamma(392.8\gamma).$ 1999Za15 report $I\gamma = 37 \ 8$ for the composite peak.
95.25 10	20‡ 2	1485.705	5-	1390.54	5-	[M1,E2]		3.0 <i>3</i>	$\alpha(K)=1.8 \ 6; \ \alpha(L)=0.9 \ 6; \ \alpha(M)=0.22 \ 15; \ \alpha(N+)=0.06 \ 4$ $\alpha(N)=0.05 \ 4; \ \alpha(O)=0.006 \ 4; \ \alpha(P)=0.00010 \ 5$ %I $\gamma\approx$ 0.48 I _{γ} : listed value is close to that expected from (n, γ). Thus, most of the intensity of this doublet is associated with this placement.
149.07 10	10.4 [‡] 4	1210.136	3-	1061.02	4+				%Iy≈0.25
161.16 5	2.9 2	1485.705	5-	1324.51	6+	[E1]		0.0861	E _γ : assumed by the evaluator to be the same as the 149.100 γ in (n,γ). $\alpha(K)=0.0724 \ II; \alpha(L)=0.01068 \ I5; \alpha(M)=0.00234 \ 4;$ $\alpha(N+)=0.000611 \ 9$
									$\alpha(N)=0.000533 \ 8; \ \alpha(O)=7.45\times10^{-5} \ 11; \ \alpha(P)=3.57\times10^{-6} \ 5$ %Ly ≈ 0.069
184.99 2	1000 3	265.661	4+	80.670	2+	E2		0.307	$\alpha(K)=0.200 \ 3; \ \alpha(L)=0.0826 \ 12; \ \alpha(M)=0.0194 \ 3; \ \alpha(N+)=0.00494 \ 7 \ \alpha(N)=0.00438 \ 7; \ \alpha(O)=0.000551 \ 8; \ \alpha(P)=9.37\times10^{-6} \ 14 \ Mv \approx 24$
188.78 <i>3</i>	3.8 5	1485.705	5-	1296.95	4-	M1+E2	0.89 <i>19</i>	0.349 <i>14</i>	$\alpha(\mathbf{K})=0.270 \ 17; \ \alpha(\mathbf{L})=0.061 \ 4; \ \alpha(\mathbf{M})=0.0139 \ 9; \ \alpha(\mathbf{N}+)=0.00361 \ 20$ $\alpha(\mathbf{N})=0.00317 \ 18; \ \alpha(\mathbf{O})=0.000427 \ 18; \ \alpha(\mathbf{P})=1.55\times10^{-5} \ 14$ $\alpha(\mathbf{K})=0.336 \ 5; \ \alpha(\mathbf{L})=0.0489 \ 7; \ \alpha(\mathbf{M})=0.01073 \ 15; \ \alpha(\mathbf{N}+)=0.00287 \ 4$ $\alpha(\mathbf{N})=0.00248 \ 4; \ \alpha(\mathbf{O})=0.000364 \ 5; \ \alpha(\mathbf{P})=2.08\times10^{-5} \ 3$ $\%\mathbf{I}\gamma\approx0.091$
219.6 10	1.2 6	1182.79	5^{+}	962.99	3+	E2		0.173	$\dot{\alpha}(K)=0.1203\ 24;\ \alpha(L)=0.0412\ 10;\ \alpha(M)=0.00962\ 23;\ \alpha(N+)=0.00246$

