162 Tb β^- decay 1977Ka08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

Parent: ¹⁶²Tb: E=0; $J^{\pi}=1^-$; $T_{1/2}=7.74 \text{ min } 9$; $Q(\beta^-)=2301.6\ 22$; $\%\beta^-$ decay=100

¹⁶²Tb-J^{π}: Additional information 1.

 162 Tb-T_{1/2}: Additional information 2.

¹⁶²Tb-Q(β^{-}): From 2021Wa16.

Additional information 3.

Data and level scheme are based on 1977Ka08, unless otherwise noted. For 1977Ka08, source produced by 163 Dy(γ ,p) on enriched (93.07%) target. Report $T_{1/2}$, $E\gamma$ and $I\gamma$ for 47 γ 's (Ge detectors), $\gamma\gamma$ coincidences (NaI and Ge detectors), and $\beta\gamma$ coincidences (plastic detector).

Other ¹⁶²Tb decay studies: 1965Sc24; 1966Fu08; 1966Sc24; 1967Gu03; 1969Cl11; and 1968Ka10.

¹⁶²Tb has been produced by the ¹⁶³Dy(γ ,p), ¹⁶²Dy(n,p), and ¹⁶⁵Ho(n, α) reactions.

¹⁶²Dy Levels

The consistency of the scheme is supported by the fact that the sum of the energies of the radiations is 2290 100 which agrees with the Q value of 2301.6 22.

Additional information 4.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0 [@]	0+	stable	
80.66 [@] 5	2+		
265.64 [@] 7	4+		
888.19 ^{&} 5	2+		
962.97 <mark>&</mark> 6	3+		
1148.24 ^a 6	2-	0.21 ns 4	$T_{1/2}$: from 1968Se02, $\beta\gamma$ delayed coincidences.
1210.02 ^{<i>a</i>} 23	3-		
1275.78 ^b 24	1-		
1357.80 ^b 29	3-		
1453.6 ^c 4	2+		
1691.41 ^d 23	2-		
1745.48 ^e 22	1^{+}		
1782.63 ^e 20	2^{+}		
1982.4 <i>4</i>	$1,2^{+}$		
1999.2 5	2^{+}		
2128.6 4	1-		
2163.3 4	1,2,3		
2371.27? 32	1 ⁻ ,2,3		E(level): this level which is bound in 1977Ka08 (Q(β^-)=2530 80) is getting unbound for the actual adopted value (Q(β^-)=2301.6 22 (2021Wa16)).

[†] From least-squares fit to the γ energies.

[‡] J^{π} and band assignments are from ¹⁶²Dy Adopted Levels. Arguments are given there for each assignment.

[#] Data given here for excited states are only for experiments from ¹⁶²Tb β^- decay; see ¹⁶²Dy Adopted Levels for summary of all level half-life measurements.

^(a) Band(A): $K^{\pi}=0^+$ ground-state band. [&] Band(B): $K^{\pi}=2^+ \gamma$ -vibrational band.

^{*a*} Band(C): $K^{\pi}=2^{-}$ octupole-vibrational band. Dominant configuration= $(\pi 7/2[523])-(\pi 3/2[411])$, from log *ft* in β^{-} decay.

^{*b*} Band(D): $K^{\pi}=0^{-}$ octupole band.

162 Tb β^- decay 1977Ka08 (continued)

¹⁶²Dy Levels (continued)

^{*c*} Band(E): $K^{\pi}=0^+$ band. ^{*d*} Band(F): $K^{\pi}=1^-$ octupole-vibrational band.

