		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023

 $Q(\beta^{-})=-2141 \ 3$; S(n)=8196.99 6; S(p)=8008.4 12; Q(α)=83.9 10 2021Wa16 S(2n)=14651.38 10, S(2p)=14817.1 11 (2021Wa16). Additional information 1.

¹⁶²Dy Levels

Based on data from ¹⁶²Tb β^{-} decay, ¹⁶²Ho ε decay (15 min and 67 min), ¹⁶¹Dy(n, γ), ¹⁶²Dy(n, $n'\gamma$), ¹⁶⁰Gd(α ,2n γ), Coul. ex., ¹⁶²Dy(d,d'), ¹⁶³Dy(d,t), ¹⁶¹Dy(d,p), ¹⁶⁴Dy(p,t), ¹⁶⁰Dy(t,p), ¹⁶²Dy(γ , γ'), muonic atoms, ¹⁶⁶Er(d,⁶Li), ¹⁶¹Dy(α ,³He), ¹⁶³Dy(³He, α), ¹⁶³Dy(³He, $\alpha\gamma$), ¹⁶¹Dy(⁶¹Ni,⁶⁰Ni γ), ¹¹⁸Sn(¹⁶²Dy,¹⁶²Dy' γ), ¹⁶⁰Gd(⁷Li,p4n γ), and ¹⁶⁰Gd(³⁷Cl,X γ).

A number of levels above 1.9 MeV have been proposed from $(n,n'\gamma)$ but are not listed here. For a discussion, see the $(n,n'\gamma)$ data set. Several levels seen only in (p,t) and $({}^{3}\text{He},\alpha)$ are not listed here. See those data sets for this information.

Calculation of isomer shift: 1973Me08.

Measured Coulomb displacement energies: 1983Ja03.

The following theory or model articles may be of interest:

Discussions of wavefunctions:

 γ -vibrational state and bands – 1965Be40, 1988Ja12; octupole states and bands – 1972Ne02, 1988Ba17; 0⁺ states – 1973Ab06, 1975Bi13, 1981Bi14; 3⁻ at 1770 and 2⁻ at 1866 – 1972Ne21; 4⁺ at 1536, 1⁺ at 1745, 3⁻ at 1770, and 2⁻ at 1866 – 1973We10; 5⁻ at 1485 – 1980Ku15; 4⁺ at 1535 – 1986Ne06; 1⁺ states from 2.5 to 3.5 MeV – 1989Su15; low-K bands – 1988Ch26. 1996So19 and 1997So26 report the results of quasiparticle- phonon model (QPM) calculations of the microscopic make-up of the configurations of the nonrotational states in a number of doubly even nuclides, including ¹⁶²Dy. These results for ¹⁶²Dy are

generally accepted here. Discussions of other items:

Calculated energies of bandheads for γ , β , and octupole bands – 1965So04; energies and B(E3) for octupole states – 1970Ne02; B(E2) ratios – 1972We05; level energies in five bands – 1974Be69; δ^2 from IBA model – 1981Wa28, 1987Li11; Δ and B(E2) values – 1993Mi18; B(E1), B(E2), B(E3) for three levels – 1993So20.

Cross Reference (XREF) Flags

Α	162 Tb β^- decay	J	163 Dy(3 He, $\alpha\gamma$)	S	164 Dy(p,t)
В	¹⁶² Ho ε decay (15.0 min)	K	161 Dy(61 Ni, 60 Ni γ)	Т	$^{166}{\rm Er}({\rm d},{}^{6}{\rm Li})$
С	¹⁶² Ho ε decay (67.0 min)	L	muonic atom: pionic atom	U	161 Dy(α , ³ He)
D	162 Er 2 ε decay	Μ	Coulomb excitation	V	163 Dy(3 He, α)
E	161 Dy(n, γ) E=th	N	162 Dy(γ,γ')	W	160 Gd(⁷ Li,p4n γ)
F	161 Dy(n, γ) E=2 keV	0	160 Dy(t,p)	Х	118 Sn(162 Dy, 162 Dy' γ)
G	161 Dy(n, γ) E=24 keV	Р	161 Dy(d,p)	Y	160 Gd(37 Cl,X γ)
Н	162 Dy(n,n' γ)	Q	162 Dy(d,d')	Ζ	160 Gd(9 Be, α 3n γ)
I	160 Gd(α ,2n γ)	R	¹⁶³ Dy(d,t)		

E(level) [†]	J π #	T _{1/2}	XREF	Comments						
0.0&	0+	stable	ABC EFGHIJKLMNOPQRSTUVWXYZ	$\Delta < r^2 >$ data are available: for ¹⁶⁰ Dy- ¹⁶² Dy, $\Delta < r^2 > \approx 0.13$ fm ² (1985Ne09, read from plot by evaluator) and $\lambda = 0.129$ 8 fm ² (1990Wa25) where $\Delta < r^2 > \approx \lambda$. For ¹⁶² Dy- ¹⁶⁴ Dy, $\Delta < r^2 > \approx 0.12$ fm ² (1985Ne09) and $\lambda = 0.119$ fm ² . See also 1970Va21 and 1978Ho09. Other isotope shift data: 1968De36, 1973Le16, and 1982Cl04.						
				In an evaluation of nuclear rms charge radii, $2013An02$ report $\langle r^2 \rangle^{1/2} = 5.2074$ fm 172.						
80.661 ^{&} 3	2+	2.19 ns 2	ABC EFGHIJKLMNOPQRSTUVWXYZ	$\mu = +0.686\ 28$						

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
				J ^π : from E2 γ to 0 ⁺ level. T _{1/2} : weighted average of: 2.25 ns 7 (1963Li04), from ¹⁶² Ho ε decay (67 min); and 2.19 ns 3 (1967Ku07) and 2.17 ns 4, both from Coul. ex. Others: 3.05 ns 20 (1973Ch28) from ¹⁶² Ho (67 min) decay and 2.22 ns (1959Bi10) and 2.0 ns 2 (1967As03) both from Coul. ex. For comparison, the evaluation of 1987Ra01 gives 2.19 ns 3, which is based on the B(E2) as well as the direct half-life measurements. μ: from the compilation of 2014StZZ and based on g=0.343 14 (1970Be36). Others: g=0.362 24 (1967Ku07) and 0.37 4 (1967He15). The compilation by 2005St24 lists μ=+0.69 3.
265.664 ^{&} 3	4+	0.132 ns 5	ABC EFGHIJKLM OPQRSTUVWXYZ	$\mu = +1.14 \ 12; \ B(E4)\uparrow=0.07 \ 5$ $J^{\pi}: \ from E2 \ \gamma \ to \ 2^+ \ level \ and \ expected \ gs \ band \ structure.$ $T_{1/2}: \ weighted \ average \ of \ 0.132 \ ns \ 8 \ (1963Li04) \ from \ 162 Ho \ (67 \ min) \ decay \ and \ 0.132 \ ns \ 6 \ (1978Hu03) \ from \ Coul. \ ex.$ $T_{1/2}: \ from \ B(E2)(2^+ \rightarrow 4^+)=2.68 \ 13 \ (Coul. \ ex.), \ the \ computed \ half-life \ is \ 0.134 \ ns \ 7.$ $\mu: \ computed \ half-life \ is \ 0.134 \ ns \ 7.$ $\mu: \ computed \ by \ the \ evaluator \ from \ g=+0.285 \ 31, \ from \ IPAC \ in \ (\alpha, 2n\gamma) \ (1997Al04). \ This \ value \ is \ also \ listed \ in \ the \ compilation \ by \ 2014StZZ.$ $B(E4)\uparrow: \ From \ Coul. \ ex.$
548.520 ^{cc} 3	6+	18.4 ps <i>10</i>	C E HIJKLM OPQRSTUVWXYZ	μ =+2.18 <i>11</i> J^{π} : from E2 γ to 4 ⁺ level and expected gs band structure. $T_{1/2}$: from Coul. ex. (1978Hu03). $T_{1/2}$: from B(E2)(4 ⁺ \rightarrow 6 ⁺)=2.10 <i>15</i> (Coul. ex.), the computed half-life is 19.9 ps <i>15</i> . μ : computed by the evaluator from g=+0.364 <i>18</i> in Coul. ex. (1999Br43). Other: +1.68 <i>18</i> , from g=+0.28 <i>3</i> , from IPAC in (α ,2n γ) (1997Al04). The compilation by 2014StZZ lists μ =+2.18 <i>11</i> , together with +1.8 2.
888.161 ^{<i>a</i>} 3	2+	1.97 ps 9	ABC EFGHIJ M OPQRS WX Z	$\mu=0.92 \ 6$ $J^{\pi}: \text{ from E2 } \gamma \text{ to } 0^+ \text{ level. Excited in Coul. ex.}$ $T_{1/2}: \text{ computed from B(E2)}=0.122 \ 5 \text{ (Coul. ex.) and the adopted } \gamma \text{ branching. Other: } 0.74 \text{ ps} (2017Ap01, (n,\gamma) \text{ E=th).} \mu: \text{ computed by the evaluator from g=0.46 } 3, \text{ from } 1999Br43 \text{ (Coul. ex.). This value is also given in the compilation by 2014StZZ.}$
921.28 ^{&} 5	8+	4.2 ps 2	HIJKLM PR UVWXYZ	μ=+3.05 <i>16</i> $J^π$: from population in Coul. ex., γ to 6 ⁺ level, and expected gs band structure. $T_{1/2}$: weighted average of 4.1 ps 3 (1977Ke06), 4.6 ps 3 (1978Hu03), and 4.1 ps 2 (1979Gu15) all from Coul. ex. $T_{1/2}$: from B(E2)(6+→8 ⁺)=1.96 <i>16</i> (Coul. ex.), the computed half-life is 5.1 ps 4. μ: computed by the evaluator from g=+0.381 <i>20</i> in Coul. ex. (1999Br43). Other: +3.4 <i>10</i> , from g=+0.45 <i>12</i> , from IPAC in (α,2nγ) (1997Al04). The compilation by 2014StZZ lists μ=+3.05 <i>16</i> as well as +3.4 <i>10</i> .
962.940 ^b 3	3+		A C EFGHIJK M P WX Z	J ^{π} : from γ to $K^{\pi}=2^+$ bandhead, γ to 4 ⁺ level, and expected band structure. T _{1/2} : 0.25 ps <t<sub>1/2<2.83 ps (2017Ap01, (n,γ) E=th).</t<sub>

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
1060.991 ^{<i>a</i>} 3	4+		BC EFGHI K M OPQ X Z	J^{π} : from γ 's to 2 ⁺ and 6 ⁺ levels, M1 component in the γ to 4 ⁺ level.
1148.232 ^{<i>d</i>} 3	2-	0.21 ns 4	ACEFGHI PR XZ	$T_{1/2}$: 0.491 ps< $T_{1/2}$ <2.20 ps (2017Ap01, (n, γ) E=th). J ^{π} : E1 γ 's to 2 ⁺ and 3 ⁺ levels indicate 2 ⁻ or 3 ⁻ .
				log π =4.95 from the 1 gs of 10^{-16} relations of
$\frac{1182.763^{b}}{1210.089^{c}}\frac{3}{3}$	5+ 3 ⁻		CEHIK P WXZ ACEFGHI MOPQRS WXZ	J ^{π} : M1 component in γ to 6 ⁺ level and E2 γ to 3 ⁺ level. B(E3)↑=0.104 7 J ^{π} : from E1 γ 's to 2 ⁺ and 4 ⁺ levels.
1275.772 ^{<i>f</i>} 4	1-	20 fs 4	AB EFGHIJ N PQR W	S(E3)]: from Coul. ex. XREF: Q(1279).
				J ^{π} : from E1 γ 's to 0 ⁺ and 2 ⁺ levels. T _{1/2} : from (γ , γ'). See the comment there about the reliability of this value. Other: <0.15 ps (2017Ap01, (n, γ) E=th).
1297.006^{d} 3	4 ⁻		CEFGHIK PR WXZ	J^{π} : from E1 to 3 ⁺ level and γ to 5 ⁺ level.
1324.465" 3	6'		CEHIKM PQ WXZ	XREF: Q(1329). J^{π} : from γ 's to 4 ⁺ and 6 ⁺ levels, authors' interpretation of (d,d') angular distribution data, and expected band structure.
1357.928 ^f 3	3-	<0.15 ps	A EFGHIJ M OPQR UV	B(E3)↑=0.033 <i>11</i> XREF: M(1357.4)U(1363)V(1364). J ^{π} : from E1 γ to 4 ⁺ level and γ to 2 ⁺ level. T _{1/2} : from 2017Ap01 ((n, γ) E=th). B(E3)↑: from Coul. ex.
1375.08 ^{&} 7	10+	1.57 ps <i>10</i>	IJKLM WXY	μ =+3.6 4 J ^{π} : from population in Coul. ex., γ to 8 ⁺ level, and expected gs band structure. T _{1/2} : from Coul. ex. (1977Ke06). Other: 1.5 ps <i>1</i> (1979Gu15) from Coul. ex. T _{1/2} : from B(E2)(8 ⁺ \rightarrow 10 ⁺)=2.65 21 (Coul. ex.), the computed half-life is 1.34 ps <i>11</i> . μ : From 1999Br43 (Coul. ex.). This value is also listed in the compilation by 2014St77
1390.513 ^c 3	5-		CEHIMPQRVWZ	XREF: V(1397)Z(1387.5). J^{π} : from E1 γ to 4 ⁺ level, γ to 6 ⁺ level, and
1400.26 ^g 6	0^{+}		BEH OPRS	Interpretation of (d,d') reaction data. XREF: O(1397)S(1398.9). J^{π} : from E0 deexcitation to 0 ⁺ ground state and L=0 in (t p) and (p t)
1453.468 ^g 5	2+		AB EFGHI M P R V	XREF: V(1461). J^{π} : from M1 γ to 2 ⁺ , E2 γ to 4 ⁺ and expected band structure.

¹⁶²Dy Levels (continued)

E(level) [†]	J ^{π#}	T _{1/2}	XI	REF	Comments
1485.671 ^{<i>h</i>} 3	5-	1.92 ns <i>11</i>	CE HI	PRUVWZ	XREF: V(1493). J ^{π} : E1 γ 's to 4 ⁺ and 6 ⁺ levels. log <i>ft</i> =4.77 from 6 ⁻ in ¹⁶² Ho (67.0 min) ε decay establishes configuration assignments for both states. T _{1/2} : weighted average of 1.91 ns <i>19</i> (1969Ho17) and 1.93 ns <i>13</i> (1973Ch28), from ¹⁶² Ho (67.0 min) ε
1490.39 ^b 6	7+		HI K	WX Z	decay. Other: <2.02 ps (2017Ap01, (n,γ) E=th). J ^{π} : from γ 's to 5 ⁺ , 6 ⁺ , and 8 ⁺ levels and expected
1518.426 ^{<i>f</i>} 4	5-	<0.13 ps	E HI	PQR UV	XREF: Q(1527)V(1529). J^{π} : from E1 γ 's to 4 ⁺ and 6 ⁺ levels. Assigned as 4 ⁺ in (d,d'). Two: from 2017Ap01 ((n γ) F=th)
1530.127 [‡] <i>d</i> 6	6-		С НІК	WX Z	XREF: K(1527.5). J^{π} : from γ 's to 4 ⁻ and 5 ⁺ levels and expected band structure.
1535.664 ^j 3	4+		EF HI	OP R X Z	XREF: O(1533). J ^{π} : from M1 component in γ to 3 ⁺ level, γ 's to 2 ⁺ and 6 ⁺ levels, and expected band structure. T _{1/2} : 0.10 ps <t<sub>1/2<3.6 ps (2017Ap01, (n,γ) E=th).</t<sub>
1570.912 ^k 3	3-		EFGH	Ρr	XREF: P(1572.0)r(1574.78). J ^{π} : from resonance-averaged n-capture and γ 's to 1 ⁻
1574.293 ^g 4	4+		EFGHI	Oqr U	XREF: F(1575.6)G(1575.6)q(1577)r(1574.78)U(1578). J^{π} : from resonance-averaged n-capture and γ' s to 2 ⁺ and 6 ⁺ levels. In (d,d'), level is assigned 3 ⁻ . $T_{1/2}$: 0.75 ps< $T_{1/2}$ <2.1 ps (2017Ap01, (n, γ) E=th).
1575.623 ⁱ 11	6-		CEI	Pq VW Z	XREF: q(1577)V(1581). J^{π} : log ft=5.82 from 6 ⁻ in ¹⁶² Ho (67.0 min) ε decay indicates π =- and J=5, 6, 7. γ to 4 ⁻ rules out J=7. Expected band structure.
1634.415 ^j 3	5+		E HI	R VWX Z	XREF: V(1644). J^{π} : from γ 's to 3 ⁺ and 6 ⁺ levels and expected band structure.
1637.196 ¹ 4	1-		EFGH	р	XREF: p(1637.40). J ^{π} : from resonance-averaged n-capture, E1 γ to 2 ⁺ and proposed band structure.
1637.92 ^{‡c} 8	7-		HI K	p W Z	XREF: p(1637.40). J^{π} : E1 γ to 6 ⁺ level and expected band structure.
1666.27 ^{‡m} 20	0^{+}		Н	S	J^{π} : from L=0 in (p,t).
1669.085 ^k 3	4-		EFGH	PR	J^{π} : M1 components in transitions to 3 ⁻ and 5 ⁻ levels.
1670.505 ^a 19	8+		IK	WX	XREF: K(1670.2). J ^{π} : from γ 's to 6 ⁺ and 8 ⁺ levels and expected band structure.
1683.35 ^h 8	7-		I	PR UVW Z	XREF: V(1691). J ^{π} : from E1 γ to 6 ⁺ level, γ to 8 ⁺ , and expected band structure.
1691.340 ^l 4	2-		A EFGHI	P S	XREF: S(1700). J^{π} : E2 γ to 4 ⁻ and M1 component in γ to 1 ⁻ levels. Other: L=2 in (p,t) implies 2 ⁺ .
1728.318 ^m 4	2+		EFGH	QS	XREF: Q(1723)S(1732). J ^{π} : from resonance-averaged n-capture and γ to 1 ⁻

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi #}$	$T_{1/2}$	XF	REF		Comments
						level. Other: (d,d') data give J^{π} not 2^+ , so level might be a doublet.
1738.999 ^{<i>l</i>} 4	3-		EFGH	PQ		T _{1/2} : 0.17 ps <t<sub>1/2<0.7 ps (2017Ap01, (n,γ) E=th). XREF: Q(1737). J^{π}: from resonance-averaged n-capture and γ's to 1⁻ and 5⁻ levels</t<sub>
1745.716 ⁿ 7	1^{+}		AB DEFGHI	O QR		J^{π} : from resonance-averaged n-capture, M1 component in γ to 2^+ level and expected band structure.
1751.881 ^j 3	6+		ΕI	qR	WX Z	XREF: q(1755). J^{π} : from γ 's to 4 ⁺ , 5 ⁺ , and 6 ⁺ levels and expected band structure.
1754.82 [‡] <i>f</i> 20	(7)-		IK	Pq	VW	XREF: K(1759.)q(1755)V(1765). J^{π} : E1 γ to 6 ⁺ and expected band structure.
1766.608 ⁰ 3	3-		EFGH	pr	U	XREF: $p(1766.81)r(1766.81)U(1759)$. J ^{π} : from resonance-averaged n-capture and γ 's to 2 ⁺ and 5 ⁻ levels.
1767.37 <mark>8</mark> 17	6+		I		W	J^{π} : E2 γ to 8 ⁺ , γ to 6 ⁺ and expected band structure.
1782.68 ^{‡n} 9	2+	@	AB FGHI	QR		 XREF: Q(1777). Listed γ branching is from (n,n'γ), except where noted otherwise. J^π: from γ's to 0⁺ and 4⁺ levels and expected band structure.
1807.56 ⁱ 6	8-		I	Р	VW Z	XREF: V(1816).
1826.753 ⁰ 4	4-		EF H	Ρ	U	J^{*} : γ 's to 6 , / and /' levels and expected band structure. XREF: U(1828). J^{π} : from resonance-averaged n-capture, γ 's to 3 ⁺ and 6 ⁻ levels, and expected band structure.
1833.25 ^{‡k} 19	(5 ⁻)		Н	PR		XREF: H(1837.09). E(level): from (d,p) and (d,t). J^{π} : from expected band structure.
1840.486 ⁿ 4	3+		EFGH	R	V	XREF: V(1843). J^{π} : from resonance-averaged n-capture, γ 's to 2 ⁺ , 4 ⁺ , and 4 ⁻ levels, and expected band structure.
1845.53 ^d 7	8-		IK		WX Z	J^{π} : γ 's to 6 ⁻ and 7 ⁺ levels and expected band structure.
1851.811 ¹ 4	4-		EFGH	Р		J^{π} : from resonance-averaged n-capture. E1 γ to 5 ⁺ and E2 γ to 2 ⁻ levels.
1862.677 ^{<i>p</i>} 3	4-		E			J^{π} : E1 γ to 5 ⁺ and E2 to 2 ⁻ levels. T _{1/2} : 1.10 ps <t<sub>1/2<1.98 ps (2017Ap01, (n,γ) E=th).</t<sub>
1863.83 [‡] <i>q</i> 6	2-		FGH	PQ		Member of a possible doublet. 1995Be02 assign a number of γ 's deexciting this level. 2006Ap01, however, state that this level is not populated in the (n,γ) reaction with thermal neutrons. The listed γ branching is from $(n,n'\gamma)$. J ^{π} : from resonance-averaged n-capture.
1878.05 ^b 7	9+		IK		WX	J^{π} : E2 γ to 7 ⁺ and expected band structure.
1886.82 ^{‡m} 9	4+		EFGH			The listed γ branching is from 2002Go15, in $(n,n'\gamma)$. For a discussion of the problems associated with this γ branching, see the comments on this level in the ¹⁶¹ Dy (n,γ) E=th data set. I^{π} : from resonance-averaged n-capture and E2 γ to 2 ⁺ level
1887.67 ^j 5	7+		I	R	WX Z	γ -decay properties are from $(\alpha, 2n\gamma)$.
1005 45 + 5				_		J [*] : M1 component in γ to 6^{+} , E2 γ to 5^{+} , and expected band structure.
1895.42+ 5	2*		FGH	Р		Listed γ branching is from $(n,n'\gamma)$. J ^{π} : from resonance-averaged n-capture and γ 's to 1 ⁻ and 4 ⁺

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi #}$	T _{1/2}	XR	EF		Comments			
						levels.			
1901.10 ^{&} 8	12+	0.81 ps 8	IJKLM		WXY	XREF: M(1903.1). J^{π} : from E2 γ to 10 ⁺ level and expected gs band structure. T _{1/2} : weighted average of 0.93 ps 6 (1977Ke06) and 0.76 ps 4 (1979Gu15) from Coul. ex. T _{1/2} : from B(E2)(10+ \rightarrow 12 ⁺)=2.1 3 (Coul. ex.), the computed half-life is 0.75 ps 11.			
1904.13 [∓] <i>11</i>				PQR		Assigned as the 4 ⁺ member of the $K^{\pi}=1^+$ band at 1745 keV by 1995Be02 from (n,γ) . However, the fact that this level is populated differently in (d,p) and (d,t) from the lower-spin members of this band suggests that it is not a member. In a subsequent (n,γ) study, 2006Ap01 do not confirm the population in (n,γ) of a level at this energy. They propose that the $J^{\pi}=4^+$ band member is at 1954 keV.			
1910.430 ⁹ 6	3-		EFGH	Р		E(level): value from 1995Be02 ((d,p) and (d,t)). J^{π} : from E1 γ 's to 2 ⁺ and 4 ⁺ levels and resonance-averaged n-capture. T _{1/2} : 0.17 ps <t<sub>1/2<0.21 ps (2017Ap01, (n,γ) E=th).</t<sub>			
1913.68 ^{‡0} 7	5-			R		J^{π} : from population in (d,t) and expected band structure.			
1939.65 ^h 9	9-		I	R	WΖ	γ -decay properties are from (α ,2n γ).			
1951.391 6	3+,4+		EFGH	Ρ		E(level): 1995Be02 (in (n, γ)) report γ 's depopulating this level to levels with J^{π} ranging from 0 ⁺ and 1 ⁻ to 4 ⁺ and 6 ⁻ , which suggests more than one level here. Resonance-averaged n capture also suggests the presence of a doublet of levels at this energy. The γ branching from the level listed here is that reported by 2006Ap01, which is adopted, differs from that given by 1995Be02. J ^{π} : E1 γ to 4 ⁻ and M1 γ to 3 ⁺ . Level assigned as the 4 ⁺ member of the K^{π} =1 ⁺ band by 2006Ap01. However, 1995Be02 place that 4 ⁺ state at 1904.13 keV, an assignment that is not adopted here.			
1959.36 ^c 8	9-		IK	R	VW Z	XREF: V(1955). J ^{π} : E1 γ to 8 ⁺ , γ to 10 ⁺ , and expected band structure.			
1963.598 ¹ 3	5-		E			J ^{π} : from E2 γ to 3 ⁻ , E1 γ to 4 ⁺ and γ to 6 ⁺ levels.			
1974.10 ^{‡¶} 10	4-		FGH	Р		XREF: F(1973.2)G(1973.2). J ^{π} : from resonance-averaged n-capture and γ 's to 3 ⁺ and 4 ⁺ levels.			
1982.46 [‡] <i>14</i>	2+		A FGH	NPR		J ^{π} : from γ 's to 0 ⁺ and 4 ⁺ levels.			
1985.88 <mark>8</mark> 21	8^+ 2 ⁺		I K	P	UWX	XREF: K(1989.)U(1990).			
1999.33 13	2		A LIGU	PQK		γ 's to 0 ⁺ and 3 ⁻ levels rule out 3 ⁺ and 4 ⁺ .			
2000.79 <i>10</i> 2009.796 <i>5</i>			ЕН	R R		J ^{π} : assigned by 1995Be02, in (n, γ), as the 5 ⁺ member of the $K^{\pi}=1^+$ band at 1745 keV. This seems to Be based, in part, on the identification by 1995Be02 of the 1904 level as the 4 ⁺ band member. However, this assignment is not adopted. γ to a 3 ⁻ level suggests $J^{\pi}=5^+$ is incorrect.			
2040.97 ^j 7	8+		I		ΧZ	γ -decay properties are from (α ,2n γ).			