From ENSDF

					¹⁶² Ho ε+ $β^+$ decay (67.0 min) 1999Za15,1971Wo09 (continued)						
							$\gamma(^1$	⁶² Dy) (continued)			
E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ^{&}	Comments			
			_					6 α (N)=0.00217 5; α (O)=0.000277 7; α (P)=5.87×10 ⁻⁶ 11 %Iγ≈0.029 I _γ : computed by the evaluator from Iγ(219.6γ)/Iγ(917.2γ) from 1971Wo09 and Iγ(917.2γ). γ not reported by 1999Za15.			
236.04 10	2.2 [‡] 4	1296.95	4-	1061.02	4+	E1	0.0316	$\alpha(K)=0.0267 4$; $\alpha(L)=0.00383 6$; $\alpha(M)=0.000837 12$; $\alpha(N+)=0.000220 3$ $\alpha(N)=0.000192 3$; $\alpha(O)=2.71\times10^{-5} 4$; $\alpha(P)=1.376\times10^{-6} 20$ %Iy ≈ 0.052 I _y : from I _Y (236.0 γ)/I _Y (333.9 γ) in (n, γ) and I _Y (333.9 γ), one computes I _Y (236.0 γ)=2.2 4. However, the 333.9 γ is itself complex (1999Za15) and thus this deduced value is an upper limit. See the comment on the 333.95 γ . 1999Za15 report I _X =15 8.2 for this γ			
247.12 8	1.5 3	1210.136	3-	962.99	3+	E1	0.0281	$\alpha(\mathbf{K})=0.0238 \ 4; \ \alpha(\mathbf{L})=0.00340 \ 5; \ \alpha(\mathbf{M})=0.000742 \ 11; \ \alpha(\mathbf{N}+)=0.000195 \ 3$ $\alpha(\mathbf{N})=0.0001700 \ 24; \ \alpha(\mathbf{O})=2.41\times10^{-5} \ 4; \ \alpha(\mathbf{P})=1.229\times10^{-6} \ 18 \ \%$			
251.10 8	1.0 3	1575.64	6-	1324.51	6+	[E1]	0.0270	$\alpha(\mathbf{N})=0.00218 \ 4; \ \alpha(\mathbf{L})=0.00326 \ 5; \ \alpha(\mathbf{M})=0.000711 \ 10; \ \alpha(\mathbf{N}+)=0.000187 \ 3 \\ \alpha(\mathbf{N})=0.0001630 \ 23; \ \alpha(\mathbf{O})=2.31\times10^{-5} \ 4; \ \alpha(\mathbf{P})=1.182\times10^{-6} \ 17 \\ \infty_{1}\times0.024 $			
260.00 20	0.3 1	1148.36	2-	888.36	2+	E1	0.0246	$\alpha(\mathbf{K})=0.0209 \ 3; \ \alpha(\mathbf{L})=0.00297 \ 5; \ \alpha(\mathbf{M})=0.000650 \ 10; \ \alpha(\mathbf{N}+)=0.0001712 \ 25 \ \alpha(\mathbf{N})=0.0001489 \ 21; \ \alpha(\mathbf{O})=2.12\times10^{-5} \ 3; \ \alpha(\mathbf{P})=1.086\times10^{-6} \ 16 \ \alpha(\mathbf{N}+)=0.00072 \ \alpha(\mathbf{N}+)=0.0001712 \ 25 \ \alpha(\mathbf{N})=0.00072 \ \alpha(\mathbf{N})=0.0007$			