^{*e*} Band(G): $K^{\pi}=1^+$ band.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
	2371.27?	0.027.3	5.2.5	av E β =37 12
(138.3 25)	2163.3	0.024 2	5.21.5	av $E\beta = 36.74$ 63
$(173.0\ 25)$	2128.6	0.054 3	5.16.3	av $E\beta = 46.63.65$
$(302.4\ 25)$	1999.2	0.009 1	6.71.5	av $E\beta = 85.6571$
(319.2.25)	1982.4	0.019 2	6.46.5	av $E\beta = 90.9571$
$(519.0\ 24)$	1782.63	0.14 1	6.29 4	av $E\beta = 157.52$ 77
(556.1 24)	1745.48	0.17 1	6.30 <i>3</i>	av $E\beta = 170.5579$
(610.2 24)	1691.41	0.32 2	6.17 <i>3</i>	av E β =189.84 80
(848.0 25)	1453.6	0.015 2	7.99 6	av $E\beta = 278.56\ 86$
(943.8 [#] 24)	1357.80	0.06 1		av E β =315.81 88
(,				$I\beta^{-1}$; from the listed $I\beta$ value, log $ft=7.56$ 8. From the assigned J^{π} values, this is a 2nd forbidden transition, for which the log ft value is expected to be >11.0 (1973Ra10). Thus, the evaluator has shown this transition as questionable.
(1025.8 24)	1275.78	0.14 2	7.32 7	av $E\beta = 348.30\ 89$
(1153.4 24)	1148.24	97 6	4.67 <i>3</i>	av E β =399.75 90
				E(decay): measured values: 1380 80 (1977Ka08), 1250 100 (1968Ka10), 1450 100 (1967Gu03), 1375 50 (1966Sc24) and 1300 (1966Fu08).
(1338.6 24)	962.97	≤0.3	$\geq 8.2^{1u}$	av Eβ=477.45 88
				I β^- : Value is from log <i>ft</i> systematics (1973Ra10). Value computed from γ intensity balance is 0.7 <i>10</i> .
(1413.4 24)	888.19	15	7.0 22	av E β =507.55 93
(2220.9 24)	80.66	0.1	8.7	av $E\beta = 858.0898$
				$I\beta^-$: Evaluators' decomposition of measured 0.4% branch to 0- and 80-keV levels (1968Ka10).
(2301.6 26)	0.0	0.3	8.3	av E β =893.94 98
				$I\beta^-$: Evaluator's decomposition of measured 0.4% branch to 0- and 80-keV levels (1968Ka10). There might be some concern as to the possibility that part of this component was due to summing. Also, 1968Ka10 give $I\beta^-(888)\approx5\%$ which is a factor of 10 larger than the value deduced here. 1977Ka08 give $I\beta^-(0+80)<0.5\%$.

[†] From γ-intensity balances, unless otherwise noted; therefore, their accuracy depends on the completeness of the decay scheme.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

 $\gamma(^{162}\text{Dy})$

I γ normalization: From sum of I β^- =100%. I β^- are from γ intensity balances, except I β^- (0+80)=0.4% as measured by 1968Ka10, I β^- (962) \leq 0.3% from log *ft* systematics (1973Ra10), and I β^- (1210)=0.0% since transition is 2nd forbidden (computed value is I β^- =0.018% 4). 1977Ka08 use I γ normalization=0.0434, which is in agreement.