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi #}$	T _{1/2}		XF	REF		Comments
							J ^{π} : M1 component in γ to 7 ⁺ , E2 γ to 8 ⁺ , and expected band structure.
2041.45 20					R		
2047 3	<i>~</i> –				Q		
2053.5414 13	5			ЕH	Р		J [*] : from γ 's to 4' and 6' levels and expected band structure.
2065.79 <i>21</i> 2071.95 <i>9</i>	(4)			ЕН	P R		J ^{π} : from 1995Be02, (n, γ). γ 's to 2 ⁺ and 6 ⁺ levels imply J^{π} =4 ⁺ . Note, however, that this level is not populated in resonance-averaged n capture, where all the J=4 levels should Be populated via primary γ transitions.
2079 ⁿ 2080.03 5	(6 ⁺) (2,3)			EFGH	PQR	V U	J ^{π} : from (³ He, α), where L=5,6. XREF: Q(2076)U(2085). J ^{π} : γ 's to 0 ⁺ and 4 ⁺ levels imply 2 ⁺ , while
2087 49 <mark>8</mark> 7	10+			тк	R	WX	resonance-averaged n-capture gives 2^{-} , 3^{-} .
$2100.66 \int 14$	0-			т	K	WA	y , y s to y and 10^{-1} revers and expected band structure.
2100.005 14	7			1		VV	J^{π} : E1 γ to 8^+ , γ to 10^+ , and expected band structure.
2102.8 <i>4</i> 2103 48 7	3^{-} (2 ⁺)			FFG	OPQR R		J^{π} : from ang. dist. in (d,d') (1973St07). XREF: R(2108 5)
	(_)						J ^{π} : resonance averaged n-capture gives 2 ⁺ ,3 ⁺ ,(4 ⁺). γ 's to 0 ⁺ and 3 ⁺ levels.
2110.70 ^{<i>i</i>} 8 2112.6 <i>I</i>	10-			I	PRS	W	J^{π} : $\gamma's$ to 8^- and 9^- levels and expected band structure.
2120.717 9	(4^{-})			EFG	PR		J^{π} : from resonance-averaged n-capture.
2125.212 ^r 8	0+			Е	0 S		XREF: $S(2126.5)$.
2128.6 4	1-		A	FGH	pr		XREF: $p(2128.64)r(2128.64)$. J ^{π} : Resonance-averaged n-capture gives 1 ⁻ or 4 ⁻ . ¹⁶² Tb
2129.497 19	(2 ⁺)			ЕН	p rS		β^- decay gives 1 or 2. XREF: p(2128.64)r(2128.64). J ^{π} : from L=2 in (p,t), which implies several γ 's to 4 ⁻
							levels are M2.
2138.5 3					R	V	τπ. ς
2148.081 4	(2) 1 2 3		۵	EFG	PR		J ^{\sim} : from resonance-averaged n-capture. I ^{π} : from γ 's to 2 ⁺ and 2 ⁻ levels
2174.61 24	1,2,5		п		R		
2181.0 ^{<i>s</i>}	4+					Х	
2185.22 17					Р		
2187.9 ^e 10	8+	8.3 μs 3		I		Z	T _{1/2} : from γγ(t) (2011Sw02). Proposed configuration=ν11/2[505]⊗ν5/2[523], K^{π} =8 ⁺ , in 2011Sw02 (¹⁶⁰ Gd(⁹ Be,α3nγ)). J ^π : (7 ⁻ ,8 ⁺) from γ's to 6 ⁺ and 9 ⁻ respectively; (8 ⁺) from proposed configuration
2189.71 ^r 18	(2+)			ЕН	Р		XREF: H(2192.0). J^{π} : from γ 's to 0 ⁺ and 3 ⁺ levels and expected band structure.
2199.2 3					R		
2203 ^t 2207.5 <i>3</i>	(8 ⁺)				R	V	J ^{π} : from (³ He, α), where L=5,6.
2211.59 ^j 8	9+			I		WX	γ branching and properties are from $(\alpha, 2n\gamma)$. J ^{π} : M1 components in γ 's to 8 ⁺ and 9 ⁺ levels, E2 γ to 7 ⁺ and expected band structure
2215.6 6				Н	Р		

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}			Х	REF				Comments
2230.75 21		· · · · ·				F	P R			
2234.18 ^d 9	10-				I			I	ИX	J ^{π} : γ 's to 8 ⁻ and 9 ⁺ levels and expected band structure.
2239.4 4				E	Н	F	2			, 1
2245.6 3						F	P R			
2262.30 ⁸ 11	10^{+}				Ι	_	R	U	ИX	J^{π} : M1 γ to 10 ⁺ and expected band structure.
2269.5 3				E.		ł	PQR			
2280 5 3				E		F				
2280.88^{h} 12	11-				т	-		1	N	I^{π} : γ to 10 ⁺ and expected hand structure
2283 ^{<i>u</i>}	(5^+)				1			v		I^{π} : from $({}^{3}\text{He},\alpha)$, where L=5.6.
2291.4 3	(0)				Н	F	P R			
2292								U		
2292.4 [§] 7	5+								X	E(level): the evaluator has chosen not to identify this level with those listed at 2291.4 and/or 2292, since the other members of this proposed $K^{\pi}=4^+$ band are not observed in either of the reactions in which these levels are reported.
2299.09 23				E			R			
2311.3 3				~	H U	г	R			\mathbf{YDEE} , $\mathbf{a}(2315)$
2314.1 5	(3^{-})			e e	п	F	20			XREF: e(2315).
	(-)									J^{π} : from 1968Gr08, (d,d').
2324.85 21					H	F	P R			
2330.95 [°] 8	11-				ΙK				N	J^{π} : γ to 10 ⁺ level and expected band structure.
2337.35 ⁰ 8	11+				IK			I	NХ	J^{π} : γ 's to 9 ⁺ and 10 ⁺ levels and expected band structure.
2338.7 5				E	H	F	þ			
2344.4 3				_	Н	F	2			
2348.8 3				E	U	F	, K	ш		
2355.7.3					Н	F		U		
2362.94 20					H	F	R			
2368.9 ^e 13	(9+)								Z	J^{π} : γ to (8 ⁺) and band assignment.
2369.1 8				_	Н	F	2			
2371.3 3	1-,2,3		Α	E						J^{π} : from γ 's to 2 ⁻ , 2 ⁺ , and 3 ⁻ levels.
2374"	(6')					г	סכ			J ^{α} : from (³ He, α), where L=5,6.
2373.0 5					н	r	R	u 11		XREF. $u(2381)$.
2386.3 6					Н	F	, î	ŭ		AREA . u(2301).
2394.85 15	1^{+}	11.1 [@] fs 7			Н	N				$B(M1)\uparrow = 0.52 \ 3$
										J^{π} : from M1 excitation in (γ, γ') .
										T _{1/2} : Other: T _{1/2} =8 fs 4 from $(n,n'\gamma)$. B(M1) \uparrow : from (γ,γ') .
2398.27 ^j 22	10^{+}				I				X	J^{π} : γ to 8 ⁺ , possible γ to 9 ⁺ , and expected band
2403.4 3					н		R			structure.
2413.1 4				E			R			
2421.0 ^{\$}	6+								X	
2427.9 6				_		F	2	U		
2437.1 4				Е	Н	F	r R			
2451.0 5						ł		Πv		XREF: v(2458)
2457 5				E				5.		
2459.0 3					Н	F	R	v		XREF: v(2458).
2469.7 7							R			

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}		2	XRE	F			Comments
2480.2 5				Н		Р			
2482.34 ^{<i>i</i>} 9	12-			I				W	J^{π} : γ 's to 10 ⁻ and 11 ⁻ levels and expected band structure.
2483.7 8 2488.3 4			E	н		P P	R		
2491.65 ^{&} 9	14+	0.45 ps 5		IK	M			WXY	XREF: M(2495). T _{1/2} : from 1979Gu15, Coul. ex. I^{π} : from expected hand structure. Populated in Coul. ex.
2494.4 9	0+					1	RS		J^{π} : from L=0 in (p,t). The evaluator has assumed that these two levels are the same.
2503.83 ^{<i>f</i>} 12	11-			I				W	XREF: I(2504.15). J^{π} : γ 's to 10 ⁺ and 12 ⁺ levels and expected band structure.
2506 ^v 2510.3 <i>10</i> 2513.6 <i>6</i>	(7 ⁺)		e e	н		P P I	R	UV	J^{π} : from (α , ³ He), where L=5,6. XREF: e(2516). XREF: e(2516).
2520.4 7	1-	7.5 [@] fs 6	e	Н	N	Ρ			B(E1) \uparrow =5.0×10 ⁻⁵ 4 XREF: e(2516)N(2520). J ^{π} : from E1 excitation in (γ , γ'). B(E1) \uparrow : from ¹⁶² Dy(γ, γ').
2524.1 4				Н		ΡI	R		
2529.4 6 2534.86 ^g 9	12+			H I		Ρ		U WX	XREF: I(2535.21). J^{π} : γ 's to 10 ⁺ and 12 ⁺ levels and expected band structure.
2537.4 7 2551.3 <i>11</i>	1	98 [@] fs 21		H H	N	P I	R R		J^{π} : from dipole excitation in (γ, γ') .
2554.3 6 2562 ^u	(7 ⁺)		F	H		P	D	V	XREF: P(2553.7). J^{π} : from (³ He, α), where L=5,6.
2567.9 ^e 13	(10 ⁺)		E				ĸ	Z	J ^{π} : γ 's to (8 ⁺) and (9 ⁺) and band assignment. Magnitude of g _K -g _R =0.24 <i>4</i> (2011Sw02, ¹⁶⁰ Gd(⁹ Be, α 3n γ)).
2569.4 7	1+	39 [@] fs 4		H	N	Р			B(M1) $\uparrow=0.13 l$ J ^{π} : from M1 excitation in (γ,γ').
2579.6 11	(2+)					1	RS		B(M1) \uparrow : from (γ, γ') . J ^{π} : from L=2 in (p,t), assuming that level seen in the two reactions is the same.
2584.0 <i>4</i> 2601.32 ^{<i>j</i>} 12 2614.8 <i>4</i>	11+		E	I		P P		WX	J^{π} : γ to 9^+ level and expected band structure.
2617.3 5 2622.78 ^a 9	12+			I]	R	WX	J^{π} : γ 's to 10 ⁺ and 12 ⁺ levels and expected band structure
2623 ^w 2630.6 <i>3</i>	(6+)]	R	U	J^{π} : from (α , ³ He), where L=6.
2641.6 <i>3</i> 2647 2648 <i>5</i>			E	Η		1	R	U	
2663.0 8 2670.65 ^d 12	0+ 12 ⁻		Ē	H I		I	RS	WX	J^{π} : from L=0 in (p,t). J^{π} : γ' s to 10 ⁻ and 11 ⁺ levels and expected band
2680.6 9						I	R		structure.

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}		2	XREF				Comments
2682.59 ^h 10	13-			Ι			W		J^{π} : γ 's to 11^{-} and 12^{+} levels and expected band structure.
2688.5 11			Е			R			-
2695.9 16	(10 ⁺)							Z	J^{π} : γ to (9 ⁺), (10 ⁺) assigned by 2011Sw02 (¹⁶⁰ Gd(⁹ Be, α 3n γ)).
2697							U		
2704						ъ	V		
2708.9 12			F	п		R			
2726			-			ĸ	U		
2730.6 9						R			
2742.2 11			E			R			
2750.8 9	(0+)			Н		R			
2755	(81)		F			D	U		J ^{π} : from (³ He, α), where L=6.
2708.7 8 2777.99 [°] 11	13-		E	I		ĸ	W		J^{π} : γ 's to 11^{-} and 12^{+} levels and expected band
2779.8 9			Е	н		R			XREF: E(2773).
2784.9 ^e 14	(11 ⁺)							Z	J^{π} : γ' s to (9 ⁺) and (10 ⁺) and band assignment. Magnitude of g_{K} - g_{R} =0.27 +8-6 (2011Sw02, $1^{60}Gd(^{9}Be \alpha_{3}m\chi))$
2785							U		
2788.8 9				Н		R			
≈2800						S			E(level): $L=5+7$ in (p,t) suggests that this is a doublet.
2802.7 6	0+		E	Н		RS			XREF: E(2796). J^{π} : from L=0 in (p,t).
2812							U		
2815	1	39 ^{ee} fs <i>13</i>			N				J^{n} : from dipole excitation in (γ, γ') .
2817	12+		E			ъ	Х		
2818.2.8 2847^{W}	(7^{+})		E			ĸ	IIV		I^{π} . from (α^{3} He) where I = 6
2848.4 8	(r)		Е			R	01		\mathbf{J} . from (\mathbf{u} , fie), where $\mathbf{L}=0$.
2859.63 ^b 10	13+			I			WX		J^{π} : γ 's to 11 ⁺ and 12 ⁺ levels and expected band structure.
2861.5 7						R			
2880.0 7		_				R			
2900.0 <i>3</i>	1^{+}	2.05 [@] fs 13		Н	N	R	U		B(M1) ⁺ =1.63 10
									XREF: H(2902.1).
									B(M1): Ifom (γ, γ') . I^{π} : from M1 excitation in (γ, γ')
									T _{1/2} : other: <4 fs from $(n,n'\gamma)$.
2909.4 7	1	22 [@] fs 7		н	N	R			XREF: H(2909.7).
	-								J^{π} : from dipole excitation in (γ, γ') .
2919.55 ⁱ 13	14-						W		
2929.4 7	1-	20.0 [@] fs 21		Н	N	R			$B(E1)\uparrow = 1.7 \times 10^{-5} 2$
									J^{π} : from E1 excitation in (γ, γ') . B(E1) \uparrow : from (γ, γ') .
2930 ^v	(9+)						U		
2934.55 ⁸ 10	14+			I			WX		J^{π} : γ 's to 12 ⁺ and 14 ⁺ levels and expected band structure.
2940.4 7						R			
2950 5			E			_			
2959.87						R			

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}			XREF			Comments		
2963.94 ^{<i>f</i>} 13	13-			I			W	J^{π} : γ 's to 10 ⁺ , 11 ⁻ and 12 ⁺ levels and expected band structure.		
2965	1+	33 [@] fs 5			N			B(M1) \uparrow =0.10 <i>I</i> J ^{π} : from M1 excitation in (γ , γ'). B(M1) \uparrow : from (γ , γ').		
2971.8 6						R				
2989.2 7			_	Н		R				
2997 5			E	ц		D				
3019.5			E	п		K				
3029.3 6			Ē			R				
3040.3 6						R				
3052.82 ^j 15	13+						W			
3061.2 <i>3</i>	1+	3.9 [@] fs 4		Н	N	R		B(M1) \uparrow =0.86 8 J ^{π} : from M1 excitation in (γ , γ'). T _{1/2} : other: 6 fs 3 from (n,n' γ).		
3070.8 6				Н		R				
3085.8 0						R D				
3115.7 7						R				
3123.25 ^{<i>d</i>} 16 3127 7	14-					R	W			
3138.55 ^{&} 12	16^{+}			I	M		WXY	XREF: M(3144).		
3139.5 7						R				
3145.63 ^{<i>h</i>} 10	15-			I			W	J^{π} : γ 's to 13 ⁻ and 14 ⁺ and expected band structure.		
3145.64 ^{<i>u</i>} 10	14+			I		ъ	WX	J^{n} : γ' 's to 12^{+} levels and expected band structure.		
317146						R				
3187.8 5						R				
3241 5			Ε							
3269 <i>j</i>	14^{+}						Х			
3293.21 [°] 11	15^{-}			I			W	J^{π} : γ to 14^+ and expected band structure.		
3303	1.64						V			
33/3.948 12	16'						WX			
3415.95° 16	16						W			
3434.04 ⁶ 11	15+						WX			
34/4.84J 17	15-						W			
3564.22 ^J 18	15+				N		W	$\overline{\mathcal{M}}_{i}$ from direct over in (u, v')		
2627.26 d 10	1				IN		1.7	J^{*} : from dipole excitation in (γ, γ) .		
3627.20 th 19	10						W			
3666.92^{n} 15 3734.23^{a} 14	1/ 16 ⁺						W			
3830.93 ^{&} 14	10 18 ⁺			I	M		WXY	XREF: I(3832.3)M(3837).		
20251	17+							J^{-1} : from γ to 16° level and expected band structure.		
3833 ¹ 3874 296 12	16'						X W			
3878 37 <mark>8</mark> 13	1 / 18 ⁺						W WX			
$3966 65^{i} 19$	18-						W			
$4037.24f_{-20}$	17-						W			
1030 61b 15	17+						W MV			
TUJ7.04° IJ	1/						W A			

¹⁶²Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
4195.56 ^d 21	18-	W	
4243.52 ^h 18	19-	W	
4342.53 ^a 18	18^{+}	WX	
4434.60 ^g 14	20^{+}	WX	
4516.28 [°] 16	19-	W	
4568.76 ⁱ 22	20^{-}	W	
4577.73 ^{&} 17	20^{+}	WXY	XREF: Y(4572).
4650.55 ^f 22	19-	W	
4873.42 ^{<i>h</i>} 21	21^{-}	W	
5061.80 ^g 18	22^{+}	W	
5221.06 ⁱ 24	22^{-}	W	
5352.0 ^{&} 3	22^{+}	WX	
5554.13 ^h 23	23^{-}	W	
5747.20 ^g 20	24+	W	
5920.9 ⁱ 3	24^{-}	W	
6153.2 ^{&} 4	24^{+}	WX	
6488.7 <mark>8</mark> <i>3</i>	26^{+}	W	
7276.0 <mark>8</mark> 4	28^{+}	W	

[†] Calculated from a least-squares fit to the listed γ energies. In this fit, 141 E γ values out of 508 differ by more than 3σ from the calculated values. Other values are from the relevant reaction data.

[‡] Level reported by 1995Be02 in (n,γ) , but not confirmed by 2006Ap01 (whose data extend only to levels below 2 MeV). See the relevant comment in the ¹⁶²Dy (n,γ) E=th data set.

[#] For levels seen only in the heavy-ion-induced reactions, the values are obtained based on considerations commonly used in such studies. Explicit arguments are given for the other cases.

[@] From (γ, γ') and, to the extent that level may decay via unreported γ' s, values are upper limits.

& Band(A): $K^{\pi}=0^+$ ground-state band. A=13.51 keV, B=-11 eV, computed from the energies of the 0^+ through 4^+ band members.

- ^{*a*} Band(B): γ -vibrational band, signature=0 branch. A=12.56 keV, B=-11 eV, A₄=-0.672 eV. Values computed from the energies of the 2⁺ through the 5⁺ band members.
- ^b Band(b): γ -vibrational band, signature=1 branch. See the comments on the signature=0 branch.
- ^c Band(C): $K^{\pi}=2^{-}$ octupole-vibrational band, signature=1 branch. Dominant configuration=(π 7/2[523])-(π 3/2[411]). A=10.57

keV, B=-7.5 eV, A₄=+7.87 eV, computed from the energies of the 2⁻ through 5⁻ band members.

- ^d Band(c): $K^{\pi}=2^{-}$ octupole-vibrational band, signature=0 branch. See the comments on the signature=1 branch.
- ^{*e*} Band(D): $K^{\pi} = 8^+$ band based on 8.3 μ s isomer.
- ^{*f*} Band(E): $K^{\pi}=0^{-}$ octupole-vibrational band. Configuration=(ν 5/2[642])-(ν 5/2[523]) is the largest component in the make-up of this band. A=7.82 keV, B=+27 eV, computed from the energies of the 1⁻, 3⁻ and 5⁻ band members. Note that they do not give a good description of the energies of the higher-spin band members.
- ^g Band(F): $K^{\pi}=0^+$ band, S, or 'Super', band. A=8.94 keV, B=-12 eV, computed from the energies of the 0⁺ through 4⁺ band members. These values do not give a good description of the energies of the higher-spin states. This band intersects the g.s. band at spin 18.
- ^{*h*} Band(G): $K^{\pi}=5^{-}$ band, signature=1 branch. Dominant configuration=(ν 5/2[642])+(ν 5/2[523]). A=7.44 keV, B=+4.7 eV, computed from the energies of the 5⁻ through 7⁻ band members.
- ^{*i*} Band(g): $K^{\pi}=5^{-}$ band, signature=0 branch. See the comments on the signature=1 branch.
- ^{*j*} Band(H): $K^{\pi}=4^+$ band, probable hexadecapole vibration. Dominant conf=(ν 3/2[521])+(ν 5/2[523]). A=9.90 keV, B=-2.9 eV, computed from the energies of the 4⁺ through 6⁺ band members. From (162 Dy, 162 Dy' γ), 2001Wu05 infer that the two-phonon γ -vibrational phonon contributes $\approx 11\%$ to the make-up of this band.
- ^k Band(I): $K^{\pi}=3^{-}$ octupole-vibrational band. Configuration=(ν 5/2[642])+(ν 1/2[521]) contributes \approx 50% to the make-up of this

¹⁶²Dy Levels (continued)

band. A=12.39 keV, computed from the energies of the 3^- and 4^- band members. The energy of the 5^- band member is not well predicted by this value.