275.55 3	30.2 8	1485.705	5-	1210.136	3-	E2	0.0839	$\alpha(K)=0.0617 \ 9; \ \alpha(L)=0.01716 \ 24; \ \alpha(M)=0.00397 \ 6; \ \alpha(N+)=0.001021 \ 15 \ \alpha(N)=0.000900 \ 13; \ \alpha(O)=0.0001174 \ 17; \ \alpha(P)=3.16\times10^{-6} \ 5 \ \% I\gamma\approx0.72$			
278.49 12	≤5 [‡]	1575.64	6-	1296.95	4-			%Ιγ<0.12			
282.86 <i>3</i>	429 8	548.544	6+	265.661	4+	E2	0.0773	1992.a15 report 1γ=3.0 20 for the composite peak. $\alpha(K)=0.0572 \ 8; \ \alpha(L)=0.01557 \ 22; \ \alpha(M)=0.00360 \ 5; \ \alpha(N+)=0.000925 \ 13$ $\alpha(N)=0.000816 \ 12; \ \alpha(O)=0.0001067 \ 15; \ \alpha(P)=2.95\times10^{-6} \ 5$			
302.91 <i>3</i>	12.5 3	1485.705	5-	1182.79	5+	E1	0.01679	%1γ≈10.2 $\alpha(K)=0.01423 \ 20; \ \alpha(L)=0.00201 \ 3; \ \alpha(M)=0.000439 \ 7; \ \alpha(N+)=0.0001158 \ 17$ $\alpha(N)=0.0001007 \ 14; \ \alpha(O)=1.437\times10^{-5} \ 21; \ \alpha(P)=7.51\times10^{-7} \ 11$ %1γ≈0.30			
321.76 5	3.7 4	1210.136	3-	888.36	2+	E1	0.01446	$\alpha(K)=0.01226 \ 18; \ \alpha(L)=0.001726 \ 25; \ \alpha(M)=0.000377 \ 6; \ \alpha(N+)=9.95\times10^{-5} \ 14 \ \alpha(N)=8.65\times10^{-5} \ 13; \ \alpha(O)=1.236\times10^{-5} \ 18; \ \alpha(P)=6.50\times10^{-7} \ 10 \ \%I\gamma\approx0.088$			
329.47 10	2.0 [‡] 5	1390.54	5-	1061.02	4+	[E1]	0.01365	$\begin{split} &\alpha(\text{K}) = 0.01157 \ 17; \ \alpha(\text{L}) = 0.001627 \ 23; \ \alpha(\text{M}) = 0.000355 \ 5; \ \alpha(\text{N}+) = 9.38 \times 10^{-5} \ 14 \\ &\alpha(\text{N}) = 8.15 \times 10^{-5} \ 12; \ \alpha(\text{O}) = 1.166 \times 10^{-5} \ 17; \ \alpha(\text{P}) = 6.15 \times 10^{-7} \ 9 \\ &\% \text{I} \gamma \approx 0.048 \\ &\text{I}_{\gamma}: \text{ computed from I} \gamma(329.4\gamma)/\text{I} \gamma(842.0\gamma) \text{ (from 1971Wo09) and I} \gamma(842.0\gamma). \\ &1999\text{Za15 report I} \gamma = 3.5 \ 2 \text{ for the composite peak.} \end{split}$			