E_{γ}^{\dagger}	I_{γ} ^{‡#} <i>f</i>	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [@]	$\delta^{@}$	α &	Comments
(74.7 ^{<i>a</i>})	0.07 ^b	962.97	3+	888.19 2+	[M1,E2]	_	6.9 14	α (K)=3.4 <i>13</i> ; α (L)=2.7 <i>21</i> ; α (M)=0.6 <i>5</i> ; α (N+)=0.16 <i>13</i> α (N)=0.15 <i>11</i> ; α (O)=0.018 <i>13</i> ; α (P)=0.00019 <i>10</i> %I γ =0.0030
80.66 5	202 11	80.66	2+	0.0 0+	E2		6.14	α: value computed assuming δ =1. α(K)=1.82 3; α(L)=3.32 5; α(M)=0.797 12; α(N+)=0.200 3 α(N)=0.178 3; α(O)=0.0212 3; α(P)=7.66×10 ⁻⁵ 11
184.98 9	63 ^c 3	265.64	4+	80.66 2+	E2		0.307	$\alpha(K)=0.200 \ 3; \ \alpha(L)=0.0826 \ 12; \ \alpha(M)=0.0194 \ 3; \ \alpha(N+)=0.00494 \ 7$ $\alpha(N)=0.00438 \ 7; \ \alpha(O)=0.000551 \ 8; \ \alpha(P)=9.37\times10^{-6} \ 14$
185.27 5	337 ^c 20	1148.24	2-	962.97 3+	E1	е	0.0595	$\alpha(K) = 0.0501 \ 7; \ \alpha(L) = 0.00731 \ 11; \ \alpha(M) = 0.001598 \ 23; \ \alpha(N+) = 0.000419 \ 6$
								$\alpha(N)=0.000365\ 6;\ \alpha(O)=5.13\times10^{-5}\ 8;\ \alpha(P)=2.51\times10^{-5}\ 4$ %I $\gamma=14.3\ 10$
(247.1 ^{<i>a</i>})	0.031 ^b 5	1210.02	3-	962.97 3+	E1		0.0281	α (K)=0.0238 4; α (L)=0.00340 5; α (M)=0.000742 11; α (N+)=0.000195
								α (N)=0.0001700 24; α (O)=2.41×10 ⁻⁵ 4; α (P)=1.230×10 ⁻⁶ 18 %I γ =0.00132 22
260.05 6	187×10 ¹ 10	1148.24	2-	888.19 2+	E1	е	0.0247	α (K)=0.0209 3; α (L)=0.00297 5; α (M)=0.000649 9; α (N+)=0.0001711 24
								α (N)=0.0001488 21; α (O)=2.11×10 ⁻⁵ 3; α (P)=1.085×10 ⁻⁶ 16 %I γ =80 5
(321.9 ^{<i>a</i>})	0.059 ^b 9	1210.02	3-	888.19 2+	E1		0.01445	α (K)=0.01225 <i>18</i> ; α (L)=0.001725 <i>25</i> ; α (M)=0.000376 <i>6</i> ; α (N+)=9.94×10 ⁻⁵ <i>14</i>
								α (N)=8.64×10 ⁻⁵ <i>12</i> ; α (O)=1.235×10 ⁻⁵ <i>18</i> ; α (P)=6.49×10 ⁻⁷ <i>9</i> %I γ =0.0025 <i>4</i>
543.2 6	2.5 3	1691.41	2-	1148.24 2-	M1+E2		0.018 6	α (K)=0.015 6; α (L)=0.0023 6; α (M)=0.00052 12; α (N+)=0.00014 4 α (N)=0.00012 3; α (O)=1.7×10 ⁻⁵ 5; α (P)=9.E-7 4 %I γ =0.106 13
622.52 10	20.8 7	888.19	2+	265.64 4+	E2		0.00875	α: value computed assuming δ =1. α(K)=0.00718 10; α(L)=0.001229 18; α(M)=0.000274 4; α(N+)=7.22×10 ⁻⁵ 11 α(N)=6.29×10 ⁻⁵ 9; α(O)=8.83×10 ⁻⁶ 13; α(P)=4.08×10 ⁻⁷ 6 % 1y=0.88 5