- ^{*l*} Band(J): $K^{\pi}=1^{-}$ octupole-vibrational band. Configuration=(ν 5/2[642])-(ν 3/2[521]) is the largest component in the make-up of this band.
- ^{*m*} Band(K): $K^{\pi}=0^+$ band. A=10.05 keV, B=+49 eV, computed from the energies of the 0^+ through 4^+ band members. The relatively large, positive, value of B suggests that these parameters will not provide a good description of the energies of the higher-spin states.
- ^{*n*} Band(L): $K^{\pi}=1^+$ band. Dominant configuration=(v 5/2[523])-(v3/2[521]).
- ^{*o*} Band(M): Second excited $K^{\pi}=3^{-}$ band. Configuration=(ν 5/2[642])+(ν 1/2[521]) is a large part of the make-up of this band. From the energies of the 3⁻ through 5⁻ band members, one computes A=6.98 and B=+54 eV. These seem unusual, suggesting some problems in the assignment of the band members.
- ^{*p*} Band(N): bandhead of a $K^{\pi} = 4^{-}$ band.
- ^{*q*} Band(O): Second excited $K^{\pi}=2^{-}$ band. Dominant configuration=(ν 5/2[642])-(ν 1/2[521]). A=7.54 keV, B=+16 eV, A₄=+788 meV, computed from the energies of the 2⁻ through 5⁻ band members.
- ^{*r*} Band(P): $K^{\pi}=0^+$ band.
- ^{*s*} Band(Q): Second excited $K^{\pi}=4^+$ band. From (¹⁶²Dy,¹⁶²Dy' γ), 2001Wu05 infer that the two-phonon γ -vibrational phonon contributes $\approx 25\%$ to the make-up of this band. A=11.15 keV, computed from the energies of the 4⁺ and 5⁺ band members.
- ^t Band(R): $K^{\pi} = 8^+$ bandhead. Configuration=($\nu 5/2[523]$)+($\nu 11/2[505]$).
- ^{*u*} Band(S): member of a $K^{\pi}=3^+$ band. Configuration=($v \ 11/2[505]$)-($v \ 5/2[523]$).
- ^{*v*} Band(T): $K^{\pi} = 6^+$ band member. Configuration=(*v* 5/2[642])+(*v* 7/2[633]).
- ^{*w*} Band(U): $K^{\pi}=1^{+}$ band member. Configuration=(v 7/2[633])-(v 5/2[642]).

$\gamma(^{162}\text{Dy})$

Based on data from ¹⁶²Tb β^- decay, ¹⁶²Ho ε decay (15 min and 67 min), ¹⁶¹Dy(n, γ), ¹⁶²Dy(n,n' γ), ¹⁶⁰Gd(α ,2n γ), Coul. ex., ¹⁶²Dy(γ , γ'), ¹¹⁸Sn(¹⁶²Dy,¹⁶²Dy' γ), ¹⁶⁰Gd(⁷Li,p4n γ), and ¹⁶⁰Gd(³⁷Cl,X γ).

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments
80.661	2+	80.659 7	100	0.0	0+	E2		6.14	B(E2)(W.u.)=202.1 31 α (K)=1.82 3; α (L)=3.32 5; α (M)=0.797 12 α (N)=0.1784 25; α (O)=0.0212 3; α (P)=7.66×10 ⁻⁵ 11 B(E2)(W.u.) calculated directly from the adopted B(E2)↑. Mult.: all data agree with pure E2 assignment, namely, K/L=0.54 (1961Jo10), L1/L2/L3=0.11/0.98/1.00 (1961Ha23), and α (K)exp=2.1 (evaluator's combination of 1 γ from 1971Wo09 and Ice from 1961Jo10). All data are from ¹⁶² Ho ε decays. Additional information 2.
265.664	4+	185.002 <i>1</i>	100	80.661	2+	E2		0.307	B(E2)(W.u.)=289 11 α (K)=0.200 3; α (L)=0.0826 12; α (M)=0.0194 3 α (N)=0.00438 7; α (O)=0.000550 8; α (P)=9.37×10 ⁻⁶ 14 Mult.: the data agree reasonably well with pure E2, namely, K/L=2.3 5, 2.2, and 2.1 (1967Ba34,1961Jo10,1961Ha23), L1/L2/L3=0.38/1.15/1.00 (1961Ha23), and α (K)exp=0.19 3 (1967Ba34) (evaluator's combination of I γ from 1971Wo09 and Ice from 1961Jo10). Data are from ¹⁶¹ Dy(n, γ) for 1967Ba34 and otherwise from ¹⁶² Ho ε decays. Additional information 3.
548.520	6+	282.859 2	100	265.664	4+	E2		0.0773	B(E2)(W.u.)=302 <i>16</i> α (K)=0.0572 8; α (L)=0.01557 22; α (M)=0.00359 5 α (N)=0.000816 <i>12</i> ; α (O)=0.0001067 <i>15</i> ; α (P)=2.95×10 ⁻⁶ 5 Mult.,δ: the data agree with a pure E2 assignment, namely, α (K)exp=0.066 (evaluator's combination of I γ from 1971Wo09 and Ice from 1961Jo10), and K/L=3.7 (1961Jo10). Data are from ¹⁶² Ho ε decays. Additional information 4.
888.161	2+	622.494 <i>3</i>	2.08 8	265.664	4+	E2		0.00875	B(E2)(W.u.)=0.628 +41-39 α (K)=0.00718 10; α (L)=0.001229 18; α (M)=0.000274 4 α (N)=6.29×10 ⁻⁵ 9; α (O)=8.83×10 ⁻⁶ 13; α (P)=4.08×10 ⁻⁷ 6 I _γ : weighted average of: 2.08 7 (¹⁶² Tb β ⁻ decay); and and 1.93 7 (n,γ). Other: 1.4 1 (n,n'γ).
		807.501 2	100 3	80.661	2+	E2+M1	+57 +∞-33	0.00481	B(M1)(W.u.)= $3.4 \times 10^{-6} + 19 - 10$; B(E2)(W.u.)= $8.23 \ 41$ α(K)= $0.00400 \ 6$; α(L)= $0.000628 \ 9$; α(M)= $0.0001390 \ 20$ α(N)= $3.20 \times 10^{-5} \ 5$; α(O)= $4.56 \times 10^{-6} \ 7$; α(P)= $2.30 \times 10^{-7} \ 4$ Mult.,δ: from (n,n'γ). From α(K)exp= $0.0041 \ 1$ or 0.0043, γ is E2 with δ>5.4 or >1.7, respectively [2006Ap01, from (n,γ), or 1982Fi15, from

	Adopted Levels, Gammas (continued)											
							γ (¹⁶² Dy)	(continued)				
E _i (level)	\mathbf{J}_i^{π}	Ε _γ †‡#	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&b}	α^{a}	Comments			
888.161	2+	888.157 <i>3</i>	91 2	0.0	0+	E2		0.00391	(α,2nγ)]. From γ(θ) and γγ(θ), δ>+41.1 or <-8.3 [1980Hu06, from (n,γ)], δ>29 (1972Do01 from Coul. ex.), and δ<-2.9 or >+11.4 [1977Ho11 from (n,n'γ)]. Additional information 5 (1980Hu06). B(E2)(W.u.)=4.65 +24-22 α(K)=0.00327 5; α(L)=0.000500 7; α(M)=0.0001103 16 α(N)=2.54×10 ⁻⁵ 4; α(O)=3.64×10 ⁻⁶ 5; α(P)=1.88×10 ⁻⁷ 3 B(E2)(W.u.) is computed from B(E2)↑=0.122 5, in Coul. ex. I _γ : weighted average of: 90 4, from ¹⁶² Tb β ⁻ decay; 90 6, from			
921.28	8+	372.50 18	100	548.520	6+	[E2]		0.0339	(n, n γ); and 92 5, from (n, γ). Other: 126 9, from ¹⁰² Ho ε decay (67.0 min). B(E2)(W.u.)=346 17 α (K)=0.0264 4; α (L)=0.00587 9; α (M)=0.001339 19 α (N)=0.000305 5: α (O)=4.10×10 ⁻⁵ 6: α (P)=1.425×10 ⁻⁶ 20			
962.940	3+	697.277 2	19.5 5	265.664	4+	E2(+M1)	>45	0.00670	$a(1)=0.00505 3, a(1)=4.10\times10^{-1} 0, a(1)=1.425\times10^{-1} 20$ E _γ : average of: 372.20 9 (from (n,n'γ)); 372.56 15 (from muonic atom); and 372.75 8 (from Coul. ex.). $\alpha(K)=0.00553 8; \alpha(L)=0.000909 13; \alpha(M)=0.000202 3$ $\alpha(N)=4.64\times10^{-5} 7; \alpha(O)=6.56\times10^{-6} 10; \alpha(P)=3.17\times10^{-7} 5$ I _γ : weighted average of: 20.3 11 (n,n'γ); 19.2 6 (¹⁶² Tb β ⁻ decay); 17 2 (¹⁶² Ib ρ decay) (67.0 min)); and 10.8 10 (n, r).			
		882.276 <i>3</i>	100.0 <i>15</i>	80.661	2+	E2+M1	+41 +34-13	0.00397	Mult., δ : δ is from (n,n' γ). From α (K)exp=0.0056 2 in (n, γ), 2006Ap01 report δ >4.5. From $\gamma\gamma(\theta)$ in (n, γ), δ >+11.7 or <-10.4 (1980Hu06). Additional information 6. δ : 2006Ap01 report δ >4.5. α (K)=0.00332 5; α (L)=0.000508 8; α (M)=0.0001121 16 α (N)=2.58×10 ⁻⁵ 4; α (O)=3.69×10 ⁻⁶ 6; α (P)=1.91×10 ⁻⁷ 3 Mult., δ : from (n,n' γ). From α (K)exp=0.0041 6 or 0.0032 1, γ is E2 with δ >1.1 or >12, respectively, [1982Fi15 from (α ,2n γ) or 2006Ap01 from (n, γ)]. From $\gamma\gamma(\theta)$ in (n, γ), δ =+2.6 +53-16 (1980Hu06).			
1060.991	4+	98.054 <i>3</i> 172.835 <i>3</i>	0.08 <i>1</i> 0.71 <i>3</i>	962.940 888.161	3 ⁺ 2 ⁺	M1 E2		2.53 0.387	Additional information 7. $\alpha(K)=2.13 \ 3; \ \alpha(L)=0.314 \ 5; \ \alpha(M)=0.0690 \ 10$ $\alpha(N)=0.01595 \ 23; \ \alpha(O)=0.00233 \ 4; \ \alpha(P)=0.0001330 \ 19$ $\alpha(K)=0.245 \ 4; \ \alpha(L)=0.1097 \ 16; \ \alpha(M)=0.0259 \ 4$ $\alpha(N)=0.00583 \ 9; \ \alpha(O)=0.000728 \ 11; \ \alpha(P)=1.127 \times 10^{-5} \ 16$			
		512.464 <i>5</i> 795.327 <i>3</i>	1.58 <i>6</i> 100 <i>4</i>	548.520 265.664	6 ⁺ 4 ⁺	E2 E2+M1	+12 +18-4	0.01422 0.00500 8	$\begin{aligned} \alpha(K) = 0.01147 \ 16; \ \alpha(L) = 0.00214 \ 3; \ \alpha(M) = 0.000481 \ 7 \\ \alpha(N) = 0.0001100 \ 16; \ \alpha(O) = 1.520 \times 10^{-5} \ 22; \ \alpha(P) = 6.43 \times 10^{-7} \ 9 \\ \alpha(K) = 0.00416 \ 7; \ \alpha(L) = 0.000655 \ 10; \ \alpha(M) = 0.0001449 \ 22 \\ \alpha(N) = 3.33 \times 10^{-5} \ 5; \ \alpha(O) = 4.75 \times 10^{-6} \ 8; \ \alpha(P) = 2.39 \times 10^{-7} \ 4 \\ \text{Mult.}_{\delta}; \ \text{from } (n, n'\gamma). \ \text{From } \alpha(K) \text{exp} = 0.0043 \ 2 \ \text{and } 0.0033 \ 5, \gamma \ \text{is} \end{aligned}$			

	Adopted Levels, Gammas (continued)											
				$\gamma^{(1)}$	⁶² Dy) (continued)							
E_i (level) J_i^{π}	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. & $\delta^{\&b}$	α^{a} $I_{(\gamma+ce)}$	Comments						
						E2 with %M1<10 [2006Ap01, (n, γ), and 1982Fi15, (α ,2n γ)]. From $\gamma(\theta)$ and $\gamma\gamma(\theta)$, δ =-5.3 +2-126 [1980Hu06 from (n, γ)], δ =-2.4 + δ -47 (1972Do01 from Coul. ex.). From the results of 1967Ba34, 1972Do01 and 1980Hu06, -7.1< δ <-4.0. Additional information 8						
1060.991 4+	980.335 6	57 2	80.661 2+	E2	0.00317	$\alpha(K)=0.00266 \ 4; \ \alpha(L)=0.000398 \ 6; \ \alpha(M)=8.75\times10^{-5} \ 13$ $\alpha(N)=2.02\times10^{-5} \ 3; \ \alpha(O)=2.90\times10^{-6} \ 4;$ $\alpha(P)=1.536\times10^{-7} \ 22$ I _v : weighted average of: 59 3, from (n, γ); and 53 4.						
						from $(n,n'\gamma)$. From ¹⁶² Ho ε decay (67.0 min), I γ =84 7. Mult.: from (n,γ) (2006Ap01), α (K)exp=0.0027 1, which is interpreted as E2+<7%M1, supporting the assignment						
1148.232 2-	185.292 <i>1</i>	20.0 8	962.940 3+	E1	0.0595	B(E1)(W.u.)= $2.7 \times 10^{-5} + 7 - 5$ α (K)= 0.0501 7; α (L)= 0.00731 11; α (M)= 0.001598 23 α (N)= 0.000365 6; α (O)= 5.13×10^{-5} 8; α (P)= 2.51×10^{-6} 4						
						<i>I_γ</i> : weighted average of: 18.0 <i>I</i> 4, from ¹⁰² Tb β ⁻ decay; and 20.7 9, from (n,γ). δ: from $\gamma\gamma(\theta)$ in (n,γ), δ=−0.03 <i>I</i> 6 (1980Hu06), which is compatible with pure E1.						
	260.067 8	100 5	888.161 2+	El	0.0246	B(E1)(W.u.)= $5.0 \times 10^{-3} + 12 - 8$ α (K)= $0.0209 \ 3; \ \alpha$ (L)= $0.00297 \ 5; \ \alpha$ (M)= $0.000649 \ 9$ α (N)= $0.0001488 \ 21; \ \alpha$ (O)= $2.11 \times 10^{-5} \ 3; \ \alpha$ (P)= $1.085 \times 10^{-6} \ 16$ $\delta: \text{ from } \gamma(\theta) \text{ in } (\alpha, 2n\gamma), \text{ smaller } \delta = -0.15 + 30 - 10$ (1982Fi15) and from $\gamma\gamma(\theta) \text{ in } (n, \gamma),$						
	1067 55 10	0.70.2	80.661 2+	(F)1	1 11×10 ⁻³	$ δ = -0.04 < \delta < +0.06 (1980Hu06). From {}^{102}Dy(n,n'γ), δ(M2/E1) = +0.04 + 16-11. Additional information 9. α(K) = 0.00046 I4 a(L) = 0.0001252 I8; $						
	1007.33 10	0.70 2	60.001 Z	[E1]	1.11×10	$\alpha(\mathbf{N}) = 0.000946 \ 14, \ \alpha(\mathbf{L}) = 0.0001232 \ 18;$ $\alpha(\mathbf{M}) = 2.72 \times 10^{-5} \ 4$ $\alpha(\mathbf{N}) = 6.26 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) = 9.16 \times 10^{-7} \ 13;$ $\alpha(\mathbf{P}) = 5.28 \times 10^{-8} \ 8$ $\mathbf{B}(\mathbf{E1})(\mathbf{W}.\mathbf{u}) = 5.0 \times 10^{-9} \ + 13 - 8$						
1182.763 5+	121.774 2	0.17 <i>1</i>	1060.991 4+	E2(+M1) >1.7	1.325 20	$\alpha(K)=0.73$ 7; $\alpha(L)=0.46$ 5; $\alpha(M)=0.109$ 11 $\alpha(N)=0.0245$ 24; $\alpha(O)=0.0030$ 3; $\alpha(P)=3.4\times10^{-5}$ 6 δ : from $\alpha(K)$ exp in (n,γ) (2006Ap01). $\delta^{2}=1.4$ +8-4 from I γ and Alaga-rule considerations [1978Ge03 in (n,γ)].						

					Adop	oted Levels, Gam	<mark>mas</mark> (continue	ed)
						γ ⁽¹⁶² Dy) (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. <mark>&</mark>	$\delta^{\&b}$	α^{a}	Comments
1182.763	5+	219.823 1	2.47 12	962.940 3+	E2		0.1729	α (K)=0.1199 <i>17</i> ; α (L)=0.0410 <i>6</i> ; α (M)=0.00958 <i>14</i> α (N)=0.00217 <i>3</i> ; α (O)=0.000276 <i>4</i> ; α (P)=5.85×10 ⁻⁶ <i>9</i> I _{γ} : from 2006Ap01, (n, γ). From ¹⁶² Ho ε decay (67.0 m), I α =5.6.28
		634.246 2	19.0 6	548.520 6+	E2+M1	-7 +2-20	0.00853 19	$\alpha(K)=0.00701 \ 17; \ \alpha(L)=0.001184 \ 22; \ \alpha(M)=0.000264 \ 5 \\ \alpha(N)=6.06\times10^{-5} \ 11; \ \alpha(O)=8.52\times10^{-6} \ 17; \ \alpha(P)=4.00\times10^{-7} \ 10 \\ I_{\gamma}: \ from \ 2006Ap01, \ (n,\gamma). \ From \ ^{162}Ho \ \varepsilon \ decay \ (67.0 \ min), \\ I_{\gamma}=18.6 \ 10. \ Other: \ 28 \ 2, \ from \ (n,n'\gamma). \\ Mult.,\delta: \ from \ (n,n'\gamma). \ From \ \gamma\gamma(\theta) \ in \ (n,\gamma), \ \delta=+3.9 \ +41-15 \\ (1980Hu06). \\ Additional \ information \ 10. \end{cases}$
		917.092 2	100 6	265.664 4+	E2+M1	+50 +50-2	0.00365	α(K)=0.00306 5; α(L)=0.000464 7; α(M)=0.0001022 15 α(N)=2.35×10-5 4; α(O)=3.38×10-6 5; α(P)=1.762×10-7 25 Mult.,δ: from (n,n'γ). From γ(θ) and γγ(θ), δ<-62.7 or >+4.8 and δ<-2.7 or >+14.3, (1980Hu06,1977Ho11). So, δ<-62 or >+14. From (α,2nγ) (1982Fi15), α(K)exp=0.0039 6, which gives δ=1.5 +15-5. Additional information 11
1210.089	3-	149.100 2	4.4 1	1060.991 4+	E1		0.1059	$\alpha(\text{K})=0.0891 \ 13; \ \alpha(\text{L})=0.01321 \ 19; \ \alpha(\text{M})=0.00289 \ 4$ $\alpha(\text{N})=0.00060, \ 10; \ \alpha(\text{O})=0.18\times10^{-5} \ 13; \ \alpha(\text{P})=4.35\times10^{-6} \ 6$
		247.1479 9	14.4 <i>3</i>	962.940 3+	E1		0.0281	$\alpha(K)=0.0237 \ 4; \ \alpha(L)=0.00339 \ 5; \ \alpha(M)=0.000741 \ 11 \ \alpha(N)=0.0001699 \ 24; \ \alpha(O)=2.41\times10^{-5} \ 4; \ \alpha(P)=1.229\times10^{-6} \ 18 \ I_{\gamma}: \ from \ 2006Ap01 \ (n,\gamma). \ Others: \ 9.0 \ 15, \ from \ (n,n'\gamma); \ and \ 10 \ 2 \ from \ ^{162}Ho \ \varepsilon \ decay \ (67.0 \ min)$
		321.928 ^c 2	21 ^c 1	888.161 2+	E1		0.01444	$ α(K) = 0.01225 18; α(L) = 0.001724 25; α(M) = 0.000376 6 α(N) = 8.64 \times 10^{-5} 12; α(O) = 1.234 \times 10^{-5} 18; α(P) = 6.49 \times 10^{-7} 9 Ιγ: weighted average of 20.4 12, from (n,n'γ), and 25 3, from ^{162}Ho \varepsilon decay (67.0 min). From (n,γ), Iγ=21.5 5, but \gamma has two placements there. Iγ: from Iγ(321.9γ)/Iγ(1129.3γ) in ^{162}Ho \varepsilon decay (67.0 min) and Iγ(1129.6γ), Iγ=30 4. Thus, most, if not all, of the intensity in this peak is associated with this placement. $
		944.424 5	60 2	265.664 4+	E1+M2	-0.10 +3-5	0.00153 18	$\alpha(K)=0.00130 \ 15; \ \alpha(L)=0.000176 \ 22; \ \alpha(M)=3.8\times10^{-5} \ 5 \\ \alpha(N)=8.8\times10^{-6} \ 12; \ \alpha(O)=1.29\times10^{-6} \ 17; \ \alpha(P)=7.4\times10^{-8} \ 10 \\ I_{\gamma}: weighted average of: 59 \ 3, from (n,n'\gamma); 59 \ 3, from 162Ho \varepsilon \ decay \ (67.0 \ min); \ and \ 62 \ 3, from (n,\gamma). \ Other: \ 86 \ 18, from 162Tb \ \beta^{-} \ decay. \\ \delta: from (n,n'\gamma). \ From \ \gamma\gamma(\theta) \ in (n,\gamma), \ \delta(M2/E1)=-0.19 \\ + 14-15 \ (1980Hu06).$
		1129.419 6	100 3	80.661 2+	E1+M2	+0.05 +5-3	0.00102 7	$\alpha(K)=0.00087~6; \ \alpha(L)=0.000115~9; \ \alpha(M)=2.50\times10^{-5}~18$