 $^{162}_{66}\mathrm{Dy}_{96}$ -4

From ENSDF

 $^{162}_{66}\mathrm{Dy}_{96}\text{-}4$

					¹⁶² Ho ε + β ⁺ decay (67.0 min)			1999Za15,1971Wo09 (continued)			
							γ (¹⁶² Dy)	(continued)			
Eγ	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^{π}	E_f	J_f^{π}	Mult.#	δ#	α &	Comments		
333.95 10	15.9 [‡] 2	1296.95	4-	962.99	3+	E1		0.01320	$\alpha(K)=0.01120 \ 16; \ \alpha(L)=0.001573 \ 22; \ \alpha(M)=0.000343 \ 5; \ \alpha(N+)=9.07\times10^{-5} \ 13$		
									$\alpha(N)=7.88 \times 10^{-5} \ II; \ \alpha(O)=1.128 \times 10^{-5} \ I6; \ \alpha(P)=5.95 \times 10^{-7} \ 9$ %I $\gamma \approx 0.38$ I _{γ} : 1999Za15 indicate that this γ is a doublet. Evaluator has assumed that all the intensity is associated with this placement.		
347.47 10	2.6 2	1530.26	6-	1182.79	5+	[E1]		0.01199	$\alpha(K)=0.01017 \ 15; \ \alpha(L)=0.001426 \ 20; \ \alpha(M)=0.000311 \ 5; \ \alpha(N+)=8.22\times10^{-5} \ 12 \ \alpha(N)=7.14\times10^{-5} \ 10; \ \alpha(O)=1.023\times10^{-5} \ 15; \ \alpha(P)=5.42\times10^{-7} \ 8$		
392.86 4	9.4 <i>3</i>	1575.64	6-	1182.79	5+	[E1]		0.00894	$\alpha(1) = 7.14 \times 10^{-10}, \alpha(0) = 1.025 \times 10^{-10}, \alpha(1) = 5.42 \times 10^{-0}$ %Iy ≈ 0.062 $\alpha(K) = 0.00759 \ 11; \ \alpha(L) = 0.001057 \ 15; \ \alpha(M) = 0.000230 \ 4;$		
									α (N+)=6.10×10 ⁻⁵ 9 α (N)=5.29×10 ⁻⁵ 8; α (O)=7.61×10 ⁻⁶ 11; α (P)=4.08×10 ⁻⁷ 6		
424.69 4	15.0 8	1485.705	5-	1061.02	4+	[E1]		0.00745	%Iγ \approx 0.22 α(K)=0.00633 9; α(L)=0.000877 13; α(M)=0.000191 3; α(N+)=5.06×10 ⁻⁵ 7		
									$\alpha(N)=4.40\times10^{-5}$ 7; $\alpha(O)=6.33\times10^{-6}$ 9; $\alpha(P)=3.42\times10^{-7}$ 5 % I $\gamma\approx0.36$		
634.21 5	3.9 <i>3</i>	1182.79	5+	548.544	6+	E2+M1	-7 +2-20	0.00853 19	$\alpha(K)=0.00701 \ 17; \ \alpha(L)=0.001184 \ 22; \ \alpha(M)=0.000264 \ 5; \ \alpha(N+)=6.95\times10^{-5} \ 13$		
607 29 10	224	062.00	2+	265 661	4+	$E^{2}(+M^{1})$	× 15	0.00670	$\alpha(N)=6.05 \times 10^{-5} \ 11; \ \alpha(O)=8.52 \times 10^{-6} \ 17; \ \alpha(P)=4.00 \times 10^{-7} \ 10$ % $I\gamma \approx 0.093$ $\alpha(N)=0.00552$ % $\alpha(L)=0.000000, \ L^2; \ \alpha(M)=0.000002, \ 2;$		
097.28 10	2.5 4	902.99	3	203.001	4	E2(+W11)	>43	0.00070	$\alpha(\mathbf{N})=0.00353 \ 8; \ \alpha(\mathbf{L})=0.000909 \ 13; \ \alpha(\mathbf{M})=0.000202 \ 3; \ \alpha(\mathbf{N}+)=5.33\times10^{-5} \ 8 \ \alpha(\mathbf{N})=4.64\times10^{-5} \ 7; \ \alpha(\mathbf{O})=6.56\times10^{-6} \ 10; \ \alpha(\mathbf{P})=3.17\times10^{-7} \ 5$		
775.81 <i>10</i>	3.2 4	1324.51	6+	548.544	6+	E2(+M1)	>2.3	0.0056 4	$\alpha(\Lambda) = 0.04 \times 10^{-7}$, $\alpha(\Omega) = 0.00073 \ 4$; $\alpha(M) = 0.000162 \ 9$;		
									$\alpha(N+)=4.28\times10^{-5} 23$ $\alpha(N)=3.72\times10^{-5} 20; \ \alpha(O)=5.3\times10^{-6} 3; \ \alpha(P)=2.71\times10^{-7} 21$		
795.36 5	13.3 4	1061.02	4+	265.661	4+	E2+M1	+12 +18-4	0.00500 8	%1γ≈0.076 α (K)=0.00416 7; α (L)=0.000655 10; α (M)=0.0001449 22; α (N+)=3.83×10 ⁻⁵ 6		
									$\alpha(N)=3.33\times10^{-5} 5; \ \alpha(O)=4.75\times10^{-6} 8; \ \alpha(P)=2.39\times10^{-7} 4$ %I $\gamma\approx0.32$		
807.65 7	1.9 <i>4</i>	888.36	2+	80.670	2+	E2+M1	+57 +∞−33	0.00481	I _γ : Contribution from 15-min activity subtracted, even though it is not shown explicitly in ¹⁶² Dy ε decay (15 min) data. α (K)=0.00400 6; α (L)=0.000628 9; α (M)=0.0001390 20;		
									α (N+)=3.68×10 ⁻⁵ 6 α (N)=3.20×10 ⁻⁵ 5; α (O)=4.56×10 ⁻⁶ 7; α (P)=2.30×10 ⁻⁷ 4		

S

I.