 $^{162}_{66}\mathrm{Dy}_{96}\text{-}3$

ω

					¹⁶² Τb β ⁻	decay 1977k	Ka08 (continue	<u>d)</u>
						$\gamma(^{162}\text{Dy})$ (cont	inued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \# f}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	α &	Comments
697.35 10	60.3 18	962.97	3+	265.64 4+	E2(+M1)	>10.4	0.00672	$ \begin{array}{c} \alpha(\mathrm{K}) = 0.00556 \ 9; \ \alpha(\mathrm{L}) = 0.000912 \ 13; \ \alpha(\mathrm{M}) = 0.000203 \\ 3; \ \alpha(\mathrm{N}+) = 5.34 \times 10^{-5} \ 8 \\ \alpha(\mathrm{N}) = 4.65 \times 10^{-5} \ 7; \ \alpha(\mathrm{O}) = 6.58 \times 10^{-6} \ 10; \\ \alpha(\mathrm{P}) = 3.18 \times 10^{-7} \ 5 \\ \% \mathrm{Iy} = 2.56 \ 12 \end{array} $
728.5 <i>4</i> 807.53 <i>8</i>	1.62 <i>19</i> 1000 <i>30</i>	1691.41 888.19	2 ⁻ 2 ⁺	962.97 3 ⁺ 80.66 2 ⁺	E1 E2+M1	+57 +∞- <i>33</i>	0.00231 0.00481	$\%_{1}$ y=0.069 9 $\alpha(K)$ =0.00400 6; $\alpha(L)$ =0.000628 9; $\alpha(M)$ =0.0001390 20; $\alpha(N+)$ =3.68×10 ⁻⁵ 6 $\alpha(N)$ =3.20×10 ⁻⁵ 5; $\alpha(O)$ =4.56×10 ⁻⁶ 7; $\alpha(P)$ =2.30×10 ⁻⁷ 4 $\%_{1}$ y=42.5 21
819.7 6 857.0 <i>3</i>	0.58 <i>10</i> 2.03 <i>13</i>	1782.63 1745.48	2* 1+	962.97 3 ⁺ 888.19 2 ⁺	M1(+E2)	<0.29	0.00759 18	%1 γ =0.025 4 α (K)=0.00644 15; α (L)=0.000897 19; α (M)=0.000196 5; α (N+)=5.24×10 ⁻⁵ 11 α (N)=4.54×10 ⁻⁵ 10; α (O)=6.67×10 ⁻⁶ 15; α (P)=3.89×10 ⁻⁷ 10 %1 γ =0.086 7
882.32 8	314 10	962.97	3+	80.66 2+	E2+M1	+41 +34-13	0.00397	$\alpha(K)=0.00332 5; \alpha(L)=0.000508 8; \alpha(M)=0.0001121$ $I6; \alpha(N+)=2.97\times10^{-5} 5$ $\alpha(N)=2.58\times10^{-5} 4; \alpha(O)=3.69\times10^{-6} 6;$ $\alpha(P)=1.91\times10^{-7} 3$ % by=13.4.7
888.20 8	904 28	888.19	2+	0.0 0+	E2		0.00391	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00327 \ 5; \ \alpha(\mathbf{L}) = 0.000500 \ 7; \ \alpha(\mathbf{M}) = 0.0001103 \\ &I6 \ \alpha(\mathbf{N}+) = 2.92 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 2.54 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 3.64 \times 10^{-6} \ 5; \\ &\alpha(\mathbf{P}) = 1.88 \times 10^{-7} \ 3 \\ &\% \mathbf{I}\gamma = 38.4 \ 19 \end{aligned}$
894.7 <i>4</i> 944.2 <i>6</i>	0.69 6 0.24 5	1782.63 1210.02	2+ 3-	888.19 2 ⁺ 265.64 4 ⁺	E1+M2	-0.10 +3-5	0.00153 18	%I γ =0.0293 28 α (K)=0.00130 15; α (L)=0.000176 22; α (M)=3.8×10 ⁻⁵ 5; α (N+)=1.02×10 ⁻⁵ 13 α (N)=8.8×10 ⁻⁶ 12; α (O)=1.29×10 ⁻⁶ 17; α (P)=7.4×10 ⁻⁸ 10 %I γ =0.0102 22
980.4 7 1014.9 6	0.10 <i>4</i> 0.36 <i>4</i>	2128.6 2163.3	1 ⁻ 1,2,3	1148.24 2 ⁻ 1148.24 2 ⁻				%Iy=0.0043 17 %Iy=0.0153 18
1067.55 10	13.0 4	1148.24	2-	80.66 2+	[E1]		1.11×10 ⁻³	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.000946 \ I4; \ \alpha(\mathbf{L}) = 0.0001252 \ I8; \\ &\alpha(\mathbf{M}) = 2.72 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}+) = 7.23 \times 10^{-6} \ I1 \\ &\alpha(\mathbf{N}) = 6.26 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) = 9.16 \times 10^{-7} \ I3; \\ &\alpha(\mathbf{P}) = 5.28 \times 10^{-8} \ 8 \\ &\% \mathbf{I}\gamma = 0.553 \ 27 \end{aligned} $