						Ado	pted Levels, G	ammas (continued)
							$\gamma(^{162}\text{Dy})$	(continued)
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{&}	α^{a}	Comments
								α (N)=5.8×10 ⁻⁶ 5; α (O)=8.5×10 ⁻⁷ 7; α (P)=4.9×10 ⁻⁸ 4; α (IPF)=4.51×10 ⁻⁶ 7 δ : from (n,n' γ).
1275.772	1-	1195.092 7	100 8	80.661	2+	E1	9.23×10 ⁻⁴	B(E1)(W.u.)=0.0038 +10-7 α (K)=0.000772 11; α (L)=0.0001017 15; α (M)=2.20×10 ⁻⁵ 3 α (N)=5.09×10 ⁻⁶ 8; α (O)=7.45×10 ⁻⁷ 11; α (P)=4.32×10 ⁻⁸ 6; α (IPF)=2.17×10 ⁻⁵ 3 Mult., δ : from (n, γ) (1967Ba34), α (K)exp=0.0007 3, which is interpreted as E1 with \$(M2/E1)\$ 0.17
		1275.810 <i>18</i>	73.4 19	0.0	0+	E1	8.61×10 ⁻⁴	as E1 with $\sigma(M2/E1)<0.17$. B(E1)(W.u.)=0.0023 +6-4 $\alpha(K)=0.000688 \ 10; \ \alpha(L)=9.04\times10^{-5} \ 13; \ \alpha(M)=1.96\times10^{-5} \ 3$ $\alpha(N)=4.52\times10^{-6} \ 7; \ \alpha(O)=6.62\times10^{-7} \ 10; \ \alpha(P)=3.85\times10^{-8} \ 6; \ \alpha(IPF)=5.77\times10^{-5} \ 8$ B(E1)(W.u.) is computed from B(E1)↑=1.47×10 ⁻⁴ 25 in (γ,γ'). I _γ : from 2006Ap01, (n,γ). From ¹⁶² Tb β ⁻ decay, where coincidence data were used to get the singlet value, Iγ=52 14. Mult.: from (n,γ) (2006Ap01) and (α,2nγ) (1982Fi15), $\alpha(K)$ exp=0.00063 2 and 0.0002 L
1297.006	4-	86.918 <i>1</i>	0.42 3	1210.089	3-	[M1,E2]	4.1 6	2 and 0.0003 <i>T</i> . $\alpha(K)=2.29$ 73; $\alpha(L)=1.39$ 95; $\alpha(M)=0.33$ 24 $\alpha(N)=0.074$ 52; $\alpha(Q)=0.0002$ 50; $\alpha(R)=1.26\times10^{-4}$ 62
		114.245 5	5.9 4	1182.763	5+	E1	0.216	$\alpha(N)=0.074$ 32, $\alpha(O)=0.0092$ 39, $\alpha(P)=1.20\times 10^{-6}$ 02 $\alpha(K)=0.181$ 3; $\alpha(L)=0.0276$ 4; $\alpha(M)=0.00604$ 9 $\alpha(N)=0.001375$ 20: $\alpha(O)=0.000189$ 3: $\alpha(P)=8.51\times 10^{-6}$ 12
		236.008 4	23.5 11	1060.991	4+	E1	0.0316	$\alpha(K) = 0.0267 4; \ \alpha(L) = 0.00383 6; \ \alpha(M) = 0.000837 12$ $\alpha(N) = 0.000192 3; \ \alpha(O) = 2.72 \times 10^{-5} 4; \ \alpha(P) = 1.377 \times 10^{-6} 20$ $I_{\gamma}: \text{ from } 2006\text{Ap01 (n,\gamma)}. \text{ From (n,n'\gamma)}, I_{\gamma} = 23.6 15. \text{ From (n,\gamma)}, 1067R_{2}4 \text{ report } I_{\alpha} = 22.4 \text{ with } 1082R_{2}02 \text{ report } I_{\alpha} = 13.8 23$
		334.063 1	100 4	962.940	3+	E1	0.01319	$\alpha(K)=0.01119 \ 16; \ \alpha(L)=0.001572 \ 22; \ \alpha(M)=0.000343 \ 5$ $\alpha(N)=7.87\times10^{-5} \ 11; \ \alpha(O)=1.127\times10^{-5} \ 16; \ \alpha(P)=5.95\times10^{-7} \ 9$ Mult., δ : from $\alpha(K)$ exp=0.0076 27, γ is E1 [1967Ba34 from (n, γ)]. From $\gamma(\theta)$, the smaller $\delta(M2/E1)=+0.02 \ 6$ [1982Fi15 from $(\alpha,2n\gamma)$], which agrees. From (n,n' γ), 2002Go15 report both $\delta(M2/E1)=-0.01 \ 3$ and $+0.01 \ 4$. Additional information 12.
1324.465	6+	1031.36 <i>3</i> 141.73	2.8 <i>I</i> 1.0 <i>2</i>	265.664 1182.763	4 ⁺ 5 ⁺	[M1,E2]	0.83 6	$\begin{aligned} &\alpha(K) = 0.59 \ 16; \ \alpha(L) = 0.183 \ 74; \ \alpha(M) = 0.042 \ 19 \\ &\alpha(N) = 0.0096 \ 41; \ \alpha(O) = 0.00125 \ 44; \ \alpha(P) = 3.3 \times 10^{-5} \ 14 \\ I_{\gamma}: \ from \ I_{\gamma}(141)/I_{\gamma}(263) = 0.086 \ 13 \ in \ (n, \gamma) \ (1978Ge03). \ \gamma \ not \ reported \\ by \ 2006Ap01. \\ Mult.,\delta: \ from \ I_{\gamma}(141)/I_{\gamma}(263) \ in \ (n, \gamma) \ and \ Alaga-rule \ considerations, \\ 1978Ge03 \ deduce \ \delta = 0.67 \ 8. \\ Additional \ information \ 13. \end{aligned}$

From ENSDF

I.

γ ⁽¹⁶²Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	δ ^{&b}	α^{a}	Comments
1324.465	6+	263.472 1	11.2 2	1060.991	4+	E2		0.0966	$\alpha(K)=0.0703 \ 10; \ \alpha(L)=0.0203 \ 3; \ \alpha(M)=0.00470 \ 7$
		775.941 <i>3</i>	100 6	548.520	6+	E2(+M1)	>2.3	0.0056 4	α(N)=0.001067 15; α(O)=0.0001385 20; α(P)=3.57×10-6 5 α(K)=0.0047 4; α(L)=0.00073 4; α(M)=0.000162 9 α(N)=3.72×10-5 20; α(O)=5.3×10-6 3; α(P)=2.71×10-7 21 Mult.,δ: from (α,2nγ) (1982Fi15), α(K)exp=0.0035 5, which gives primarily E2. From γγ(θ) in (n,γ) (1980Hu06), δ<-2.3 or > +17.9. Additional information 14.
		1058.779 <i>12</i>	57.5 18	265.664	4+	E2		0.00271	$ \alpha(K)=0.00228 4; \alpha(L)=0.000335 5; \alpha(M)=7.35\times10^{-5} 11 \alpha(N)=1.695\times10^{-5} 24; \alpha(O)=2.45\times10^{-6} 4; \alpha(P)=1.315\times10^{-7} 19 Iγ: weighted average of: 53 4, in (n,n'γ); 59 2, in (n,γ); and 50 9, in 162Ho ε decay (67.0 min). From Iγ(776γ)/Iγ(1059γ) in (7Li,p4nγ), Iγ=45 5. From (61Ni,60Niγ), Iγ=68 8. Mult.δ: placement requires E2 but, from (α,2nγ), α(K)exp=0.0037 5, which gives M1 with δ<1.0.$
1357.928	3-	1092.256 6	72 5	265.664	4+	E1		1.06×10 ⁻³	α(K)=0.00097 I3; α(L)=0.0001200 I7; α(M)=2.60×10-5 4 α(N)=6.00×10-6 9; α(O)=8.78×10-7 I3; α(P)=5.07×10-8 7 Iγ: from (n,γ). From 162Tb β- decay, Iγ=46 I4. Mult.,δ: measurements are compatible with pure E1. From α(K)exp=0.0011 5, γ is E1 with δ<0.27 [1967Ba34 from (n,γ)]. From γγ(θ) and γ(θ), δ=-0.08 I2 and δ=-0.2 +5-6 [1980Hu06 from (n,γ) and 1977Ho11 from (n,n'γ)]. 2002Go15, in (n,n'γ), report δ=-0.07 4.
		1277.271 11	100.0 <i>19</i>	80.661	2+	E1		8.60×10 ⁻⁴	$\alpha(K)=0.000686 \ I0; \ \alpha(L)=9.02\times10^{-5} \ I3; \ \alpha(M)=1.95\times10^{-5} \ 3 \\ \alpha(N)=4.51\times10^{-6} \ 7; \ \alpha(O)=6.61\times10^{-7} \ I0; \ \alpha(P)=3.84\times10^{-8} \ 6; \\ \alpha(IPF)=5.84\times10^{-5} \ 9 \\ I_{\gamma}: \text{ value from } (n,\gamma). \ \gamma \text{ is a doublet in most studies.} \\ \text{Mult.: from } (n,\gamma) \ (1967Ba34) \ \text{and} \ (\alpha,2n\gamma) \ (1982Fi15), \\ \alpha(K)\exp=0.00056 \ 28 \ \text{and} \ 0.0003 \ I, \ \text{which gives E1 with} \\ \delta < 0.17 \ \text{but in both cases } \gamma \ \text{bas two placements} \end{cases}$
1375.08	10+	453.85 9	100	921.28	8+	[E2]		0.0196	B(E2)(W.u.)=350 +24-21 $\alpha(K)=0.01561 22; \alpha(L)=0.00309 5; \alpha(M)=0.000699 10$ $\alpha(N)=0.0001507 23; \alpha(O)=2.19\times10^{-5} 3; \alpha(P)=8.65\times10^{-7} 13$
1390.513	5-	180.41 329.524 2	0.14 4.13 <i>9</i>	1210.089 1060.991	3- 4+	[E1]		0.01364	$\alpha(K) = 0.01157 \ 17; \ \alpha(L) = 0.001626 \ 23; \ \alpha(M) = 0.000355 \ 5 \ \alpha(N) = 8.15 \times 10^{-5} \ 12; \ \alpha(O) = 1.165 \times 10^{-5} \ 17; \ \alpha(P) = 6.14 \times 10^{-7} \ 9 \ L_{\odot} \ from \ (n \ \gamma)$
		841.990 <i>4</i>	37.1 11	548.520	6+	E1		1.73×10^{-3}	$\alpha(K)=0.001479\ 21;\ \alpha(L)=0.000198\ 3;\ \alpha(M)=4.30\times10^{-5}\ 6\ \alpha(N)=9.90\times10^{-6}\ 14;\ \alpha(O)=1.444\times10^{-6}\ 21;\ \alpha(P)=8.22\times10^{-8}\ 12$

19

From ENSDF

	Adopted Levels, Gammas (continued)												
							γ (¹⁶² I	Dy) (continued)				
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	E_f J	J_f^{π}	Mult. ^{&}	δ ^{&b}	α^{a}	$I_{(\gamma+ce)}$	Comments			
1390.513	5-	1124.839 10	100 3	265.664 4	4+	E1	_	1.01×10 ⁻³		I _γ : weighted average of: 36.0 <i>14</i> , from ¹⁶² Ho ε decay (67.0 min); and 38.2 <i>15</i> , from (n,γ). Other: 60 5, from (n,n'γ). From γγ(θ) in (n,γ), δ=0.04 +38-30 (1980Hu06) if J(1390)=5. α (K)=0.000860 <i>12</i> ; α (L)=0.0001136 <i>16</i> ; α (M)=2.46×10 ⁻⁵ <i>4</i> α (N)=5.68×10 ⁻⁶ <i>8</i> ; α (O)=8.32×10 ⁻⁷ <i>12</i> ;			
1400.26	0+	512.0 2	8 4	888.161 2	2+	[E2]		0.01425		$\alpha(P)=4.81\times10^{-6} \ 7; \ \alpha(IPF)=3.93\times10^{-6} \ 6$ Mult., δ : from $\alpha(K)$ exp=0.0008 2 in (α ,2n γ), mult=E1. From $\gamma\gamma(\theta)$ in (n,γ), -0.94< δ <-0.09 if J=5 (1980Hu06). In ($n,n'\gamma$), δ =+0.05 5. Additional information 15. $\alpha(K)$ =0.01150 17; $\alpha(L)$ =0.00214 3; $\alpha(M)$ =0.000482 7			
		1319.60 6	100	80.661 2	2+	E2		1.77×10 ⁻³		α (N)=0.0001103 <i>16</i> ; α (O)=1.524×10 ⁻⁵ <i>22</i> ; α (P)=6.45×10 ⁻⁷ <i>9</i> α (K)=0.001476 <i>21</i> ; α (L)=0.000209 <i>3</i> ; α (M)=4.57×10 ⁻⁵ <i>7</i> α (N)=1.055×10 ⁻⁵ <i>15</i> ; α (O)=1.533×10 ⁻⁶ <i>22</i> ;			
1453.468	2+	1400.3 <i>3</i> 177.699 7	0.94 11	0.0 0 1275.772 1	0+ 1-	E0 [E1]		0.0664	0.052 4	$\alpha(P) = 8.53 \times 10^{-8} \ I2; \ \alpha(IPF) = 2.32 \times 10^{-5} \ 4$ $\alpha(K) = 0.0560 \ 8; \ \alpha(L) = 0.00818 \ I2; \ \alpha(M) = 0.00179 \ 3$ $\alpha(N) = 0.000409 \ 6; \ \alpha(O) = 5.73 \times 10^{-5} \ 8;$			
		392.485 10	1.0 1	1060.991 4	4+	E2		0.0292		$\alpha(P)=2.79\times10^{-6} 4$ $\alpha(K)=0.0229 4; \alpha(L)=0.00493 7; \alpha(M)=0.001122 16$ $\alpha(N)=0.000256 4; \alpha(O)=3.45\times10^{-5} 5;$ $\alpha(P)=1.246\times10^{-6} 18$			
		490.510 8	3.3 2	962.940 3	3+	E2(+M1)	≥4.1	0.0164 5		Mult.: from ¹⁶² Ho ε decay (evaluator's combination of 1961Ha23 and 1971Wo09), α (K)exp=0.022, which gives primarily E2. α (K)=0.0132 5; α (L)=0.00247 5; α (M)=0.000556 11			
		565.316 12	2.0 3	888.161 2	2+	[M1,E2]		0.0164 54		$\begin{aligned} &\alpha(N) = 0.000127 \ 3; \ \alpha(O) = 1.76 \times 10^{-5} \ 4; \\ &\alpha(P) = 7.4 \times 10^{-7} \ 3 \\ &\alpha(K) = 0.0137 \ 47; \ \alpha(L) = 0.0021 \ 5; \ \alpha(M) = 0.00046 \ 11 \\ &\alpha(N) = 0.000107 \ 25; \ \alpha(O) = 1.54 \times 10^{-5} \ 40; \end{aligned}$			
		1187.777 12	70 5	265.664 4	4+	E2		0.00215		$\alpha(P)=8.2\times10^{-7} 31$ $\alpha(K)=0.00181 3; \alpha(L)=0.000261 4;$ $\alpha(M)=5.71\times10^{-5} 8$			

From ENSDF

I.

						Adopted	Levels, Gam	mas (continu	ed)
						<u>2</u>	v(¹⁶² Dy) (con	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&b}	α^{a}	Comments
	_				<u> </u>				$\begin{aligned} \alpha(\text{N}) &= 1.318 \times 10^{-5} \ 19; \ \alpha(\text{O}) &= 1.91 \times 10^{-6} \ 3; \\ \alpha(\text{P}) &= 1.047 \times 10^{-7} \ 15; \ \alpha(\text{IPF}) &= 4.14 \times 10^{-6} \ 6 \\ \text{I}_{\gamma}: \ \text{from } (n,\gamma). \ \text{Others: } 60.7 \ 18, \ \text{from } {}^{162}\text{Ho} \ \varepsilon \ \text{decay} \\ (15.0 \ \text{min}); \ 72.0 \ 4, \ \text{from } (n,n'\gamma); \ \text{and } 84 \ 16, \ \text{from } {}^{162}\text{Tb} \ \beta^{-} \ \text{decay}. \end{aligned}$
1453.468	2+	1372.790 21	100 4	80.661	2+	M1+E2(+E0)	+0.40 15	0.00241 9	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00202 \ 8; \ \alpha(\mathbf{L}) = 0.000277 \ 10; \ \alpha(\mathbf{M}) = 6.04 \times 10^{-5} \\ &22 \\ &\alpha(\mathbf{N}) = 1.40 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 2.06 \times 10^{-6} \ 8; \\ &\alpha(\mathbf{P}) = 1.21 \times 10^{-7} \ 5; \ \alpha(\mathbf{IPF}) = 4.03 \times 10^{-5} \ 8 \\ &\text{Mult.: } 2002\text{Go15 report mult} = \mathbf{M1} + \mathbf{E2}. \ \text{From} \\ &\alpha(\mathbf{K}) \exp = 0.00230 \ \text{in} \ (\mathbf{n}, \gamma), \ 2006\text{Ap01 give mult} = \mathbf{M1}. \\ &\text{However, a } \Delta \mathbf{K} = 0 \ \text{transition such as this is expected} \\ &\text{to have an E0 contribution.} \\ &\delta: \ \text{from } 2002\text{Go15} \ (\mathbf{n}, \mathbf{n'} \gamma). \\ &\alpha: \ \text{value computed using the listed mult and } \delta. \ \text{No} \\ &\text{contribution from a possible E0 contribution is} \\ &\text{included.} \end{aligned}$
		1453.77 <i>21</i>	3.4 14	0.0	0+	[E2]		1.50×10 ⁻³	$\begin{aligned} &\alpha(\text{K})=0.001227 \ 18; \ \alpha(\text{L})=0.0001715 \ 24; \\ &\alpha(\text{M})=3.74\times10^{-5} \ 6 \\ &\alpha(\text{N})=8.64\times10^{-6} \ 13; \ \alpha(\text{O})=1.259\times10^{-6} \ 18; \\ &\alpha(\text{P})=7.09\times10^{-8} \ 10; \ \alpha(\text{IPF})=5.83\times10^{-5} \ 9 \\ \text{E}_{\gamma}: \ \text{from} \ ^{162}\text{Ho} \ (67.0 \ \text{min}) \ \varepsilon \ \text{decay.} \ \gamma \ \text{not reported by} \\ &2006\text{Ap01 in} \ (n,\gamma). \\ \text{I}_{\gamma}: \ \text{from} \ I\gamma(1453.7\gamma)/\text{I}\gamma(1372.7\gamma) \ \text{in} \ ^{162}\text{Ho} \ (67.0 \end{aligned}$
1485.671	5-	95.158 <i>1</i>	2.0 2	1390.513	5-	[M1,E2]		3.0 3	min) ε decay and 1 γ (1372.7 γ). α (K)=1.80 53; α (L)=0.94 60; α (M)=0.22 15 α (N)=0.050 33; α (O)=0.0062 37; α (P)=9.9×10 ⁻⁵ 47 E _{γ} : from (n, γ). I _{γ} : from ¹⁶² Ho ε decay (67.0 min). Other: 1.7 1, from (n, γ).
		161.209 <i>5</i>	0.29 2	1324.465	6+	[E1]		0.0860	B(E1)(W.u.)= $5.02 \times 10^{-8} 47$ $\alpha(K)=0.0724 11; \alpha(L)=0.01067 15; \alpha(M)=0.00233 4$ $\alpha(N)=0.000533 8; \alpha(O)=7.44 \times 10^{-5} 11;$ $\alpha(P)=3.57 \times 10^{-6} 5$ E_{γ} : from (n, γ). I _{γ} : from ¹⁶² Ho ε decay (67.0 min). Other: 0.52 8, from (n α).
		188.663 <i>3</i>	3.8 5	1297.006	4-	M1+E2	0.89 <i>19</i>	0.350 14	B(M1)(W.u.)= $2.2 \times 10^{-5} + 6^{-5}$; B(E2)(W.u.)= $0.24 + 6^{-7}$ α (K)= $0.271 \ 18$; α (L)= $0.061 \ 4$; α (M)= $0.0139 \ 9$ α (N)= $0.00317 \ 19$; α (O)= $0.000428 \ 18$; α (P)= 1.56×10^{-5}

					Adopted Lev	rels, Gammas (continued)
					$\gamma(^{16}$	² Dy) (continued)
E _i (level)	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	E_f	J_f^{π} Mult. &	α^{a}	Comments
						I4 E_{γ} : from (n,γ). I_{γ} : from ¹⁶² Ho ε decay (67.0 min). Other: 0.94 8, from (n,γ).Mult.: from ¹⁶² Ho ε decay (67.0 min) (evaluator's combination of 1961Ha23 and 1971Wo09), α (K)exp=0.35, which gives M1. δ : from α (K)exp in (n, γ) (2006Ap01).
1485.671	275.582 4	3.05 8	1210.089	3 ⁻ E2	0.0839	B(E2)(W.u.)=0.0661 43 $\alpha(K)=0.0617 9; \ \alpha(L)=0.01715 24; \ \alpha(M)=0.00397 6$ $\alpha(N)=0.000900 \ 13; \ \alpha(O)=0.0001173 \ 17; \ \alpha(P)=3.16\times10^{-6} 5$ E _y : from (n,y). E _y : from (n,y). E _y : from (n,y).
	302.909 ^c 2	1.26 ^{<i>c</i>} 3	1182.763	5 ⁺ E1	0.01679	By, y. from the decay (67.0 min). From (n, γ), $\gamma = 5.05$ Fo. B(E1)(W.u.)=3.30×10 ⁻⁸ 21 α (K)=0.01423 20; α (L)=0.00201 3; α (M)=0.000439 7 α (N)=0.0001007 14; α (O)=1.437×10 ⁻⁵ 21; α (P)=7.51×10 ⁻⁷ 11 E _{γ} : from (n, γ). I _{γ} : from ¹⁶² Ho ε decay (67.0 min). Other: 1.42 6, from (n, γ). Mult.: from ¹⁶² Ho ε decay (67.0 min) (evaluator's combination of 1961Ha23 and 1971Wo09), α (K)exp=0.025, which gives primarily E1.
	424.676 <i>4</i>	1.51 8	1060.991	4+ [E1]	0.00745	B(E1)(W.u.)=1.44×10 ⁻⁸ <i>12</i> α (K)=0.00633 <i>9</i> ; α (L)=0.000877 <i>13</i> ; α (M)=0.000191 <i>3</i> α (N)=4.40×10 ⁻⁵ <i>7</i> ; α (O)=6.33×10 ⁻⁶ <i>9</i> ; α (P)=3.42×10 ⁻⁷ <i>5</i> E _{γ} : from (n, γ). I _{γ} : from ¹⁶² Ho ε decay (67.0 min). Other: 1.80 <i>7</i> , from (n, γ).
	937.144 7	43.7 8	548.520	5 ⁺ E1	1.41×10 ⁻³	 B(E1)(W.u.)=3.85×10⁻⁸ +26-23 α(K)=0.001205 17; α(L)=0.0001604 23; α(M)=3.48×10⁻⁵ 5 α(N)=8.03×10⁻⁶ 12; α(O)=1.172×10⁻⁶ 17; α(P)=6.72×10⁻⁸ 10 E_γ: from (n,γ). I_γ: weighted average of: 40 3, from (n,n'γ); 44.0 9, from ¹⁶²Ho ε decay (67.0 min); and 45 3, from (n,γ). Mult.: from ¹⁶²Ho ε decay (67.0 min) (evaluator's combination of 1961Jo10 and 1971Wo09) and (α,2nγ) (1982Fi15), α(K)exp=0.016 and 0.0014 4, respectively, which give E1. Additional information 16.
	1219.98 <i>3</i>	100 3	265.664	↓ ⁺ Ε1	9.01×10 ⁻⁴	B(E1)(W.u.)=4.00×10 ⁻⁸ +25-23 α(K)=0.000744 11; α(L)=9.79×10 ⁻⁵ 14; α(M)=2.12×10 ⁻⁵ 3 α(N)=4.90×10 ⁻⁶ 7; α(O)=7.17×10 ⁻⁷ 10; α(P)=4.16×10 ⁻⁸ 6; α(IPF)=3.19×10 ⁻⁵ 5 E _γ : from (n,γ). Mult.,δ: from (n,γ) (1967Ba34) and ¹⁶² Ho ε decay (67.0 min) (evaluator's combination of 1961Jo10 and 1971Wo09), α(K)exp=0.0006 3 and 0.009,