	¹⁶² Ho ε+ $β^+$ decay (67.0 min) 1999Za15,1971Wo09 (continued)											
γ ⁽¹⁶² Dy) (continued)												
Eγ	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α &	Comments			
									%Iγ≈0.045 I _γ : computed by the evaluator by subtracting the contribution (1.9 2) from the 15-min activity from the observed Iγ value (3.8 3).			
842.00 5	16.7 <i>4</i>	1390.54	5-	548.544	6+	E1		1.73×10 ⁻³	$\alpha(K)=0.001479\ 21;\ \alpha(L)=0.000198\ 3;\ \alpha(M)=4.30\times10^{-5}\ 6;\ \alpha(N+)=1.143\times10^{-5}\ 16\ \alpha(N)=9.90\times10^{-6}\ 14;\ \alpha(O)=1.444\times10^{-6}\ 21;\ \alpha(P)=8.22\times10^{-8}\ 12$			
882.32 5	13.2 <i>3</i>	962.99	3+	80.670	2+	E2+M1	+41 +34-13	0.00397	%Iγ≈0.40 α (K)=0.00332 5; α (L)=0.000508 8; α (M)=0.0001121 16;			
									α (N+)=2.97×10 ⁻⁵ 5 α (N)=2.58×10 ⁻⁵ 4; α (O)=3.69×10 ⁻⁶ 6; α (P)=1.91×10 ⁻⁷ 3 %1×c0 32			
888.2 10	3.1 4	888.36	2+	0.0	0^+	E2		0.00391	$\alpha(K)=0.00327 5; \alpha(L)=0.000500 8; \alpha(M)=0.0001103 16; \alpha(N+)=2.92\times10^{-5} 5$			
									$\alpha(N)=2.54\times10^{-5} 4; \ \alpha(O)=3.64\times10^{-6} 6; \ \alpha(P)=1.88\times10^{-7} 3$ % $I_{V}\approx0.074$			
									I_{γ} : computed by the evaluator by subtracting the contribution (1.6 3) from the 15-min activity from the observed I_{γ} value (4.7 2).			
917.17 5	21.3 4	1182.79	5+	265.661	4+	E2+M1	+50 +50-20	0.00365	$\alpha(K)=0.00306 5; \alpha(L)=0.000464 7; \alpha(M)=0.0001022 15; \alpha(N+)=2.71\times10^{-5} 4$			
									$\alpha(N)=2.35\times10^{-5} 4$; $\alpha(O)=3.38\times10^{-6} 5$; $\alpha(P)=1.761\times10^{-7} 25$ %Iy ≈ 0.51			
937.17 5	436 9	1485.705	5-	548.544	6+	E1		1.41×10^{-3}	$\alpha(K)=0.001205 \ 17; \ \alpha(L)=0.0001604 \ 23; \ \alpha(M)=3.48\times10^{-5} \ 5; \ \alpha(N+)=9.27\times10^{-6} \ 13$			
									$\alpha(N)=8.03\times10^{-6}$ 12; $\alpha(O)=1.172\times10^{-6}$ 17; $\alpha(P)=6.72\times10^{-8}$ 10 %I $\gamma\approx10$			
944.45 6	8.8 4	1210.136	3-	265.661	4+	E1+M2	-0.10 +3-5	0.00153 18	$\alpha(K)=0.00130\ 15;\ \alpha(L)=0.000176\ 22;\ \alpha(M)=3.8\times10^{-5}\ 5;\ \alpha(N+)=1.02\times10^{-5}\ 13$			
									α (N)=8.8×10 ⁻⁶ <i>12</i> ; α (O)=1.29×10 ⁻⁶ <i>17</i> ; α (P)=7.4×10 ⁻⁸ <i>10</i> %Iy \approx 0.21			
980.43 9	11.2 9	1061.02	4+	80.670	2+	[E2]		0.00317	$\alpha(K)=0.00266\ 4;\ \alpha(L)=0.000398\ 6;\ \alpha(M)=8.75\times10^{-5}\ 13;\ \alpha(N+)=2.32\times10^{-5}\ 4$			
									α (N)=2.02×10 ⁻⁵ 3; α (O)=2.90×10 ⁻⁶ 4; α (P)=1.535×10 ⁻⁷ 22 %Iv≈0.27			
									I_{γ} : Contribution from 15-min activity subtracted, even though it is not shown explicitly in ¹⁶² Dy ε decay (15 min) data.			