4

					162 Tb β^-	decay 1977K	a08 (continue	ed)
						$\gamma(^{162}\text{Dy})$ (conti	nued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \# f}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	α &	Comments
1092.4 4	0.46 4	1357.80	3-	265.64 4+	E1	e	1.06×10 ⁻³	$\begin{aligned} &\alpha(K) = 0.000907 \ 13; \ \alpha(L) = 0.0001199 \ 17; \\ &\alpha(M) = 2.60 \times 10^{-5} \ 4; \ \alpha(N+) = 6.93 \times 10^{-6} \ 10 \\ &\alpha(N) = 6.00 \times 10^{-6} \ 9; \ \alpha(O) = 8.78 \times 10^{-7} \ 13; \\ &\alpha(P) = 5.07 \times 10^{-8} \ 8 \\ &\%I\gamma = 0.0196 \ 19 \end{aligned}$
1129.3 4	0.28 4	2371 272	3-	80.66 2+	E1+M2	$+0.05^{e}$ $+5-3$	0.00102 7	$\alpha(K)=0.00087 \ 6; \ \alpha(L)=0.000115 \ 9; \ \alpha(M)=2.50\times10^{-5} \ 18; \ \alpha(N+)=1.12\times10^{-5} \ 5 \ \alpha(N)=5.8\times10^{-6} \ 5; \ \alpha(O)=8.5\times10^{-7} \ 7; \ \alpha(P)=4.9\times10^{-8} \ 4; \ \alpha(IPF)=4.50\times10^{-6} \ 9 \ \%I\gamma=0.0119 \ 18 \ \%I\gamma=0.0068 \ 13$
1187.9 6	0.16 3	1453.6	2 ⁺	265.64 4+	E2		0.00215	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0008 \ 13 \\ &\alpha(\mathbf{K}) = 0.00181 \ 3; \ \alpha(\mathbf{L}) = 0.000261 \ 4; \ \alpha(\mathbf{M}) = 5.71 \times 10^{-5} \\ & 8; \ \alpha(\mathbf{N}+) = 1.93 \times 10^{-5} \ 3 \\ & \alpha(\mathbf{N}) = 1.317 \times 10^{-5} \ 19; \ \alpha(\mathbf{O}) = 1.91 \times 10^{-6} \ 3; \\ & \alpha(\mathbf{P}) = 1.046 \times 10^{-7} \ 15; \ \alpha(\mathbf{IPF}) = 4.15 \times 10^{-6} \ 8 \\ & \% \mathbf{I}\gamma = 0.0068 \ 13 \end{aligned}$
1195.1 3	2.11 8	1275.78	1-	80.66 2+	E1	е	9.23×10 ⁻⁴	$\alpha(\mathbf{K})=0.000772 \ 11; \ \alpha(\mathbf{L})=0.0001017 \ 15; \alpha(\mathbf{M})=2.20\times10^{-5} \ 3; \ \alpha(\mathbf{N}+)=2.75\times10^{-5} \ 4 \alpha(\mathbf{N})=5.09\times10^{-6} \ 8; \ \alpha(\mathbf{O})=7.44\times10^{-7} \ 11; \alpha(\mathbf{P})=4.32\times10^{-8} \ 6; \ \alpha(\mathbf{IPF})=2.17\times10^{-5} \ 4 \%\mathbf{I}\gamma=0.090 \ 5 $
^x 1267.5 6	0.31 4	2371.27?	1 ,2,3	1148.24 2				$\%1\gamma=0.0152$ 18 $\%1\gamma=0.0077$ 13
1275.8 4	1.1 ^{<i>d</i>} 3	1275.78	1-	0.0 0+	E1	е	8.60×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000687 \ 10; \ \alpha(\mathbf{L}) = 9.03 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{M}) = 1.96 \times 10^{-5} \ 3; \ \alpha(\mathbf{N}+) = 6.29 \times 10^{-5} \ 9 \\ &\alpha(\mathbf{N}) = 4.52 \times 10^{-6} \ 7; \ \alpha(\mathbf{O}) = 6.62 \times 10^{-7} \ 10; \\ &\alpha(\mathbf{P}) = 3.85 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 5.77 \times 10^{-5} \ 9 \\ &\% \mathbf{I}\gamma = 0.047 \ 13 \end{aligned}$
1276.9 4	1.0 ^d 3	1357.80	3-	80.66 2+	E1		8.60×10 ⁻⁴	$\alpha(K)=0.000686 \ 10; \ \alpha(L)=9.02\times10^{-5} \ 13; \\ \alpha(M)=1.95\times10^{-5} \ 3; \ \alpha(N+)=6.35\times10^{-5} \ 9 \\ \alpha(N)=4.51\times10^{-6} \ 7; \ \alpha(O)=6.61\times10^{-7} \ 10; \\ \alpha(P)=3.84\times10^{-8} \ 6; \ \alpha(IPF)=5.83\times10^{-5} \ 9 \\ \%_{I}\gamma=0.043 \ 13 \\ \gamma=0.015 \ 10^{-5} \ 10$
*1287.6 5 1372.9 6	0.36 <i>4</i> 0.19 <i>3</i>	1453.6	2+	80.66 2+	M1+E2(+E0)	+0.40 15	0.00253 4	$%1\gamma$ =0.0153 <i>18</i> α (K)=0.00202 <i>8</i> ; α (L)=0.000277 <i>10</i> ; α (M)=6.04×10 ⁻⁵ 22; α (N+)=5.65×10 ⁻⁵ <i>14</i> α (N)=1.40×10 ⁻⁵ 5; α (O)=2.06×10 ⁻⁶ 8; α (P)=1.21×10 ⁻⁷ 5; α (IPF)=4.03×10 ⁻⁵ 8 %1γ=0.0081 <i>13</i>

S

I.