 $^{162}_{66}\mathrm{Dy}_{96}$ -22

Т

	Adopted Levels, Gammas (continued)											
							γ (¹⁶² I	Dy) (continued	<u>))</u>			
E _i (level)	\mathbf{J}_i^{π}	Ε _γ †‡#	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ ^{&b}	α^{a}	Comments			
1490.39	7+	307.7 2	25 3	1182.763	5+	[E2]		0.0597	interpretation of the former is E1 with $\delta < 0.17$ and from $\gamma\gamma(\theta)$ in (n,γ) , $\delta = -0.31 + 23 - 40$ (1980Hu06). Adopted $\delta \le 0.18$. $\alpha(K) = 0.0450 7$; $\alpha(L) = 0.01145 17$; $\alpha(M) = 0.00263 4$ $\alpha(N) = 0.000598 9$; $\alpha(O) = 7.89 \times 10^{-5} 12$; $\alpha(P) = 2.35 \times 10^{-6} 4$ L : from $(\alpha, 2n\alpha)$ Other 16.2 from $(7 \text{ Lindra)}$; and 30 from			
		569.3 1	16 2	921.28	8+	[M1,E2]		0.0161 53	I_{γ} . from (α ,21 γ). Other: 10.2 from (E,p4 $n\gamma$), and 30, from $I_{\gamma}(307\gamma)/I_{\gamma}(941\gamma)$ in (162 Dy, 162 Dy' γ). α (K)=0.0135 47; α (L)=0.0021 5; α (M)=0.00046 11 α (N)=0.000105 25; α (O)=1.51×10 ⁻⁵ 39; α (P)=8.0×10 ⁻⁷ 30 I_{γ} : from (α ,2n γ). Other: 19.2, from $I_{\gamma}(569\gamma)/I_{\gamma}(941\gamma)$ in			
		941.9 <i>1</i>	100 4	548.520	6+	E2(+M1)	>1.2	0.0040 6	$(^{162}\text{Dy}, ^{162}\text{Dy'}\gamma).$ $\alpha(\text{K})=0.0034 5; \alpha(\text{L})=0.00049 6; \alpha(\text{M})=0.000109 13$ $\alpha(\text{N})=2.5\times10^{-5} 3; \alpha(\text{O})=3.6\times10^{-6} 5; \alpha(\text{P})=2.0\times10^{-7} 3$			
1518.426	5-	160.489 4	0.62 4	1357.928	3-	[E2]		0.499	Mult., δ : from 1982F115, (α ,2n γ). α (K)=0.304 5; α (L)=0.1500 21; α (M)=0.0355 5			
		457.49 <i>4</i>	0.15 4	1060.991	4+	[E1]		0.00628	$\alpha(N)=0.00799\ I2;\ \alpha(O)=0.000991\ I4;\ \alpha(P)=1.376\times10^{-5}\ 20$ $\alpha(K)=0.00534\ 8;\ \alpha(L)=0.000737\ I1;\ \alpha(M)=0.0001605\ 23$ $\alpha(N)=3.69\times10^{-5}\ 6;\ \alpha(O)=5.32\times10^{-6}\ 8;\ \alpha(P)=2.90\times10^{-7}\ 4$			
		969.908 6	41.9 <i>15</i>	548.520	6+	E1		1.32×10 ⁻³	$\alpha(K)=0.001130 \ I6; \ \alpha(L)=0.0001501 \ 21; \ \alpha(M)=3.26\times10^{-5} \ 5 \ \alpha(N)=7.51\times10^{-6} \ I1; \ \alpha(O)=1.097\times10^{-6} \ I6; \ \alpha(P)=6.30\times10^{-8} \ 9 \ I_{\gamma}: from \ 2006Ap01 \ (n,\gamma). From \ (\alpha,2n\gamma), \ 2006Ap01 \ report \ I_{\gamma}=110 \ 45.$ $\delta: from \ \gamma\gamma(\theta) \ in \ (n,\gamma), \ \delta=0.24 \ +39-21 \ (1980Hu06), \ if \ I(1518)=5$			
		1252.74 3	100 8	265.664	4+	E1		8.76×10 ⁻⁴	Additional information 17. $\alpha(K)=0.000710 \ 10; \ \alpha(L)=9.34\times10^{-5} \ 13; \ \alpha(M)=2.02\times10^{-5} \ 3$ $\alpha(N)=4.67\times10^{-6} \ 7; \ \alpha(O)=6.84\times10^{-7} \ 10; \ \alpha(P)=3.97\times10^{-8} \ 6; \ \alpha(IPF)=4.68\times10^{-5} \ 7$ Mult., δ : from (α ,2n γ) (1982Fi15), $\alpha(K)$ exp=0.0003 <i>1</i> , which gives E1.			
1530.127	6-	139.607 <i>5</i> 233.6 <i>1</i>	16 5	1390.513 1297.006	5- 4-	[E2]		0.1419	α (K)=0.1002 <i>14</i> ; α (L)=0.0323 <i>5</i> ; α (M)=0.00752 <i>11</i> α (N)=0.001701 <i>24</i> ; α (O)=0.000218 <i>3</i> ; α (P)=4.95×10 ⁻⁶ <i>7</i> E _{γ} : placed here only in (α ,2n γ) and (n,n' γ).			
		347.52 ^c 10	<100 ^C	1182.763	5+	[E1]		0.01198				

Т

From ENSDF

γ ⁽¹⁶²Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	δ ^{&b}	α^{a}	Comments
1535.664	4+	238.673 6	0.12 2	1297.006 4-	[E1]		0.0307	$\alpha(K)=0.0260$ 4; $\alpha(L)=0.00372$ 6; $\alpha(M)=0.000813$ 12
								$\alpha(N)=0.000186 3; \alpha(O)=2.64\times10^{-5} 4; \alpha(P)=1.339\times10^{-6} 19$
		352.897 6	0.90 16	1182.763 5+	E2(+M1)	>1.3	0.046 7	$\alpha(K)=0.036\ 6;\ \alpha(L)=0.0074\ 4;\ \alpha(M)=0.00168\ 7$
								α (N)=0.000383 17; α (O)=5.2×10 ⁻⁵ 4; α (P)=2.0×10 ⁻⁶ 4
		474.676 <i>4</i>	9.0 6	1060.991 4+	M1+E2	1.64 13	0.0219 7	$\alpha(K)=0.0179\ 6;\ \alpha(L)=0.00307\ 7;\ \alpha(M)=0.000685\ 14$
		570 704 1	42 5 10	0(2.040.2+		2.0	0.0112.6	$\alpha(N)=0.000157 4; \alpha(O)=2.21\times10^{-5} 5; \alpha(P)=1.04\times10^{-6} 4$
		572.724 1	43.5 18	962.940 31	E2(+M1)	>2.8	0.0113 6	$\alpha(\mathbf{K}) = 0.0093 \ 6; \ \alpha(\mathbf{L}) = 0.00160 \ 6; \ \alpha(\mathbf{M}) = 0.000358 \ 13$
		647 502 2	100.2	888 161 2+	F2		0.00797	$\alpha(N)=8.2\times10^{-5}$ 3; $\alpha(O)=1.15\times10^{-5}$ 5; $\alpha(P)=5.3\times10^{-7}$ 4 B(F2)(Wu)=1.15.35
		047.302.2	100 2	888.101 2	62		0.00797	$\alpha(K) = 0.00655 \ 10^{\circ} \alpha(L) = 0.001105 \ 16^{\circ} \alpha(M) = 0.000246 \ 4$
								$\alpha(N) = 5.65 \times 10^{-5} 8$; $\alpha(O) = 7.95 \times 10^{-6} 12$; $\alpha(P) = 3.73 \times 10^{-7} 6$
								B(E2)(W.u.) value is that reported by 2001Wu05, from
								$(^{162}\text{Dy}, ^{162}\text{Dy}'\gamma).$
		987.15 22	1.0 4	548.520 6+	(E2)		0.00313	$\alpha(K)=0.00263 4; \alpha(L)=0.000392 6; \alpha(M)=8.62\times10^{-5} 12$
								$\alpha(N)=1.98\times10^{-5}$ 3; $\alpha(O)=2.86\times10^{-6}$ 4; $\alpha(P)=1.515\times10^{-7}$ 22
1570.912	3-	212.983 <i>1</i>	59 <i>1</i>	1357.928 3-	M1+E2	0.47 7	0.269 6	$\alpha(K)=0.221$ 6; $\alpha(L)=0.0371$ 8; $\alpha(M)=0.00826$ 19
								α (N)=0.00190 4; α (O)=0.000270 5; α (P)=1.34×10 ⁻⁵ 5
		295.141 <i>1</i>	100 2	1275.772 1-	(E2)		0.0678	$\alpha(K)=0.0506\ 7;\ \alpha(L)=0.01331\ 19;\ \alpha(M)=0.00307\ 5$
		260 824 2	251	1210 080 2-	M1(+E2)	-0.64	0.065.5	$\alpha(N)=0.000697 \ I0; \ \alpha(O)=9.15\times10^{-5} \ I3; \ \alpha(P)=2.63\times10^{-6} \ 4$
		360.824 3	2.5 1	1210.089 3	MI(+E2)	<0.64	0.065 5	$\alpha(\mathbf{K}) = 0.054 \ 3; \ \alpha(\mathbf{L}) = 0.0081 \ 3; \ \alpha(\mathbf{M}) = 0.00179 \ 0$
		422 692 9	354	1148 232 2-	F2		0.0238	$\alpha(\mathbf{N})=0.000412$ 14; $\alpha(\mathbf{O})=0.0\times10^{-5}$ 5; $\alpha(\mathbf{P})=5.5\times10^{-5}$ 5 $\alpha(\mathbf{K})=0.0188$ 3; $\alpha(\mathbf{L})=0.00387$ 6; $\alpha(\mathbf{M})=0.000878$ 13
		422.072 7	5.5 4	1140.252 2			0.0250	$\alpha(\mathbf{N})=0.000200 \ 3^{\circ} \ \alpha(\mathbf{\Omega})=2.73\times10^{-5} \ 4^{\circ} \ \alpha(\mathbf{P})=1.033\times10^{-6} \ 15$
		682.77.8	0.6.3	888.161 2+	[E1]		0.00263	$\alpha(K) = 0.0022542; \alpha(L) = 0.0003045; \alpha(M) = 6.60 \times 10^{-5} 10$
		002.77 0	0.0 5	000.101 2	[21]		0.00205	$\alpha(N) = 1.521 \times 10^{-5} 22; \ \alpha(O) = 2.21 \times 10^{-6} 3; \ \alpha(P) = 1.242 \times 10^{-7} 18$
1574.293	4^{+}	120.819 6	0.21 4	1453.468 2+	[E2]		1.357	$\alpha(K)=0.683 \ 10; \ \alpha(L)=0.519 \ 8; \ \alpha(M)=0.1237 \ 18$
								$\alpha(N)=0.0278$ 4; $\alpha(O)=0.00338$ 5; $\alpha(P)=2.90\times10^{-5}$ 4
		216.365 13	0.25 3	1357.928 3-	[E1]		0.0396	$\alpha(K)=0.0334$ 5; $\alpha(L)=0.00482$ 7; $\alpha(M)=0.001054$ 15
								$\alpha(N)=0.000241 4; \alpha(O)=3.41\times10^{-5} 5; \alpha(P)=1.707\times10^{-6} 24$
		277.285 12	0.20 3	1297.006 4-	[E1]		0.0210	$\alpha(K)=0.01774\ 25;\ \alpha(L)=0.00252\ 4;\ \alpha(M)=0.000550\ 8$
		264 212 8	0.40.2	1010 000 2-	[[]]1]		0.01070	$\alpha(N)=0.0001261 \ 18; \ \alpha(O)=1.80\times 10^{-5} \ 3; \ \alpha(P)=9.28\times 10^{-7} \ 13$
		364.212 8	0.48 3	1210.089 3	[E1]		0.01070	$\alpha(\mathbf{K}) = 0.00908 \ 13; \ \alpha(\mathbf{L}) = 0.0012 \ 70 \ 18; \ \alpha(\mathbf{M}) = 0.0002 \ 7 \ 4$
		301 541 14	0.92.8	1182 763 5+	[M1 E2]		0.043.14	$\alpha(\mathbf{K}) = 0.35 \times 10^{-5} \text{ y}; \ \alpha(\mathbf{C}) = 9.12 \times 10^{-5} \text{ J}; \ \alpha(\mathbf{F}) = 4.80 \times 10^{-5} \text{ J}; \ \alpha(\mathbf{K}) = 0.035 \text{ J}; \ \alpha(\mathbf{L}) = 0.0059 \text{ Q}; \ \alpha(\mathbf{M}) = 0.00130 \text{ J}; \ \alpha(\mathbf{K}) = 0.00130 \text{ J}; \\alpha(\mathbf{K}) = 0.00130 \text{ J}; \\alpha(\mathbf$
		591.541 14	0.92 0	1102.705 5	[1011,122]		0.045 14	$\alpha(\mathbf{N}) = 0.0030 5; \alpha(\mathbf{\Omega}) = 4.3 \times 10^{-5} 8; \alpha(\mathbf{P}) = 2.08 \times 10^{-6} 83$
		513.314 8	2.1 1	1060.991 4+	[M1,E2]		0.0210 69	$\alpha(K)=0.0175\ 61;\ \alpha(L)=0.0027\ 6;\ \alpha(M)=0.00060\ 13$
					د , - ا			$\alpha(N)=0.00014 \ 3; \ \alpha(O)=2.0\times10^{-5} \ 5; \ \alpha(P)=1.04\times10^{-6} \ 40$
		611.23 5	0.50 8	962.940 3+	[M1,E2]		0.0135 44	$\alpha(K)=0.0113 \ 39; \ \alpha(L)=0.0017 \ 5; \ \alpha(M)=0.00038 \ 9$
								$\alpha(N)=8.7\times10^{-5}\ 21;\ \alpha(O)=1.25\times10^{-5}\ 33;\ \alpha(P)=6.7\times10^{-7}\ 25$

$\gamma(^{162}\text{Dy})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments
1574.293	4+	686.15 6	1.2 3	888.161 2+	[E2]		0.00695	$\alpha(K)=0.00574 \ 8; \ \alpha(L)=0.000948 \ 14; \ \alpha(M)=0.000211 \ 3 \ \alpha(N)=4.84\times10^{-5} \ 7; \ \alpha(O)=6.84\times10^{-6} \ 10; \ \alpha(P)=3.28\times10^{-7} \ 5$
		1025.753 14	20.8 8	548.520 6+	E2		0.00289	$\alpha(K)=0.00243 \ 4; \ \alpha(L)=0.000359 \ 5; \ \alpha(M)=7.90\times10^{-5} \ 11 \ \alpha(N)=1.82\times10^{-5} \ 3; \ \alpha(Q)=2.62\times10^{-6} \ 4; \ \alpha(P)=1.401\times10^{-7} \ 20$
		1308.627 15	100 8	265.664 4+	M1(+E2)	+0.04 +8-10	0.00282 5	$\alpha(K) = 0.00238 \ 4; \ \alpha(L) = 0.000326 \ 5; \ \alpha(M) = 7.10 \times 10^{-5} \ 11$ $\alpha(N) = 1.643 \times 10^{-5} \ 24; \ \alpha(O) = 2.42 \times 10^{-6} \ 4; \ \alpha(P) = 1.426 \times 10^{-7}$
1575.623	6-	89.98 10	102 3	1485.671 5-	M1+E2	0.53 3	3.42 6	22; $\alpha(\text{IPF})=2.44\times10^{-3}$ 4 $\alpha(\text{K})=2.45$ 5; $\alpha(\text{L})=0.75$ 4; $\alpha(\text{M})=0.174$ 8 $\alpha(\text{N})=0.0394$ 18; $\alpha(\text{O})=0.00514$ 21; $\alpha(\text{P})=0.000146$ 3 $\text{E}_{\gamma},\text{I}_{\gamma}$: from ¹⁶² Ho ε decay (67.0 min).
		251.10 8	11 <i>3</i>	1324.465 6+	[E1]		0.0270	$\alpha(K)=0.0228 \ 4; \ \alpha(L)=0.00326 \ 5; \ \alpha(M)=0.000711 \ 10 \ \alpha(N)=0.0001630 \ 23; \ \alpha(O)=2.31\times10^{-5} \ 4; \ \alpha(P)=1.182\times10^{-6} \ 17$
		278.49 ^c 12	≤53 ^C	1297.006 4-				$E_{\gamma}I_{\gamma}$: from ¹⁶² Ho ε decay (67.0 min).
		392.86 4	100 3	1182.763 5+	[E1]		0.00894	$\alpha'(K) = 0.00759 \ 11; \ \alpha(L) = 0.001056 \ 15; \ \alpha(M) = 0.000230 \ 4 \ \alpha(N) = 5.29 \times 10^{-5} \ 8; \ \alpha(Q) = 7.61 \times 10^{-6} \ 11; \ \alpha(P) = 4.08 \times 10^{-7} \ 6$
								E_{y} : from ¹⁶² Ho ε decay (67.0 min).
		1026 03 20	27.3	548 520 6+				F. J.: from 162 Ho. c. decay. (67.0 min)
		1310.05 10	27 J	$265 664 4^+$				$E_{\gamma,i\gamma}$. from ¹⁶² Ho c decay (67.0 min).
1634 415	5+	98 753 1	40 5	$1535\ 664\ 4^+$	$M1 \pm F2$	0 50 4	2 55	$\alpha(K) = 1.90 \ \text{α} \cdot \alpha(L) = 0.51 \ \text{α} \cdot \alpha(M) = 0.116 \ 7$
1054.415	5	<i>J</i> 0.7 <i>33</i> 1	1/1	1555.004 4	1411 1.2	0.50 4	2.35	$\alpha(N) = 0.0264 \ 15: \ \alpha(O) = 0.00350 \ 17: \ \alpha(P) = 0.000114 \ 3$
		309.952.5	1.6.2	1324.465 6+	[M1.E2]		0.081 23	$\alpha(K) = 0.066 \ 22: \ \alpha(L) = 0.0119 \ 8: \ \alpha(M) = 0.00266 \ 11$
		507.752 5	1.0 2	1521.105 0	[[[[]]]]		0.001 20	$\alpha(N) = 0.00061.3; \alpha(O) = 8.5 \times 10^{-5}.9; \alpha(P) = 3.8 \times 10^{-6}.16$
		337,406,9	0.45 9	1297.006 4-	[E1]		0.01288	$\alpha(K) = 0.01092$ 16: $\alpha(L) = 0.001533$ 22: $\alpha(M) = 0.000334$ 5
		00711007	0110 2	12//1000	[21]		0.01200	$\alpha(N) = 7.68 \times 10^{-5} \ 11^{\circ} \ \alpha(O) = 1.099 \times 10^{-5} \ 16^{\circ} \ \alpha(P) = 5.81 \times 10^{-7} \ 9$
		451.649.2	20.2	1182.763 5+	$E_{2}(+M_{1})$	>1.8	0.0221.23	$\alpha(K) = 0.0178 \ 20; \ \alpha(L) = 0.00332 \ 19; \ \alpha(M) = 0.00075 \ 4$
		10110192	202	11021/00 0	22(1111)	, 110	010221 20	$\alpha(N) = 0.000171.9; \alpha(O) = 2.36 \times 10^{-5}.15; \alpha(P) = 1.01 \times 10^{-6}.14$
		573.422.2	77.7 21	1060.991 4+	$E_{2}(+M_{1})$	>2.2	0.0116 9	$\alpha(K) = 0.0095 \ 8; \ \alpha(L) = 0.00163 \ 9; \ \alpha(M) = 0.000363 \ 18$
					()			$\alpha(N) = 8.3 \times 10^{-5} 5; \alpha(O) = 1.17 \times 10^{-5} 7; \alpha(P) = 5.4 \times 10^{-7} 6$
		671.475 2	100 <i>3</i>	962.940 3+	E2		0.00731	$\alpha(K) = 0.00603 \ 9; \ \alpha(L) = 0.001003 \ 14; \ \alpha(M) = 0.000223 \ 4$
								$\alpha(N) = 5.13 \times 10^{-5} 8$; $\alpha(O) = 7.23 \times 10^{-6} 11$; $\alpha(P) = 3.44 \times 10^{-7} 5$
1637.196	1-	279.266 14	1.2 3	1357.928 3-	[E2]		0.0805	$\alpha(K)=0.0594$ 9; $\alpha(L)=0.01633$ 23; $\alpha(M)=0.00377$ 6
								$\alpha(N)=0.000856\ 12;\ \alpha(O)=0.0001118\ 16;\ \alpha(P)=3.05\times10^{-6}\ 5$
		361.419 2	6.4 8	1275.772 1-	[M1,E2]		0.053 16	$\alpha(K)=0.043$ 15; $\alpha(L)=0.0074$ 10; $\alpha(M)=0.00166$ 18
								$\alpha(N)=0.00038$ 5; $\alpha(O)=5.4\times10^{-5}$ 9; $\alpha(P)=2.6\times10^{-6}$ 11
		427.110 2	14.7 8	1210.089 3-	E2		0.0231	$\alpha(K)=0.0183 3; \alpha(L)=0.00375 6; \alpha(M)=0.000849 12$
								$\alpha(N)=0.000194 3; \alpha(O)=2.64\times10^{-5} 4; \alpha(P)=1.006\times10^{-6} 14$
		488.963 5	15.4 12	1148.232 2-	E2+M1		0.0238 77	$\alpha(K)=0.0198\ 69;\ \alpha(L)=0.0031\ 7;\ \alpha(M)=0.00069\ 14$
								$\alpha(N)=0.00016 4; \alpha(O)=2.3\times10^{-5} 6; \alpha(P)=1.17\times10^{-6} 46$