6

 $^{162}_{66}\mathrm{Dy}_{96}$ -6

					¹⁶² Ho ε + β ⁺ decay (67.0 min)			1999Za15,1971Wo09 (continued)			
							v) (continued)				
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	a&	Comments		
1026.93 <i>20</i> 1058.85 <i>16</i>	2.5 <i>3</i> 1.6 <i>3</i>	1575.64 1324.51	6 ⁻ 6 ⁺	548.544 265.661	6 ⁺ 4 ⁺	E2		0.00271	%Iγ≈0.060 α (K)=0.00228 4; α (L)=0.000335 5; α (M)=7.35×10 ⁻⁵ 11; α (N+)=1.95×10 ⁻⁵ 3 α (N)=1.694×10 ⁻⁵ 24; α (O)=2.45×10 ⁻⁶ 4; α (P)=1.314×10 ⁻⁷		
1124.90 6	46.4 14	1390.54	5-	265.661	4+	E1		1.01×10 ⁻³	¹⁹ %Iy \approx 0.038 α (K)=0.000860 12; α (L)=0.0001136 16; α (M)=2.46×10 ⁻⁵ 4; α (N+)=1.050×10 ⁻⁵ 15 α (N)=5.68×10 ⁻⁶ 8; α (O)=8.31×10 ⁻⁷ 12; α (P)=4.81×10 ⁻⁸ 7;		
1129.46 6	14.9 5	1210.136	3-	80.670	2+	E1+M2	+0.05 +5-3	0.00102 7	$\alpha(\text{IPF})=3.94\times10^{-6} 6$ %Iy~1.11 $\alpha(\text{K})=0.00087 \ 6; \ \alpha(\text{L})=0.000115 \ 9; \ \alpha(\text{M})=2.50\times10^{-5} \ 18; \\ \alpha(\text{N}+)=1.12\times10^{-5} \ 5$ $\alpha(\text{N})=5.8\times10^{-6} \ 5; \ \alpha(\text{O})=8.5\times10^{-7} \ 7; \ \alpha(\text{P})=4.9\times10^{-8} \ 4; \\ \alpha(\text{IPF})=4.52\times10^{-6} \ 8 $ $\alpha(\text{K})=0.000854 \ 12; \ \alpha(\text{L})=0.0001128 \ 16; \ \alpha(\text{M})=2.44\times10^{-5} \ 4; $		
									$\begin{aligned} \alpha(\text{N}) = 0.000834 \ 12, \ \alpha(\text{L}) = 0.0001128 \ 10, \ \alpha(\text{M}) = 2.44 \times 10^{-4} \ 4, \\ \alpha(\text{N}) = 1.104 \times 10^{-5} \ 16 \\ \alpha(\text{N}) = 5.64 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 8.25 \times 10^{-7} \ 12; \ \alpha(\text{P}) = 4.77 \times 10^{-8} \ 7; \\ \alpha(\text{IPF}) = 4.53 \times 10^{-6} \ 7 \\ \% \text{I}\gamma \approx 0.36 \end{aligned}$		
1220.04 6	991 22	1485.705	5-	265.661	4+	E1		9.00×10 ⁻⁴	$\alpha(K)=0.000744 \ 11; \ \alpha(L)=9.79\times10^{-5} \ 14; \ \alpha(M)=2.12\times10^{-5} \ 3; \\ \alpha(N+)=3.76\times10^{-5} \ 6 \\ \alpha(N)=4.90\times10^{-6} \ 7; \ \alpha(O)=7.17\times10^{-7} \ 10; \ \alpha(P)=4.16\times10^{-8} \ 6; \\ \alpha(IPF)=3.19\times10^{-5} \ 5 \\ \alpha(IPF)=3.6 $		
1310.05 10	4.3 <i>3</i>	1575.64	6-	265.661	4+				%1γ≈0.1		

From ENSDF

[†] Values are from 1999Za15, unless noted otherwise. Where appropriate, these values have been corrected for the contributions from the 15-min ¹⁶²Ho activity, inferred on the basis of the data given in the ¹⁶²Ho ε decay (15 min) Data Set.

 $\frac{1}{2}\gamma$ reported as a doublet by 1999Za15, with the combined intensity reported. Where it was possible to infer the intensity associated with the listed placement, this has been done. NOTE: the "other" γ is not listed here as unplaced. [#] Assignments and values are from the ¹⁶²Dy Adopted Gammas dataset.

[@] For absolute intensity per 100 decays, multiply by ≈ 0.0238 .

 \neg

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁶²Ho ε decay (67.0 min) 1999Za15,1971Wo09

 $^{162}_{66} Dy_{96}$