						¹⁶² Tb	β^- decay	1977Ka08 (continued)
							$\gamma(^{162}\text{Dy})$	(continued)
${\rm E}_{\gamma}^{\dagger}$	Ι _γ ‡# <i>f</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α &	Comments
1483.3 5	0.11 3	2371.27?	1 ⁻ ,2,3 2 ⁺	888.19	$2^+_{4^+}$			Mult., δ : from (n,n' γ). See the comment on this point in the Adopted Gammas. α : value computed using the listed mult and δ . No contribution from a possible E0 contribution is included. %I γ =0.0047 13 %I γ =0.0102 13
^x 1547.4 6 ^x 1556.5 6	0.24 <i>3</i> 0.23 <i>3</i> 0.16 <i>3</i>	1782.05	2	205.04	+			$\% I\gamma = 0.0102 I J$ $\% I\gamma = 0.0098 I J$ $\% I\gamma = 0.0068 I J$
1610.7 <i>3</i>	3.32 11	1691.41	2-	80.66	2^{+}			%Iy=0.141 7
1665.1 <i>3</i>	1.86 7	1745.48	1+	80.66	2+	M1,E2	0.00150 25	$\alpha(K)=0.00115\ 21;\ \alpha(L)=0.00016\ 3;\ \alpha(M)=3.4\times10^{-5}\ 6;\ \alpha(N+)=0.000156\ 14$ $\alpha(N)=7.9\times10^{-6}\ 14;\ \alpha(O)=1.17\times10^{-6}\ 21;\ \alpha(P)=6.8\times10^{-8}\ 13;\ \alpha(IPF)=0.000147\ 13$ $\%I\gamma=0.079\ 4$ α ; value computed assuming $\delta=1$
1702 1 5	0.82.4	1782 63	2^{+}	80.66	2^{+}			%Iv=0.0349.22
1782.4.3	0.91 4	1782.63	2+	0.0	$\tilde{0}^{+}$			%Iy=0.0387 22
^x 1806.1 8	0.108 18	1702.00	-	0.0	Ŭ			$\%$ I γ =0.0046 8
1901.8 6	0.223 22	1982.4	1.2^{+}	80.66	2^{+}			%Iy=0.0095 <i>10</i>
1918.6 6	0.168 17	1999.2	2+	80.66	2^{+}			$\%$ I γ =0.0071 8
1982.3 6	0.216 17	1982.4	$1,2^{+}$	0.0	0^{+}			%Iγ=0.0092 8
1999.1 8	0.038 11	1999.2	2+	0.0	0^{+}			%Iy=0.0016 5
2047.9 4	1.17 4	2128.6	1-	80.66	2^{+}			%Iγ=0.0497 25
2082.8 6	0.194 16	2163.3	1,2,3	80.66	2^{+}			%Iy=0.0083 8
^x 2167.3 6	0.164 14							%Iγ=0.0070 7
^x 2233.0 8	0.143 13							%Iγ=0.0061 6
2290.2 10	0.051 10	2371.27?	1-,2,3	80.66	2^{+}			%Iy=0.0022 4

[†] From 1977Ka08. The only other values of comparable quality are from 1969Cl11 for 8 γ 's.

[‡] From 1977Ka08. There are no other data of comparable quality.

[#] I(K x)=320 *110* (1967Gu03).

- [@] Assignments and values are from the ¹⁶²Dy Adopted γ radiations and are based on the following: ce data from (n, γ) (1967Ba34), (α ,2n γ) (1982Fi15), and ¹⁶²Ho ε decay (1961Ha23,1961Jo10); $\gamma(\theta)$ following ($\alpha,2n\gamma$) (1982Fi15) and ($n,n'\gamma$) (1977Ho11); and $\gamma\gamma(\theta)$ following (n,γ) (1980Hu06) and Coulomb excitation (1972Do01).
- & Values are computed for the more precise $E\gamma$ values in ¹⁶²Dy Adopted γ radiations.

^{*a*} Nominal value from ¹⁶²Dy Adopted γ radiations. ^{*b*} From ¹⁶²Dy Adopted γ radiations.

^c Doublet value decomposed to give intensity balance at 265 level (1977Ka08).

^d Doublet value decomposed from $\gamma\gamma$ coincidence data.

- ^e See ¹⁶²Dy Adopted γ radiations for limit on M2 mixing.
- ^f For absolute intensity per 100 decays, multiply by 0.0425 16.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

¹⁶²₆₆Dy₉₆-6

L

 $^{162}_{66} Dy_{96}$

$\frac{162}{10} \text{Tb } \beta^{-} \text{ decay} \qquad 1977 \text{Ka08 (continued)}$

Band(G): $K^{\pi}=1^+$ band

<u>2+</u> <u>1782.63</u>

1+ 1745.48

¹⁶²₆₆Dy₉₆