					Adopt	ed Levels, (Gammas (con	tinued)	
						γ (¹⁶² Dy)	(continued)		
E _i (level)	\mathbf{J}_i^{π}	Ε _γ †‡#	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.&	$\delta^{\&b}$	α^{a}	I _(γ+ce)	Comments
1637.196	1-	1556.50 7	100 14	80.661 2+	E1		8.12×10 ⁻⁴		$\alpha(K)=0.000489\ 7;\ \alpha(L)=6.38\times10^{-5}\ 9;\alpha(M)=1.382\times10^{-5}\ 20\alpha(N)=3.19\times10^{-6}\ 5;\ \alpha(O)=4.68\times10^{-7}\ 7;\alpha(P)=2\ 74\times10^{-8}\ 4;\ \alpha(IPE)=0\ 000242\ 4$
1637.92	7-	1637.32 22 716.3 <i>1</i>	24 2 35 5	$0.0 0^+ 921.28 8^+$					I_{γ} : from $(n, n'\gamma)$. γ not reported in (n, γ) . E_{γ} , I_{γ} : from $(\alpha, 2n\gamma)$.
		1088.6 2	100 10	548.520 6+	E1		1.07×10 ⁻³		$\alpha(K)=0.000913 \ I3; \ \alpha(L)=0.0001207 \ I7; \alpha(M)=2.62\times10^{-5} \ 4 \alpha(N)=6.04\times10^{-6} \ 9; \ \alpha(O)=8.83\times10^{-7} \ I3; \alpha(P)=5.10\times10^{-8} \ 8 Mult.: from 1982Fi15 (\alpha,2n\gamma), \ \alpha(K)exp=0.0004 I, which gives mult=E1.$
1666.27	0^{+}	1585.6 [°] 2	с	80.661 2+					Additional information 21. I_{ν} : γ is doubly placed in $(n,n'\gamma)$.
1669.085	4-	98.175 6	0.17 6	1570.912 3	[M1,E2]		2.71 20		$\alpha(K) = 1.65 \ 48; \ \alpha(L) = 0.82 \ 51; \ \alpha(M) = 0.19 \ 13$ $\alpha(N) = 0.044 \ 28; \ \alpha(O) = 0.0055 \ 32; \ \alpha(P) = 9.1 \times 10^{-5}$
		150.653 5	15.3 4	1518.426 5-	M1+E2	0.92 9	0.689 12		$\alpha(K)=0.509 \ 16; \ \alpha(L)=0.140 \ 6; \ \alpha(M)=0.0323 \ 14$ $\alpha(N)=0.0073 \ 4; \ \alpha(O)=0.00096 \ 4;$ $\alpha(R)=2 \ 87 \times 10^{-5} \ 13$
		278.572 1	10.4 2	1390.513 5-	M1(+E2)	<0.39	0.134 5		$\alpha(I) = 2.87 \times 10^{-13}$ $\alpha(K) = 0.113 \ 4; \ \alpha(L) = 0.01676 \ 24; \ \alpha(M) = 0.00369$ $\alpha(N) = 0.000852 \ 12; \ \alpha(O) = 0.0001240 \ 19;$ $\alpha(R) = 6.0 \times 10^{-6} \ 2$
		311.157 <i>1</i>	100 5	1357.928 3-	M1		0.1024		$\alpha(\mathbf{K}) = 0.0855 \ 13; \ \alpha(\mathbf{L}) = 0.01245 \ 18; \alpha(\mathbf{M}) = 0.00273 \ 4 \alpha(\mathbf{N}) = 0.000631 \ 9; \ \alpha(\mathbf{O}) = 9.26 \times 10^{-5} \ 13; $
		372.074 3	4.6 1	1297.006 4-	M1(+E2)	<0.48	0.061 3		$\alpha(P)=5.34\times10^{-6} 8$ $\alpha(K)=0.051 3; \ \alpha(L)=0.00755 21; \ \alpha(M)=0.00166$ 4 $\alpha(N)=0.000383 10; \ \alpha(O)=5.59\times10^{-5} 18;$
		458.991 [°] 2	8.8 ^c 11	1210.089 3-	M1		0.0370		$\alpha(P)=3.14\times10^{-6} \ 19$ $\alpha(K)=0.0313 \ 5; \ \alpha(L)=0.00445 \ 7; \ \alpha(M)=0.000974$ 14
									α (N)=0.000225 4; α (O)=3.31×10 ⁻⁵ 5; α (P)=1.92×10 ⁻⁶ 3
		486.322 ^c 8	1.7 ^C 3	1182.763 5+	[E1]		0.00547		$\alpha(K)=0.00465\ 7;\ \alpha(L)=0.000640\ 9;\ \alpha(M)=0.0001393\ 20\ \alpha(N)=3.21\times10^{-5}\ 5;\ \alpha(\Omega)=4.63\times10^{-6}\ 7;$
		520.890 <i>18</i>	0.61 11	1148.232 2	[E2]		0.01363		$\alpha(P)=2.53\times10^{-7} 4$ $\alpha(K)=0.01102 \ 16; \ \alpha(L)=0.00204 \ 3;$ $\alpha(M)=0.000458 \ 7$ $\alpha(N)=0.0001048 \ 15; \ \alpha(O)=1.450\times10^{-5} \ 21;$ $\alpha(P)=6.19\times10^{-7} \ 9$

From ENSDF

γ ⁽¹⁶²Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ ^{&b}	α^{a}	Comments
1669.085	4-	1403.25 11	23 8	265.664	4+	E1		8.13×10 ⁻⁴	$\alpha(K)=0.000583 \ 9; \ \alpha(L)=7.63\times10^{-5} \ 11; \ \alpha(M)=1.653\times10^{-5} \ 24$ $\alpha(N)=3.82\times10^{-6} \ 6; \ \alpha(O)=5.60\times10^{-7} \ 8; \ \alpha(P)=3.27\times10^{-8} \ 5; \ \alpha(IPF)=0.0001333 \ 19$
1670.505	8+	345.9 1	56 4	1324.465	6+	E2		0.0421	$\alpha(K)=0.03245; \alpha(L)=0.0075711; \alpha(M)=0.00173125$ $\alpha(N)=0.0003946; \alpha(O)=5.25\times10^{-5}8; \alpha(P)=1.728\times10^{-6}25$ L: from (⁷ Li p4ny) Other: 58.8 from (α 2ny)
		749.1 <i>1</i>	100 4	921.28	8+	E2+M1	1.5 6	0.0072 13	$\alpha(K)=0.0061 \ II; \ \alpha(L)=0.00092 \ I3; \ \alpha(M)=0.00020 \ 3 \\ \alpha(N)=4.7\times10^{-5} \ 7; \ \alpha(O)=6.7\times10^{-6} \ I0; \ \alpha(P)=3.6\times10^{-7} \ 7 \\ Mult.: from (\alpha,2n\gamma), \ \alpha(K)exp=0.0062 \ 9, which gives \ \delta=1.5 \\ +I0-5. \\ Additional information \ 22.$
		1121.9 2	52 4	548.520	6+	E2		0.00241	$\alpha(K)=0.00203 \ 3; \ \alpha(L)=0.000295 \ 5; \ \alpha(M)=6.47\times10^{-5} \ 9$ $\alpha(N)=1.491\times10^{-5} \ 21; \ \alpha(O)=2.16\times10^{-6} \ 3; \ \alpha(P)=1.172\times10^{-7} \ 17; \ \alpha(IPF)=6.30\times10^{-7} \ 10$ L: from (⁷ Li pAny) Other: 62.12 from (α 2ny)
1683.35	7-	107.7 2 197.4 2	5	1575.623 1485.671	6^{-} 5^{-}				iy. nom (Ei,p+ny). Oner. 62 12, nom (0,2ny).
		762.1 2	31 4	921.28	8+	[E1]		0.00211	α (K)=0.00180 3; α (L)=0.000242 4; α (M)=5.25×10 ⁻⁵ 8 α (N)=1.211×10 ⁻⁵ 17; α (O)=1.762×10 ⁻⁶ 25; α (P)=9.98×10 ⁻⁸ 14
									E _γ : from (α ,2n γ). I _γ : weighted average of: 32 4 (⁷ Li,p4n γ); and 30 5 (α ,2n γ). Mult., δ : from (α ,2n γ), α (K)exp=0.0061 9, which gives E2+M1 with δ =1.4, or E1+M2 with δ =0.5. δ : from $\gamma(\theta)$ in (α ,2n γ), smaller δ =+0.10.8
		1134.7 2	100 4	548.520	6+	E1		9.95×10 ⁻⁴	$\alpha(K)=0.000847 \ 12; \ \alpha(L)=0.0001118 \ 16; \ \alpha(M)=2.42\times10^{-5} \ 4$ $\alpha(N)=5.59\times10^{-6} \ 8; \ \alpha(O)=8.18\times10^{-7} \ 12; \ \alpha(P)=4.74\times10^{-8} \ 7; \ \alpha(IPF)=5.30\times10^{-6} \ 8$ $E_{\gamma}: \ from \ (\alpha,2n\gamma).$
	-								Mult.: from $(\alpha, 2n\gamma)$, $\alpha(K)\exp=0.0007/2$, which gives mult=E1. Additional information 23.
1691.340	2-	394.333 <i>3</i>	12.1 6	1297.006	4-	E2		0.0289	$\alpha(K)=0.0226 4; \alpha(L)=0.00486 7; \alpha(M)=0.001105 16$ $\alpha(N)=0.000252 4; \alpha(O)=3.40\times10^{-5} 5; \alpha(P)=1.231\times10^{-6} 18$
		415.569 3	56 4	1275.772	1-	M1+E2		0.036 12	$\alpha(K)=0.030 \ 11; \ \alpha(L)=0.0049 \ 9; \ \alpha(M)=0.00110 \ 17 \ \alpha(N)=0.00025 \ 4; \ \alpha(O)=3 \ 6\times 10^{-5} \ 7; \ \alpha(P)=1.78\times 10^{-6} \ 71$
		543.107 3	100 4	1148.232	2-	M1+E2		0.0182 59	$\alpha(1)=0.00257; \alpha(0)=5.0167; \alpha(1)=1.081077$ $\alpha(K)=0.015253; \alpha(L)=0.00236; \alpha(M)=0.0005212$ $\alpha(N)=0.000123; \alpha(D)=1.7\times10^{-5}5; \alpha(D)=0.00052$
		728.384 ^c 15	98 ^c 10	962.940	3+	E1		0.00231	$\alpha(N)=0.00012 \ 3; \ \alpha(O)=1.7\times10^{-5} \ 3; \ \alpha(P)=9.0\times10^{-5} \ 35$ $\alpha(K)=0.00197 \ 3; \ \alpha(L)=0.000265 \ 4; \ \alpha(M)=5.77\times10^{-5} \ 8$ $\alpha(N)=1.329\times10^{-5} \ 19; \ \alpha(O)=1.93\times10^{-6} \ 3; \ \alpha(P)=1.091\times10^{-7} \ 16$

27

 $^{162}_{66}\mathrm{Dy}_{96}$ -27

γ ⁽¹⁶²Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	$E_f = J_f^{\pi}$	Mult. ^{&}	δ ^{&b}	α^{a}	Comments
1728.318	2+	154.026 4	0.57 7	1574.293 4+	[E2]		0.575	$\alpha(K)=0.343$ 5; $\alpha(L)=0.179$ 3; $\alpha(M)=0.0424$ 6 $\alpha(K)=0.00054$ 14; $\alpha(O)=0.001170$ 17; $\alpha(D)=1.527\times10^{-5}$ 22
		370.389 <i>3</i>	3.5 2	1357.928 3-	[E1]		0.01028	$\alpha(N)=0.00954$ 14, $\alpha(O)=0.001179$ 17, $\alpha(P)=1.537\times10^{-22}$ $\alpha(K)=0.00873$ 13; $\alpha(L)=0.001219$ 17; $\alpha(M)=0.000266$ 4
		452.535 8	3.2 6	1275.772 1-	[E1]		0.00643	$\alpha(N)=6.11\times10^{-5} 9; \ \alpha(O)=8.76\times10^{-5} 13; \ \alpha(P)=4.68\times10^{-7} 7$ $\alpha(K)=0.00547 8; \ \alpha(L)=0.000756 11; \ \alpha(M)=0.0001646 23$ $\alpha(N)=3.79\times10^{-5} 6; \ \alpha(O)=5.46\times10^{-6} 8; \ \alpha(P)=2.97\times10^{-7} 5$
		840.20 6	3.9 15	888.161 2+	[M1,E2]		0.0063 19	$\alpha(K) = 0.0053 \ 16; \ \alpha(L) = 7.6 \times 10^{-4} \ 20; \ \alpha(M) = 0.00017 \ 5$ $\alpha(K) = 3.87 \times 10^{-5} \ 97; \ \alpha(Q) = 5.6 \times 10^{-6} \ 15; \ \alpha(P) = 3.1 \times 10^{-7} \ 11$
		1462.69 ^c 8	32 ^c 6	265.664 4+	(E2)		1.49×10^{-3}	$\alpha(K) = 0.001213 \ 17; \ \alpha(L) = 0.0001694 \ 24; \ \alpha(M) = 3.70 \times 10^{-5} \ 6$ $\alpha(N) = 8.54 \times 10^{-6} \ 12; \ \alpha(O) = 1.244 \times 10^{-6} \ 18; $ $\alpha(P) = 7.01 \times 10^{-8} \ 10; \ \alpha(IPF) = 6.11 \times 10^{-5} \ 9$
		1647.62 7	100 9	80.661 2+	M1(+E0,E2)		0.0015 3	$\alpha(K)=0.00118 \ 21; \ \alpha(L)=0.00016 \ 3; \ \alpha(M)=3.5\times10^{-5} \ 6 \\ \alpha(N)=8.1\times10^{-6} \ 14; \ \alpha(O)=1.19\times10^{-6} \ 22; \ \alpha(P)=7.0\times10^{-8} \\ 14; \ \alpha(IPF)=0.000139 \ 12 \\ Multi \ form \ \alpha(V)=0.0018 \ Lin \ (n,n) \ 2006 \ A=01 \ since$
								mult: from $\alpha(\mathbf{K})\exp=0.0018$ T in (fr, γ), 2000ApO1 give mult=M1. However, a $\Delta \mathbf{K}=0$ transition such as this is unlikely to Be pure M1. Some E0+E2 contribution is expected. From (n,n' γ), 2002Go15 report $\delta(\text{E2/M1})=-0.20 + 15 - 18$ or +4.3 +57-18.
		1728.58 19	54 8	0.0 0 ⁺	[E2]		1.20×10^{-3}	$\begin{aligned} \alpha(K) &= 0.000888 \ I3; \ \alpha(L) &= 0.0001217 \ I7; \ \alpha(M) &= 2.65 \times 10^{-5} \ 4 \\ \alpha(N) &= 6.12 \times 10^{-6} \ 9; \ \alpha(O) &= 8.95 \times 10^{-7} \ I3; \ \alpha(P) &= 5.13 \times 10^{-8} \\ 8; \ \alpha(IPF) &= 0.0001615 \ 23 \\ E_{\gamma}: \ from \ (n,n'\gamma). \ \gamma \ not \ reported \ by \ 2006Ap01 \ in \ (n,\gamma). \\ I_{\gamma}: \ from \ I\gamma(1728.5\gamma)/I\gamma(1647.6\gamma) \ in \ (n,n'\gamma) \ and \end{aligned}$
1738.999	3-	168.093 4	2.5 3	1570.912 3-	M1(+E2)	< 0.73	0.528 23	Iγ(1647.6γ). α (K)=0.43 4; α (L)=0.077 10; α (M)=0.0173 25
		348.49 <i>3</i>	5.1 13	1390.513 5-	(E2)		0.0412	$\alpha(N)=0.0040\ 6;\ \alpha(O)=0.00056\ 6;\ \alpha(P)=2.6\times10^{-5}\ 3$ $\alpha(K)=0.0317\ 5;\ \alpha(L)=0.00737\ 11;\ \alpha(M)=0.001686\ 24$ $\alpha(D)=0.00284\ 6;\ \alpha(O)=5\ 12\times10^{-5}\ 8;\ \alpha(D)=1\ 604\times10^{-6}\ 24$
		381.069 <i>3</i>	4.4 3	1357.928 3-	M1+E2	0.7 4	0.051 7	$\alpha(N)=0.000384 \ 6; \ \alpha(O)=5.12\times10^{-5} \ 8; \ \alpha(P)=1.094\times10^{-5} \ 24$ $\alpha(K)=0.042 \ 7; \ \alpha(L)=0.0067 \ 5; \ \alpha(M)=0.00147 \ 9$ $\alpha(N)=0.000240 \ 22; \ \alpha(O)=4.0\times10^{-5} \ 4; \ \alpha(D)=2.5\times10^{-6} \ 5$
		441.988 5	5.0 3	1297.006 4-	M1+E2	0.7 4	0.034 5	$\alpha(N)=0.000340\ 22,\ \alpha(O)=4.9\times10^{-4},\ \alpha(P)=2.5\times10^{-5}\ 3$ $\alpha(K)=0.029\ 5;\ \alpha(L)=0.0044\ 4;\ \alpha(M)=0.00097\ 8$ $\alpha(N)=0.000224\ 49;\ \alpha(O)=3.2\times10^{-5}\ 4;\ \alpha(P)=1.7\times10^{-6}\ 3$
		463.224 4	13 <i>I</i>	1275.772 1-	E2		0.0185	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000224 \ 19, \ \alpha(\mathrm{O}) = 0.2\times10^{-4}, \ \alpha(\mathrm{I}) = 1.7\times10^{-5} \ 3 \\ \alpha(\mathrm{K}) = 0.01481 \ 21; \ \alpha(\mathrm{L}) = 0.00290 \ 4; \ \alpha(\mathrm{M}) = 0.000655 \ 10 \\ \alpha(\mathrm{N}) = 0.0001498 \ 21; \ \alpha(\mathrm{O}) = 2.05\times10^{-5} \ 3; \ \alpha(\mathrm{P}) = 8.22\times10^{-7} \ 10^{-7} \$
		528.901 5	100 3	1210.089 3-	M1(+E2)	< 0.045	0.0257	$\alpha(K)=0.0218 \ 3; \ \alpha(L)=0.00308 \ 5; \ \alpha(M)=0.000674 \ 10 \ \alpha(N)=0.0001559 \ 22; \ \alpha(O)=2.29\times10^{-5} \ 4; \ \alpha(P)=1.330\times10^{-6} \ 10 \ \alpha(N)=0.0001559 \ 20; \ \alpha(O)=0.0001559 \ 20; \ \alpha$
		590.767 <i>3</i>	50.7 <i>13</i>	1148.232 2-	[M1,E2]		0.0147 48	α (K)=0.0123 42; α (L)=0.0019 5; α (M)=0.00041 10 α (N)=9.5×10 ⁻⁵ 23; α (O)=1.37×10 ⁻⁵ 36; α (P)=7.3×10 ⁻⁷ 28

						Adopted	Levels, Ga	ammas (contin	ued)
						<u>2</u>	γ(¹⁶² Dy) (continued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	E_{f}	J_f^{π}	Mult.&	δ ^{&b}	α^{a}	Comments
1738.999	3-	678.009 <i>3</i>	83 <i>3</i>	1060.991	4+	E1		0.00267	$\alpha(K)=0.00228 \ 4; \ \alpha(L)=0.000308 \ 5; \ \alpha(M)=6.70\times10^{-5} \ 10$ $\alpha(N)=1.543\times10^{-5} \ 22; \ \alpha(O)=2.24\times10^{-6} \ 4;$ $\alpha(P)=1.259\times10^{-7} \ 18$
		1473.26 5	63 7	265.664	4+	E1		8.07×10 ⁻⁴	$\alpha(\mathbf{K})=0.000536 \ 8; \ \alpha(\mathbf{L})=7.01\times10^{-5} \ 10; \\ \alpha(\mathbf{M})=1.519\times10^{-5} \ 22 \\ \alpha(\mathbf{N})=3.51\times10^{-6} \ 5; \ \alpha(\mathbf{O})=5.14\times10^{-7} \ 8; \\ \alpha(\mathbf{M})=2.01\times10^{-8} \ 5; \ \alpha(\mathbf{D}\mathbf{E})=0.000182 \ 3 \ 3 \ 5 \ 10^{-6} \ 5; \ \alpha(\mathbf{D}\mathbf{E})=0.000182 \ 3 \ 10^{-6} \ 5; \ \alpha(\mathbf{D}\mathbf{E})=0.000182 \ 3 \ 10^{-6} \ 1$
1745.716	1^{+}	292.241 8	1.7 2	1453.468	2+	[M1,E2]		0.096 26	$\alpha(\mathbf{r}) = 3.01\times10^{-5}$, $\alpha(\mathbf{r}\mathbf{r}) = 0.000182^{-5}$ $\alpha(\mathbf{K}) = 0.077^{-26}$; $\alpha(\mathbf{L}) = 0.0143^{-5}$; $\alpha(\mathbf{M}) = 0.00321^{-6}$ $\alpha(\mathbf{N}) = 0.000735^{-1}$ 17; $\alpha(\mathbf{Q}) = 0.000102^{-8}$; $\alpha(\mathbf{P}) = 4.5\times10^{-6}$ 18
		597.43 5	3.8 6	1148.232	2-	[E1]		0.00348	$\alpha(K)=0.00297 5; \alpha(L)=0.000404 6; \alpha(M)=8.79\times10^{-5} 13$ $\alpha(N)=2.02\times10^{-5} 3; \alpha(O)=2.93\times10^{-6} 5;$ $\alpha(P)=1.633\times10^{-7} 23$
		857.562 9	100 6	888.161	2+	M1(+E2)	<0.29	0.00758 18	$\alpha(K) = 0.00643 \ 15; \ \alpha(L) = 0.000896 \ 19; \ \alpha(M) = 0.000196 \ 5 \\ \alpha(N) = 4.53 \times 10^{-5} \ 10; \ \alpha(O) = 6.66 \times 10^{-6} \ 15; \\ \alpha(P) = 3.89 \times 10^{-7} \ 10$
		1665.17 11	63 15	80.661	2+	M1,E2		0.00150 25	$\alpha(K) = 0.00115 \ 21; \ \alpha(L) = 0.00016 \ 3; \ \alpha(M) = 3.4 \times 10^{-5} \ 6$ $\alpha(N) = 7.9 \times 10^{-6} \ 14; \ \alpha(O) = 1.17 \times 10^{-6} \ 21; $ $\alpha(P) = 6.8 \times 10^{-8} \ 13; \ \alpha(PE) = 0.000147 \ 13$
1751.881	6+	117.467 <i>1</i>	65 <i>3</i>	1634.415	5+	E2(+M1)	>2.3	1.503	$\alpha(K) = 0.0810^{-113}, \alpha(K1) = 0.00014^{-113}$ $\alpha(K) = 0.785; \alpha(L) = 0.564; \alpha(M) = 0.1339$ $\alpha(N) = 0.029818; \alpha(O) = 0.0036320; \alpha(P) = 35 \times 10^{-5}4$
		216.193 ^c 13	41.0 [°] 14	1535.664	4+	E2		0.183	$\alpha(K) = 0.1259 \ 18; \ \alpha(L) = 0.0438 \ 7; \ \alpha(M) = 0.01024 \ 15 \ \alpha(N) = 0.00232 \ 4; \ \alpha(Q) = 0.000295 \ 5; \ \alpha(P) = 6.12 \times 10^{-6} \ 9$
		266.211	6.0 6	1485.671	5-				
		427.433 5	35 <i>3</i>	1324.465	6+	M1+E2	1.3 <i>3</i>	0.031 3	α (K)=0.025 3; α (L)=0.00434 22; α (M)=0.00097 5 α (N)=0.000222 <i>II</i> ; α (O)=3.13×10 ⁻⁵ <i>I8</i> ; α (P)=1 49×10 ⁻⁶ <i>I</i> 7
		569.129 4	100 5	1182.763	5+	E2(+M1)	>3.6	0.0113 4	$\begin{array}{l} \alpha(t) = 1.1 \\ \alpha(K) = 0.0092 \ 4; \ \alpha(L) = 0.00161 \ 5; \ \alpha(M) = 0.000360 \ 9 \\ \alpha(N) = 8.27 \times 10^{-5} \ 21; \ \alpha(O) = 1.16 \times 10^{-5} \ 4; \\ \alpha(P) = 5 \ 24 \times 10^{-7} \ 23 \end{array}$
		691.0 <i>1</i>	75 5	1060.991	4+				E_{γ} : from 2006Ap01 (α ,2n γ). 2006Ap01, in (n, γ), do not report this γ . This γ is also not reported in (⁷ Li,p4n γ). I_{γ} : from 2006Ap01, (α ,2n γ). From (¹⁶² Dy, ¹⁶² Dy' γ),
1754.82	(7)-	1206.3 2	100 9	548.520	6+	E1		9.13×10 ⁻⁴	$\alpha(K)=0.000759 \ 11; \ \alpha(L)=0.0001000 \ 14;$

From ENSDF

$ \underline{\gamma(^{162}\text{Dy}) \text{ (continued)}} $ $ \underline{F_i(\text{level})} \underline{J_i^{\pi}} \underline{E_{\gamma}^{\dagger \ddagger \#}} \underline{I_{\gamma}} \underline{E_f} \underline{J_f^{\pi}} \underline{Mult.}^{\&} \delta^{\&b} \alpha^{a} \qquad \underbrace{\text{Comments}}_{\alpha(M)=2.17\times10^{-5} \ 3} \\ \alpha(N)=5.00\times10^{-6} \ 7; \ \alpha(O)=7.32\times10^{-7} \ 11; \ \alpha(P)=4.25\times10^{-8} \ 6; \\ \alpha(\text{IPF})=2.61\times10^{-5} \ 4 \\ \underline{E_{\gamma}}: \ \text{from } (^{7}\text{Li,p4n\gamma}). \\ Mult.: \ \text{From } (\alpha, 2n\gamma), \ \alpha(K)\exp\leq 0.0007, \ \text{which gives}} $						Ad	opted Levels	s, Gammas (co	ontinued)
$ \underbrace{E_{i}(\text{level})}_{i} \underbrace{J_{i}^{\pi} E_{\gamma}^{\ddagger \ddagger \#}}_{i} \underbrace{I_{\gamma} E_{f} J_{f}^{\pi} \text{Mult.}}_{f} \underbrace{\delta^{\&b}}_{\delta} \alpha^{a} \qquad \underbrace{\text{Comments}}_{\alpha(M)=2.17\times10^{-5} \ 3} \\ \alpha(N)=5.00\times10^{-6} \ 7; \ \alpha(O)=7.32\times10^{-7} \ 11; \ \alpha(P)=4.25\times10^{-8} \ 6; \\ \alpha(\text{IPF})=2.61\times10^{-5} \ 4 \\ E_{\gamma}: \ \text{from } (^{7}\text{Li},p4n\gamma). \\ \text{Mult.: \ From } (\alpha,2n\gamma), \ \alpha(K)\exp\leq 0.0007, \ \text{which gives}} $							γ (¹⁶² D	y) (continued)	
$\alpha(M)=2.17\times10^{-5} 3$ $\alpha(N)=5.00\times10^{-6} 7; \ \alpha(O)=7.32\times10^{-7} 11; \ \alpha(P)=4.25\times10^{-8} 6;$ $\alpha(IPF)=2.61\times10^{-5} 4$ $E_{\gamma}: \text{ from } (^{7}\text{Li},p4n\gamma).$ Mult.: From $(\alpha,2n\gamma), \ \alpha(K)\exp\leq 0.0007$, which gives	E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	$\mathbf{E}_f = \frac{\mathbf{J}_f^{\pi}}{\mathbf{J}_f}$	Mult.&	δ ^{&b}	α^{a}	Comments
$\alpha(N)=5.00\times10^{-6} 7; \ \alpha(O)=7.32\times10^{-7} 11; \ \alpha(P)=4.25\times10^{-8} 6; \\ \alpha(IPF)=2.61\times10^{-5} 4 \\ E_{\gamma}: \ from \ (^{7}Li,p4n\gamma). \\ Mult.: \ From \ (\alpha,2n\gamma), \ \alpha(K)exp\leq0.0007, \ which \ gives$									$\alpha(M)=2.17\times10^{-5}$ 3
$\alpha(\text{IPF})=2.61\times10^{-5} 4$ E_{γ} : from (⁷ Li,p4n γ). Mult.: From (α ,2n γ), $\alpha(\text{K})\exp\leq 0.0007$, which gives									$\alpha(N) = 5.00 \times 10^{-6} 7; \alpha(O) = 7.32 \times 10^{-7} 11; \alpha(P) = 4.25 \times 10^{-8} 6;$
E_{γ} : from (*1,9407). Mult.: From (α ,2n γ), α (K)exp \leq 0.0007, which gives									$\alpha(\text{IPF})=2.61\times10^{-5} \text{ 4}$
which gives									E_{γ} . Holli ('Ll,p4ll γ). Mult : From (α 2n γ) α (K)exp<0.0007 which gives
mult=E1.									mult= $E1$.
1766.608 3 ⁻ 230.943 <i>l</i> 4.8 2 1535.664 4 ⁺ [E1] 0.0334 α (K)=0.0283 <i>4</i> ; α (L)=0.00406 6; α (M)=0.000886 <i>l</i> 3	1766.608	3-	230.943 1	4.8 2	1535.664 4+	[E1]		0.0334	$\alpha(K)=0.0283$ 4; $\alpha(L)=0.00406$ 6; $\alpha(M)=0.000886$ 13
α (N)=0.000203 3; α (O)=2.87×10 ⁻⁵ 4; α (P)=1.452×10 ⁻⁶ 21									α (N)=0.000203 3; α (O)=2.87×10 ⁻⁵ 4; α (P)=1.452×10 ⁻⁶ 21
280.937 2 4.6 <i>I</i> 1485.671 5 ⁻ E2 0.0790 $\alpha(K)=0.0584$ 9; $\alpha(L)=0.01597$ 23; $\alpha(M)=0.00369$ 6			280.937 2	4.6 1	1485.671 5-	E2		0.0790	$\alpha(K) = 0.0584 \ 9; \ \alpha(L) = 0.01597 \ 23; \ \alpha(M) = 0.00369 \ 6$
$\alpha(N)=0.00083772; \alpha(O)=0.000109470; \alpha(P)=3.00×10 ° 5$ $408.678.5 2.17 1357.928.3 M1(\pm E2) <1.0 0.044.6 \alpha(K)=0.037.6; \alpha(L)=0.0056.5; \alpha(M)=0.00124.9$			408 678 5	211	1357 028 3-	M1(±E2)	<10	0.044.6	$\alpha(N)=0.000837/12; \alpha(O)=0.0001094/10; \alpha(P)=3.00\times10^{\circ} 3$ $\alpha(K)=0.037/6; \alpha(L)=0.0056/5; \alpha(M)=0.00124/9$
$\alpha(N)=0.000285\ 21:\ \alpha(D)=4.1\times10^{-5}\ 4:\ \alpha(P)=2.2\times10^{-6}\ 4$			+00.070 5	2.1 1	1557.720 5	WII(+L2)	<1.0	0.044 0	$\alpha(N)=0.000285\ 21:\ \alpha(O)=4.1\times10^{-5}\ 4:\ \alpha(P)=2.2\times10^{-6}\ 4$
469.602 3 8.9 6 1297.006 4 ⁻ M1+E2 0.58 3 0.0306 6 α (K)=0.0257 5; α (L)=0.00384 6; α (M)=0.000845 14			469.602 <i>3</i>	8.96	1297.006 4-	M1+E2	0.58 3	0.0306 6	$\alpha(K)=0.0257$ 5; $\alpha(L)=0.00384$ 6; $\alpha(M)=0.000845$ 14
α (N)=0.000195 3; α (O)=2.83×10 ⁻⁵ 5; α (P)=1.55×10 ⁻⁶ 3									α (N)=0.000195 3; α (O)=2.83×10 ⁻⁵ 5; α (P)=1.55×10 ⁻⁶ 3
556.519 2 56 4 1210.089 3 ⁻ M1+E2 0.52 19 0.0203 14 α (K)=0.0171 13; α (L)=0.00249 13; α (M)=0.00055 3			556.519 2	56 4	1210.089 3-	M1+E2	0.52 19	0.0203 14	α (K)=0.0171 <i>13</i> ; α (L)=0.00249 <i>13</i> ; α (M)=0.00055 <i>3</i>
$\alpha(N)=0.000126$ /; $\alpha(O)=1.84\times10^{-5}$ <i>II</i> ; $\alpha(P)=1.03\times10^{-6}$ 8 618 376 3 29 <i>I</i> 1148 232 2 ⁻ M1+E2 2.06 <i>I</i> 3 0.01050 23 $\alpha(K)=0.00870$ 20; $\alpha(I)=0.00141$ 3; $\alpha(M)=0.000312$ 6			618 376 3	20.1	11/18 232 2-	$M1\pm F2$	2 06 13	0.01050.23	$\alpha(N)=0.000126$ /; $\alpha(O)=1.84\times10^{-5}$ <i>I</i> 1; $\alpha(P)=1.03\times10^{-5}$ 8 $\alpha(K)=0.00870$ 20; $\alpha(L)=0.00141$ 3; $\alpha(M)=0.000312$ 6
$\alpha(N) = 7.18 \times 10^{-5} 14$; $\alpha(O) = 1.020 \times 10^{-5} 20$; $\alpha(P) = 5.06 \times 10^{-7}$			010.570 5	27 1	1140.252 2	WII L2	2.00 15	0.01050 25	$\alpha(N)=7.18\times10^{-5}$ 14: $\alpha(O)=1.020\times10^{-5}$ 20: $\alpha(P)=5.06\times10^{-7}$
13									13
705.614 7 44 4 1060.991 4 ⁺ E1 0.00246 α (K)=0.00210 3; α (L)=0.000283 4; α (M)=6.16×10 ⁻⁵ 9			705.614 7	44 4	1060.991 4+	E1		0.00246	$\alpha(K)=0.00210 \ 3; \ \alpha(L)=0.000283 \ 4; \ \alpha(M)=6.16\times10^{-5} \ 9$
α (N)=1.419×10 ⁻⁵ 20; α (O)=2.06×10 ⁻⁶ 3; α (P)=1.162×10 ⁻⁷									α (N)=1.419×10 ⁻⁵ 20; α (O)=2.06×10 ⁻⁶ 3; α (P)=1.162×10 ⁻⁷
I/			002 677 0	16.2	062.040 2+	(E1)		0.00100	I'
$\alpha(N) = 1.087 \times 10^{-5}$ <i>I</i> (C) $\alpha(N) = 4.72 \times 10^{-7}$ <i>I</i> (C) $\alpha(N) = 1.087 \times 10^{-5}$ <i>I</i> (C) $\alpha(N) = 1.584 \times 10^{-6}$ 23			803.077 8	40 2	902.940 3	(E1)		0.00190	$\alpha(\mathbf{N}) = 0.001020 23$, $\alpha(\mathbf{L}) = 0.000217 3$, $\alpha(\mathbf{M}) = 4.72 \times 10^{-7}$ $\alpha(\mathbf{N}) = 1.087 \times 10^{-5} 16$; $\alpha(\mathbf{O}) = 1.584 \times 10^{-6} 23$.
$\alpha(P)=9.00\times10^{-8}$ 13									$\alpha(P)=9.00\times10^{-8}$ 13
878.444 6 100 3 888.161 2 ⁺ (E1) 1.60×10 ⁻³ α (K)=0.001363 19; α (L)=0.000182 3; α (M)=3.95×10 ⁻⁵ 6			878.444 6	100 3	888.161 2+	(E1)		1.60×10^{-3}	$\alpha(K)=0.001363 \ 19; \ \alpha(L)=0.000182 \ 3; \ \alpha(M)=3.95\times10^{-5} \ 6$
α (N)=9.11×10 ⁻⁶ <i>13</i> ; α (O)=1.328×10 ⁻⁶ <i>19</i> ; α (P)=7.59×10 ⁻⁸									α (N)=9.11×10 ⁻⁶ 13; α (O)=1.328×10 ⁻⁶ 19; α (P)=7.59×10 ⁻⁸
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1767 37	6+	84622	17 7	021.28 8+	E2		0.00434	$\prod_{\alpha(K)=0}^{1} 0.00362 5; \alpha(L)=0.000561.8; \alpha(M)=0.0001230.18$
$\alpha(N) = 2.85 \times 10^{-5} 4; \ \alpha(O) = 4.07 \times 10^{-6} 6; \ \alpha(N) = 2.08 \times 10^{-7} 3$	1707.57	0	040.2 2	4/ /	921.20 0	L2		0.00434	$\alpha(N)=2.85\times10^{-5}$ 4: $\alpha(O)=4.07\times10^{-6}$ 6: $\alpha(P)=2.08\times10^{-7}$ 3
1218.6 3 100 13 548.520 6 ⁺ E2+M1 0.0027 7 α (K)=0.0023 6; α (L)=0.00032 7; α (M)=6.9×10 ⁻⁵ 16			1218.6 <i>3</i>	100 13	548.520 6+	E2+M1		0.0027 7	$\alpha(K)=0.0023\ 6;\ \alpha(L)=0.00032\ 7;\ \alpha(M)=6.9\times10^{-5}\ 16$
α (N)=1.6×10 ⁻⁵ 4; α (O)=2.3×10 ⁻⁶ 6; α (P)=1.34×10 ⁻⁷ 35;									$\alpha(N)=1.6\times10^{-5}$ 4; $\alpha(O)=2.3\times10^{-6}$ 6; $\alpha(P)=1.34\times10^{-7}$ 35;
$\alpha(\text{IPF})=8.0\times10^{-6}\ 6$									α (IPF)=8.0×10 ⁻⁶ 6
1782.68 2 ⁺ 819.76 13 74 19 962.940 3 ⁺	1782.68	2+	819.76 13	74 19	962.940 3+				
57+.5722 $0+9$ $000.10121516.6.3 26.7 265.664 4^+$			074.39 22	26 7	$265.664 4^+$				
$1702.08 \ 19 \ 100 \ 9 \ 80.661 \ 2^+$			1702.08 19	100 9	80.661 2+				
1782.8 ^{<i>c</i>} 2 111 ^{<i>c</i>} 5 0.0 0 ⁺ I_{γ} : from ¹⁶² Tb β^- decay. From ¹⁶² Ho ε decay (15.0 min),			1782.8 ^c 2	111 ^C 5	0.0 0+				I _{γ} : from ¹⁶² Tb β^- decay. From ¹⁶² Ho ε decay (15.0 min),
$I\gamma = 87 \ I3.$ From $(n,n'\gamma)$, $I\gamma = 113 \ I1.$	1007 56	0-	104.1.7	01.0	1602.25 5-				$I\gamma = 87 \ 13.$ From (n,n' γ), $I\gamma = 113 \ 11.$
100/.30 0 124.17 01 0 1085.35 / 231.67 10077 1575.623 6 ⁻	1807.30	ð	124.1 <i>I</i> 231.6 <i>I</i>	81 8 100 <i>11</i>	1085.55 /				

From ENSDF

$\gamma(^{162}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments
1807.56	8-	277.3 2	19 <i>3</i> 28 3	$1530.127 6^{-1}$				E_{γ} : from (α,2nγ). From (⁷ Li,p4nγ), Eγ=277.
1826.753	4-	192.344 5	2.1 2	1634.415 5 ⁺	[E1]		0.0539	$\alpha(K)=0.0455\ 7;\ \alpha(L)=0.00661\ 10;\ \alpha(M)=0.001445\ 21$
		251.139 24	1.7 4	1575.623 6-	[E2]		0.1124	$\alpha(N)=0.0005505, \alpha(D)=4.04\times10^{-7}, \alpha(P)=2.29\times10^{-7}$ $\alpha(K)=0.0809$ 12; $\alpha(L)=0.0244$ 4; $\alpha(M)=0.00566$ 8
		291.07 4	0.32 9	1535.664 4+	[E1]		0.0185	$\alpha(N)=0.001282$ 18; $\alpha(O)=0.0001657$ 24; $\alpha(P)=4.07\times10^{-6}$ 6 $\alpha(K)=0.01571$ 22; $\alpha(L)=0.00222$ 4; $\alpha(M)=0.000486$ 7 $\alpha(N)=0.0001114$ 16; $\alpha(O)=1.588\times10^{-5}$ 23; $\alpha(P)=8.26\times10^{-7}$
		308.321 6	1.5 2	1518.426 5-	[M1,E2]		0.082 23	$a(K)=0.067\ 22;\ \alpha(L)=0.0121\ 8;\ \alpha(M)=0.00270\ 10$
		341.081 3	2.5 3	1485.671 5-	E2(+M1)	>1.5	0.049 6	$\alpha(N)=0.00062$ 3; $\alpha(O)=8.7\times10^{-9}$ 9; $\alpha(P)=5.9\times10^{-7}$ 16 $\alpha(K)=0.039$ 6; $\alpha(L)=0.0082$ 3; $\alpha(M)=0.00187$ 6
		436.241 4	4.8 2	1390.513 5-	M1		0.0422	$\alpha(N)=0.000426\ 14;\ \alpha(O)=5.8\times10^{-3};\ \alpha(P)=2.2\times10^{-6}4$ $\alpha(K)=0.0357\ 5;\ \alpha(L)=0.00508\ 8;\ \alpha(M)=0.001112\ 16$
		529.749 4	30.6 8	1297.006 4-	M1+E2	0.47 11	0.0234 10	$\alpha(N)=0.0002574; \alpha(O)=5.78\times10^{-5} 6; \alpha(P)=2.19\times10^{-5} 3$ $\alpha(K)=0.01979; \alpha(L)=0.002869; \alpha(M)=0.00062919$
		643.989 2	41 2	1182.763 5+	E1		0.00297	$\alpha(N)=0.000145 5; \alpha(O)=2.12\times10^{-5} 7; \alpha(P)=1.19\times10^{-5} 6$ $\alpha(K)=0.00254 4; \alpha(L)=0.000344 5; \alpha(M)=7.47\times10^{-5} 11$ $\alpha(N)=1.721\times10^{-5} 24; \alpha(O)=2.50\times10^{-6} 4; \alpha(P)=1.398\times10^{-7}$
		678.52 3	5.2 5	1148.232 2-	[E2]		0.00714	$\alpha(K) = 0.00588 \ 9; \ \alpha(L) = 0.000976 \ 14; \ \alpha(M) = 0.000217 \ 3$
		765.756 9	26 2	1060.991 4+	[E1]		0.00209	$\alpha(N)=4.99\times10^{-7}; \alpha(O)=7.04\times10^{-7} 10; \alpha(P)=3.56\times10^{-7} 5$ $\alpha(K)=0.001782 \ 25; \ \alpha(L)=0.000239 \ 4; \ \alpha(M)=5.20\times10^{-5} \ 8$ $\alpha(N)=1.199\times10^{-5} \ 17; \ \alpha(O)=1.745\times10^{-6} \ 25;$
		863.808 5	100 2	962.940 3+	[E1]		1.65×10 ⁻³	$\alpha(K) = 9.30 \times 10^{-14}$ $\alpha(K) = 0.001408 \ 20; \ \alpha(L) = 0.000188 \ 3; \ \alpha(M) = 4.08 \times 10^{-5} \ 6$ $\alpha(N) = 9.41 \times 10^{-6} \ 14; \ \alpha(O) = 1.373 \times 10^{-6} \ 20; \ \alpha(P) = 7.83 \times 10^{-8}$
1840.486	3+	269.575 10	1.2 2	1570.912 3-	[E1]		0.0225	$\alpha(\mathbf{K})=0.0190 \ 3; \ \alpha(\mathbf{L})=0.00271 \ 4; \ \alpha(\mathbf{M})=0.000591 \ 9$
		387.017 21	1.6 5	1453.468 2+	[M1,E2]		0.044 14	$\alpha(N)=0.0001556\ 19;\ \alpha(O)=1.93\times10^{-5}\ 3;\ \alpha(P)=9.94\times10^{-1}\ 14$ $\alpha(K)=0.036\ 13;\ \alpha(L)=0.0061\ 9;\ \alpha(M)=0.00135\ 18$
		543.477 4	24.2 14	1297.006 4-	[E1]		0.00427	$\alpha(N)=0.000315; \alpha(O)=4.4\times10^{-5}8; \alpha(P)=2.14\times10^{-6}85$ $\alpha(K)=0.003645; \alpha(L)=0.0004987; \alpha(M)=0.000108316$ $\alpha(N)=2.40\times10^{-5}4; \alpha(O)=3.61\times10^{-6}5; \alpha(P)=1.00\times10^{-7}3$
		630.398 4	40 4	1210.089 3-	E1		0.00311	$\alpha(N)=2.49\times10^{-5}$, $\alpha(O)=3.61\times10^{-5}$, $\alpha(T)=1.99\times10^{-5}$, $\alpha(K)=0.00265$ 4; $\alpha(L)=0.000360$ 5; $\alpha(M)=7.82\times10^{-5}$ 11 $\alpha(N)=1.80\times10^{-5}$ 3; $\alpha(O)=2.61\times10^{-6}$ 4; $\alpha(P)=1.461\times10^{-7}$ 21
		779.494 6	70 5	1060.991 4+	M1(+E2)	< 0.55	0.0092 6	$\alpha(K) = 1.00 \times 10^{-5} 3; \alpha(C) = 2.01 \times 10^{-4} 4; \alpha(T) = 1.401 \times 10^{-5} 21$ $\alpha(K) = 0.0078 5; \alpha(L) = 0.00110 6; \alpha(M) = 0.000240 13$ $\alpha(K) = 5.6 \times 10^{-5} 3; \alpha(C) = 8.2 \times 10^{-6} 5; \alpha(D) = 4.7 \times 10^{-7} 3$
		877.537 14	52.6 18	962.940 3+	M1		0.00729	$\alpha(K)=0.00619 \ 9; \ \alpha(L)=0.000860 \ 12; \ \alpha(M)=0.000188 \ 3 \\ \alpha(K)=4.34\times10^{-5} \ 6; \ \alpha(O)=6.39\times10^{-6} \ 9; \ \alpha(P)=3.74\times10^{-7} \ 6$

	Adopted Levels, Gammas (continued)												
						<u>γ(¹⁶²Dy)</u>	(continued)						
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	$E_f J_f^{\pi}$	Mult.&	δ ^{&b}	α^{a}	Comments					
1840.486	3+	952.42 9	12 4	888.161 2+	[M1,E2]		0.0047 13	α (K)=0.0040 <i>12</i> ; α (L)=0.00056 <i>14</i> ; α (M)=0.00012 <i>3</i> α (N)=2.9×10 ⁻⁵ <i>7</i> ; α (O)=4.2×10 ⁻⁶ <i>11</i> ; α (P)=2.35×10 ⁻⁷ <i>72</i>					
		1574.66 9	86 11	265.664 4+	(E2)		1.34×10^{-3}	$\alpha(K)=0.001056 \ 15; \ \alpha(L)=0.0001462 \ 21; \ \alpha(M)=3.19\times10^{-5}$					
		1759.8 5	100 26	80.661 2+	[M1,E2]		0.00140 22	$\begin{aligned} &\alpha(\text{N}) = 7.36 \times 10^{-6} \ 11; \ \alpha(\text{O}) = 1.075 \times 10^{-6} \ 15; \\ &\alpha(\text{P}) = 6.10 \times 10^{-8} \ 9; \ \alpha(\text{IPF}) = 9.94 \times 10^{-5} \ 14 \\ &\alpha(\text{K}) = 0.00103 \ 17; \ \alpha(\text{L}) = 0.000140 \ 23; \ \alpha(\text{M}) = 3.0 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 7.0 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 1.03 \times 10^{-6} \ 17; \ \alpha(\text{P}) = 6.0 \times 10^{-8} \\ &11; \ \alpha(\text{IPF}) = 0.000191 \ 16 \end{aligned}$					
1845.53	8-	315.4 <i>1</i> 355.0 <i>1</i>	57 <i>4</i> 100 <i>4</i>	1530.127 6 ⁻ 1490.39 7 ⁺									
1851.811	4-	925 493.885 2	53 2	921.28 8 ⁺ 1357.928 3 ⁻	M1(+E2)	<0.58	0.0288 20	E _γ : reported in ¹⁶¹ Dy(⁶¹ Ni, ⁶⁰ Niγ) only. α (K)=0.0243 <i>18</i> ; α (L)=0.00352 <i>17</i> ; α (M)=0.00077 <i>4</i> α (N)=0.000178 <i>9</i> ; α (O)=2.60×10 ⁻⁵ <i>14</i> ; α (P)=1.48×10 ⁻⁶					
		554.802 <i>3</i>	82 5	1297.006 4-	M1(+E2)	<0.20	0.0226	$\alpha(K)=0.0191 \ 4; \ \alpha(L)=0.00271 \ 5; \ \alpha(M)=0.000592 \ 10$ $\alpha(N)=0.0001370 \ 22; \ \alpha(O)=2.01\times10^{-5} \ 4;$ $\alpha(P)=1.166\times10^{-6} \ 21$					
		641.715 <i>4</i>	35 4	1210.089 3-	M1+E2	1.18 <i>16</i>	0.0113 6	$\alpha(K) = 0.0095 5; \ \alpha(L) = 0.00145 6; \ \alpha(M) = 0.000319 I3$ $\alpha(N) = 7 3 \times 10^{-5} 3; \ \alpha(D) = 1.06 \times 10^{-5} 5; \ \alpha(P) = 5.6 \times 10^{-7} 4$					
		669.039 <i>12</i>	53 4	1182.763 5+	E1		0.00275	$\alpha(K) = 0.00234 \ 4; \ \alpha(L) = 0.000317 \ 5; \ \alpha(M) = 6.89 \times 10^{-5} \ 10$ $\alpha(K) = 1.587 \times 10^{-5} \ 23; \ \alpha(O) = 2.31 \times 10^{-6} \ 4;$ $\alpha(P) = 1.294 \times 10^{-7} \ 19$					
		703.582 13	14.6 7	1148.232 2-	E2		0.00656	$\alpha(K) = 0.00542 \ 8; \ \alpha(L) = 0.000888 \ 13; \ \alpha(M) = 0.000197 \ 3$ $\alpha(N) = 4.53 \times 10^{-5} \ 7; \ \alpha(Q) = 6.41 \times 10^{-6} \ 9; \ \alpha(P) = 3.10 \times 10^{-7} \ 5$					
		1585.83 25	100 30	265.664 4+	E1		8.17×10^{-4}	$\alpha(K) = 0.000474 \ 7; \ \alpha(L) = 6.18 \times 10^{-5} \ 9; \ \alpha(M) = 1.339 \times 10^{-5}$ 19					
1862.677	4-	228.263 1	10.4 2	1634.415 5+	E1		0.0345	$\alpha(N)=3.09\times10^{-6} 5; \ \alpha(O)=4.54\times10^{-7} 7; \ \alpha(P)=2.66\times10^{-8} 4; \ \alpha(IPF)=0.000264 4 \alpha(K)=0.0291 4; \ \alpha(L)=0.00418 6; \ \alpha(M)=0.000914 13 \alpha(K)=0.000914 13 \alpha$					
		222 012 1	100.15	1505 (() 1			0.01200	$\alpha(N)=0.000209 \ 3; \ \alpha(O)=2.96\times10^{-9} \ 5; \ \alpha(P)=1.495\times10^{-9} \ 21 \ (N)=0.001150 \ 15 \ (N)=0.000202 \ 5$					
		327.012 1	100 15	1535.664 4*	EI		0.01390	$\alpha(K)=0.011/8 \ 1/; \ \alpha(L)=0.001658 \ 24; \ \alpha(M)=0.000362 \ 5$ $\alpha(N)=8.30\times10^{-5} \ 12; \ \alpha(O)=1.187\times10^{-5} \ 17;$ $\alpha(P)=6.26\times10^{-7} \ 9$					
		377.015 5	1.58 7	1485.671 5-	[M1,E2]		0.047 15	$\alpha(K) = 0.039 \ 14; \ \alpha(L) = 0.0065 \ 10; \ \alpha(M) = 0.00146 \ 18 \ \alpha(N) = 0.00034 \ 5; \ \alpha(Q) = 4.7 \times 10^{-5} \ 8; \ \alpha(P) = 2.20 \times 10^{-6} \ 92$					
		652.581 <i>3</i>	21.0 6	1210.089 3-	E2		0.00782	$\begin{array}{l} \alpha(N) = 0.00034 \ \ 5, \ \alpha(O) = 4.7 \times 10^{-6} \ \ 5, \ \alpha(P) = 2.29 \times 10^{-6} \ \ 92 \\ \alpha(K) = 0.00643 \ \ 9; \ \alpha(L) = 0.001082 \ \ 16; \ \alpha(M) = 0.000241 \ \ 4 \\ \alpha(N) = 5.53 \times 10^{-5} \ \ 8; \ \alpha(O) = 7.79 \times 10^{-6} \ \ 11; \ \alpha(P) = 3.67 \times 10^{-7} \\ 6 \end{array}$					

I.

$\gamma(^{162}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	α^{a}	Comments
1862.677	4-	714.444 5	50 7	1148.232	2-	E2	0.00633	α (K)=0.00524 8; α (L)=0.000854 12; α (M)=0.000190 3 α (N)=4.36×10 ⁻⁵ 6; α (O)=6.17×10 ⁻⁶ 9; α (P)=3.00×10 ⁻⁷ 5
1863.83	2^{-}	588.8 <i>5</i>	10 4	1275.772	1-			
		652.1 <i>3</i>	15 <i>3</i>	1210.089	3-			
		900.80 19	35 4	962.940	3+			
		975.64 6	100 6	888.161	2+			
		1782.8 [°] 2	48 ^C 5	80.661	2^{+}			
1878.05	9+	387.5 1	75 2	1490.39	7+	E2	0.0303	α (K)=0.0237 4; α (L)=0.00515 8; α (M)=0.001171 17 α (N)=0.000267 4; α (O)=3.60×10 ⁻⁵ 5; α (P)=1.288×10 ⁻⁶ 18
		502.9 2	12	1375.08	10^{+}	E2(+M1)	0.0221 72	$\alpha(K)=0.0184\ 64;\ \alpha(L)=0.0029\ 7;\ \alpha(M)=0.00064\ 13$
						. ,		$\alpha(N)=0.00015 \ 3: \ \alpha(O)=2.1\times10^{-5} \ 5: \ \alpha(P)=1.09\times10^{-6} \ 43$
								From $(\alpha, 2n\gamma)$, γ not reported in the heavy-ion-induced reactions.
		956.9 1	100 5	921.28	8+	E2(+M1)	0.0046 13	$\alpha(K)=0.0039$ 12; $\alpha(L)=0.00056$ 14; $\alpha(M)=0.00012$ 3
						()		$\alpha(N) = 2.8 \times 10^{-5} \ 7 \cdot \alpha(O) = 4.1 \times 10^{-6} \ 11 \cdot \alpha(P) = 2.32 \times 10^{-7} \ 71$
								Mult.: from (α .2n γ), the 956+957 peak has α (K)exp=0.0053
								(1982Fi15), which gives M1.
1886.82	4+	671.55 ^C 10	64 ^C 5	1210.089	3-			E_{γ} : poor energy fit. level-energy difference=676.8 keV. Note that γ is
								doubly placed. γ is not included in the least-squares fit to obtain the
								level energies.
		923.8 <i>3</i>	10 2	962.940	3+			c
		1806.15 9	100 6	80.661	2+	E2	1.16×10^{-3}	$\alpha(K)=0.000819$ 12; $\alpha(L)=0.0001117$ 16; $\alpha(M)=2.43\times10^{-5}$ 4
								$\alpha(N)=5.62\times10^{-6} 8; \alpha(O)=8.23\times10^{-7} 12; \alpha(P)=4.73\times10^{-8} 7; \alpha(PF)=0.000196 3$
1887.67	7^{+}	135.9 1	81.6	1751.881	6+	E2+M1	0.95 6	$\alpha(K) = 0.67 \ /8; \ \alpha(L) = 0.216 \ 93; \ \alpha(M) = 0.050 \ 23$
					-			$\alpha(N) = 0.011451; \alpha(O) = 0.0014755; \alpha(P) = 3.7 \times 10^{-5}16$
								E : from $(\alpha 2n\gamma)$ γ not reported in $(^{7}\text{Lin}4n\gamma)$
								δ : from $\gamma(\theta)$ in (α 2n γ) smaller $\delta = \pm 0.05.5$ (1982Fi15)
		253 2 1	100.6	1634 415	5+	E2	0 1095	$\alpha(K) = 0.0790 \ 12^{\circ} \ \alpha(L) = 0.0236 \ 4^{\circ} \ \alpha(M) = 0.00548 \ 8$
		20012 1	100 0	100 1110	U		011070	$\alpha(N) = 0.001242.18; \alpha(\Omega) = 0.0001607.23; \alpha(P) = 3.98 \times 10^{-6} 6$
		397 4 3	50.6	1490 39	7+	F2	0.0282	$\alpha(K) = 0.001242.18, \alpha(U) = 0.0001007.25, \alpha(I) = 5.98 \times 10^{-10}$
		577.15	50 0	1190.59	,	112	0.0202	$\alpha(\mathbf{N}) = 0.02217$, $\alpha(\mathbf{D}) = 0.001757$, $\alpha(\mathbf{N}) = 0.0010707070$
		563 2 1	31.6	1324 465	6+	E2	0.01110	$\alpha(N) = 0.0002454, \alpha(O) = 5.52 \times 10^{-5}, \alpha(I) = 1.207 \times 10^{-17}$ $\alpha(K) = 0.00010, 13; \alpha(I) = 0.001625, 23; \alpha(M) = 0.000364, 5$
		505.2 1	51.0	1524.405	0	12	0.01119	$a(\mathbf{K}) = 0.00510 \ 15, \ a(\mathbf{L}) = 0.001025 \ 25, \ a(\mathbf{M}) = 0.000504 \ 5$
		704.0.1	25.6	1100 762	5+	E2	0.00652	$\alpha(N) = 6.54 \times 10^{-5} 12; \ \alpha(O) = 1.101 \times 10^{-5} 17; \ \alpha(P) = 5.14 \times 10^{-5} 0$
		704.9 1	25 0	1162.703	5	E2	0.00033	$u(\mathbf{K}) = 0.00140, u(\mathbf{L}) = 0.0000004 13, u(\mathbf{M}) = 0.000190 3$
1805 42	2^+	259 17 5	122 16	1627 104	1-			$\alpha_{(1V)}=4.51\times10^{-7}$, $\alpha_{(U)}=0.56\times10^{-7}$, $\alpha_{(V)}=5.09\times10^{-7}$
1893.42	Ζ.	238.173	123 10 420 4	103/.190	1 2-			
		141.24 13	42-4	1140.232	∠ 4+			
		034.2 4 1007 0 4	12.3	288 161	4 2+			
		181/ 07C 0	100 ^C 7	80 661	$\frac{2}{2^+}$			L most of the intensity must Be associated with this placement
		1014.72 7	100 /	00.001	4			r_{γ} . most of the intensity must be associated with this pracement.

						Adopted	Levels, G	<mark>ammas</mark> (conti	inued)
						<u>)</u>	v(¹⁶² Dy)	(continued)	
E _i (level)	J_i^{π}	Ε _γ †‡#	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.&	δ ^{&b}	α^{a}	Comments
1901.10	12+	526.2 1	100	1375.08	10+	E2		0.01328	B(E2)(W.u.)=326 +36-30 α (K)=0.01075 15; α (L)=0.00198 3; α (M)=0.000444 7 α (N)=0.0001017 15; α (O)=1.408×10 ⁻⁵ 20; α (P)=6 04×10 ⁻⁷ 9
1910.430	3-	552.486 21	1.0 1	1357.928	3-	[M1,E2]		0.0174 57	$\alpha(K) = 0.0145\ 50;\ \alpha(L) = 0.0022\ 6;\ \alpha(M) = 0.0049\ 11$ $\alpha(N) = 0.00011\ 3;\ \alpha(Q) = 1\ 64\times10^{-5}\ 42;\ \alpha(P) = 8\ 6\times10^{-7}\ 33$
		849.435 ^c 7	80 [°] 2	1060.991	4+	E1		1.70×10^{-3}	$\alpha(K) = 0.001454 \ 21; \ \alpha(L) = 0.000194 \ 3; \ \alpha(M) = 4.22 \times 10^{-5} \ 6$ $\alpha(N) = 9.73 \times 10^{-6} \ 14; \ \alpha(O) = 1.419 \times 10^{-6} \ 20; $ $\alpha(P) = 8.09 \times 10^{-8} \ 12$
		947.484 8	100 3	962.940	3+	E1		1.38×10 ⁻³	$\alpha(K) = 0.001181 \ 17; \ \alpha(L) = 0.0001570 \ 22; \ \alpha(M) = 3.41 \times 10^{-5}$ $\sigma(N) = 7.86 \times 10^{-6} \ 11; \ \alpha(O) = 1.147 \times 10^{-6} \ 16;$
		1022.278 11	93 6	888.161	2+	E1		1.20×10 ⁻³	$\alpha(P)=6.58\times10^{-8} \ 10$ $\alpha(K)=0.001025 \ 15; \ \alpha(L)=0.0001358 \ 19; \ \alpha(M)=2.95\times10^{-5}$ 5 $\alpha(N)=6.80\times10^{-6} \ 10; \ \alpha(O)=9.93\times10^{-7} \ 14;$
1939.65	9-	564.6 2 1018.3 <i>1</i>	16 <i>4</i> 100 <i>12</i>	1375.08 921.28	10 ⁺ 8 ⁺	E1		1.21×10 ⁻³	$\alpha(P) = 5.72 \times 10^{-8} 8$ $\alpha(K) = 0.001032 \ 15; \ \alpha(L) = 0.0001368 \ 20; \ \alpha(M) = 2.97 \times 10^{-5}$ 5 (N) (05, 10-6, 10, (0)) (1001, 10-6, 14)
									α (N)=6.85×10 ° 10; α (O)=1.001×10 ° 14; α (P)=5.76×10 ⁻⁸ 8 Mult.: from (α ,2n γ), α (K)exp=0.0004 1, which gives mult=E1.
1951.391	3+,4+	497.926 12	3.7 6	1453.468	2+	[E2]		0.01532	$\alpha(\mathbf{K})=0.01233 \ l8; \ \alpha(\mathbf{L})=0.00233 \ 4; \ \alpha(\mathbf{M})=0.000524 \ 8 \\ \alpha(\mathbf{N})=0.0001200 \ l7; \ \alpha(\mathbf{O})=1.654\times 10^{-5} \ 24; \\ \alpha(\mathbf{P})=6.90\times 10^{-7} \ l0$
		654.381 5	41 2	1297.006	4-	E1		0.00288	$\alpha(K) = 0.00245 \ 4; \ \alpha(L) = 0.000332 \ 5; \ \alpha(M) = 7.22 \times 10^{-5} \ 11$ $\alpha(N) = 1.663 \times 10^{-5} \ 24; \ \alpha(O) = 2.41 \times 10^{-6} \ 4;$ $\alpha(P) = 1.353 \times 10^{-7} \ 19$
		741.313 13	29.6 15	1210.089	3-	[E1]		0.00223	$\alpha(K) = 0.00190 \ 3; \ \alpha(L) = 0.000256 \ 4; \ \alpha(M) = 5.56 \times 10^{-5} \ 8 \\ \alpha(N) = 1.281 \times 10^{-5} \ 18; \ \alpha(O) = 1.86 \times 10^{-6} \ 3;$
		988.44 <i>4</i>	37 4	962.940	3+	M1(+E2)	<0.87	0.0050 5	$\alpha(P)=1.054\times10^{-7} \ 15$ $\alpha(K)=0.0042 \ 5; \ \alpha(L)=0.00059 \ 6; \ \alpha(M)=0.000128 \ 12$ $\alpha(N)=3.0\times10^{-5} \ 3; \ \alpha(O)=4.4\times10^{-6} \ 5; \ \alpha(P)=2.5\times10^{-7} \ 3$
		1685.79 <i>14</i>	100 20	265.664	4+	(E2)		1.24×10 ⁻³	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000930 \ 13; \ \alpha(\mathrm{L}) = 0.0001278 \ 18; \ \alpha(\mathrm{M}) = 2.79 \times 10^{-5} \\ 4 \\ \alpha(\mathrm{N}) = 6.43 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.40 \times 10^{-7} \ 14; \ \alpha(\mathrm{P}) = 5.37 \times 10^{-8} \\ 8; \ \alpha(\mathrm{IPF}) = 0.0001433 \ 20 \end{array} $

I.

γ (¹⁶²Dy) (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	E_f J	\int_{f}^{π}	Mult. ^{&}	δ ^{&b}	α^{a}	Comments
1959.36	9-	322.2 ^e 583.9 <i>I</i> 1038.0 <i>I</i>	25 3 100 <i>13</i>	1637.92 7 1375.08 10 921.28 8	- 0 ⁺ +]	E1		1.16×10 ⁻³	γ not reported in (α,2nγ). E_{γ},I_{γ} : from (α,2nγ). α(K)=0.000996 14; α(L)=0.0001320 19; α(M)=2.86×10 ⁻⁵ 4 α(N)=6.60×10 ⁻⁶ 10; α(O)=9.65×10 ⁻⁷ 14; α(P)=5.56×10 ⁻⁸ 8 E_{γ} : from (α,2nγ). From 2002Ju08, (⁷ Li,p4nγ), Eγ=1037.8 2. Mult.: from (α,2nγ), α(K)exp≤0.0016, which gives mult=E1.
1963.598	5-	211.711 3	27 9	1751.881 6 ⁻	+ ((E1)		0.0419	Additional information 24. $\alpha(K)=0.03545; \alpha(L)=0.005118; \alpha(M)=0.00111716$
		329.184 <i>1</i>	141 9	1634.415 5 ⁻	+]	E1		0.01368	$\alpha(N)=0.000256 4; \alpha(O)=3.61\times10^{-5} 5; \alpha(P)=1.80\times10^{-6} 3$ $\alpha(K)=0.01160 17; \alpha(L)=0.001630 23; \alpha(M)=0.000356 5$ $\alpha(N)=0.17\times10^{-5} 12$ (O) 1160×10 ⁻⁵ 17 (D) 616×10 ⁻⁷ 0
		387.976 12	4.5 5	1575.623 6	- 1	[M1,E2]		0.044 14	$\alpha(N)=8.1/\times10^{-5} 12; \ \alpha(O)=1.168\times10^{-5} 17; \ \alpha(P)=6.16\times10^{-7} 9$ $\alpha(K)=0.036 \ 13; \ \alpha(L)=0.0060 \ 9; \ \alpha(M)=0.00134 \ 18$ $\alpha(N)=0.00031 \ 5; \ \alpha(O)=4.4\times10^{-5} \ 8; \ \alpha(P)=2.13\times10^{-6} \ 85$
		427.932 2	86.8 14	1535.664 4	+]	E1		0.00732	$\alpha(N)=0.000313, \alpha(O)=4.4\times10^{-8} 8, \alpha(P)=2.13\times10^{-8} 85$ $\alpha(K)=0.006229; \alpha(L)=0.000861 12; \alpha(M)=0.000188 3$ $\alpha(N)=4.32\times10^{-5} 6; \alpha(O)=6.21\times10^{-6} 9; \alpha(P)=3.36\times10^{-7} 5$
		639.144 11	20 3	1324.465 6	+ I	[E1]		0.00302	$\alpha(K) = 4.52 \times 10^{-5}$ 0, $\alpha(G) = 0.21 \times 10^{-5}$ 9, $\alpha(I) = 5.50 \times 10^{-5}$ 1 $\alpha(K) = 0.00258$ 4; $\alpha(L) = 0.000349$ 5; $\alpha(M) = 7.59 \times 10^{-5}$ 11 $\alpha(K) = 1.749 \times 10^{-5}$ 25; $\alpha(G) = 2.54 \times 10^{-6}$ 4; $\alpha(D) = 1.420 \times 10^{-7}$ 20
		666.594 7	57.3 23	1297.006 4	-]	E2(+M1)	>2.3	0.0080 6	$\alpha(N)=1.749\times10^{-2.5}, \alpha(O)=2.54\times10^{-4}, \alpha(I)=1.420\times10^{-2.0}$ $\alpha(K)=0.00665; \alpha(L)=0.001086; \alpha(M)=0.000239 I2$ $\alpha(N)=55\times10^{-5} 3; \alpha(O)=78\times10^{-6} 5; \alpha(P)=38\times10^{-7} 4$
		753.500 11	82 9	1210.089 3	- 1	E2		0.00561	$\alpha(K) = 0.00465 \ 7; \ \alpha(L) = 0.000746 \ 11; \ \alpha(M) = 0.0001653 \ 24 \ \alpha(N) = 3.80 \times 10^{-5} \ 6; \ \alpha(O) = 5.40 \times 10^{-6} \ 8; \ \alpha(P) = 2.67 \times 10^{-7} \ 4$
		780.77 4	27 5	1182.763 5	+	[E1]		0.00201	$\alpha(K) = 0.001715 \ 24; \ \alpha(L) = 0.000230 \ 4; \ \alpha(M) = 5.00 \times 10^{-5} \ 7 \ \alpha(N) = 1.153 \times 10^{-5} \ 17; \ \alpha(O) = 1.678 \times 10^{-6} \ 24; \ \alpha(P) = 9.52 \times 10^{-8} \ 14$
		902.610 20	68 5	1060.991 4	+ I	[E1]		1.51×10^{-3}	$\alpha(K) = 0.001294 \ 19; \ \alpha(L) = 0.0001725 \ 25; \ \alpha(M) = 3.74 \times 10^{-5} \ 6 \ \alpha(N) = 8.64 \times 10^{-6} \ 12; \ \alpha(O) = 1.260 \times 10^{-6} \ 18; \ \alpha(P) = 7.21 \times 10^{-8} \ 10$
		1415.30 <i>18</i>	100 27	548.520 6	+	[E1]		8.12×10 ⁻⁴	$\alpha(K) = 0.000574 \ 8; \ \alpha(L) = 7.52 \times 10^{-5} \ 11; \ \alpha(M) = 1.629 \times 10^{-5} \ 23$ $\alpha(N) = 3.76 \times 10^{-6} \ 6; \ \alpha(O) = 5.51 \times 10^{-7} \ 8; \ \alpha(P) = 3.22 \times 10^{-8} \ 5;$ $\alpha(IPF) = 0.0001415 \ 20$
1974.10	4-	678.05 ^c 13 911.86 22 1010.09 19	82 ^c 8 61 8 100 10	1297.006 4 ⁻ 1060.991 4 ⁻ 962.940 3 ⁻	- + +				
1982.46	2+	1716.4 <i>5</i> 1902.1 <i>2</i>	16 5 100 7	265.664 4 ⁻ 80.661 2 ⁻	+ +				I _γ : from (n,n'γ). I _γ : from (n,n'γ). From β^- decay, I _γ (1902)/I _γ (1982)=1.03. From (n,γ), this ratio is 0.17, but I _γ (1902γ) is listed there as 2.7 30, so there may Be a misprint.
1985.88	8+	1982.2 2 1064.6 2	99 <i>7</i> 100	0.0 0 ⁻ 921.28 8 ⁻	+ +]	M1		0.00457	I _γ : from (n,n'γ). B(M1)(W.u.)=0.0058 α (K)=0.00388 6; α (L)=0.000536 8; α (M)=0.0001169 17 α (N)=2.70×10 ⁻⁵ 4; α (O)=3.98×10 ⁻⁶ 6; α (P)=2.34×10 ⁻⁷ 4 B(M1)(W.u.) is that reported by 2001Wu05, in

From ENSDF

					Adopte	ed Levels, Ga	ammas (continued)
						γ (¹⁶² Dy) (continued)
E _i (level)	J_i^{π}	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	E_f J	Mult.&	α^{a}	Comments
							$(^{162}\text{Dy}, ^{162}\text{Dy'}\gamma)$. Mult.: from $(\alpha, 2n\gamma), \alpha(K)\exp=0.0050 \ 9$, which gives mult=M1. 2001Wu05 state that the M1 component dominates the $\Delta J=0$ transitions connecting the g s, and S bands. A small E2 component, of course, is not ruled out
1999.33	2+	790.6 2 1108.6 ^c 3 1918.4 2	57 <i>11</i> 62 ^c <i>12</i> 100 9 23 ^d 8	1210.089 3 888.161 2 80.661 2	- + +		g
2009.796		339.82 372.597 <i>3</i>	1.6 27.0 5	0.0 0 1670.505 8 1637.196 1	+ - E2	0.0339	α (K)=0.0264 4; α (L)=0.00587 9; α (M)=0.001338 19 α (N)=0.000305 5; α (O)=4.10×10 ⁻⁵ 6; α (P)=1.424×10 ⁻⁶ 20
		477.50 <i>10</i> 686.15 ^c 6 713.0 6 798.52 826.77	$\begin{array}{c} 33 \ 3 \\ 4.6^{c} \ 13 \\ 100 \ 5 \\ 5.9 \\ 6.8 \\ 65^{c} \ 11 \end{array}$	1530.127 6 1324.465 6 1297.006 4 1210.089 3 1182.763 5	- - - -		
2040.97	8+	1402.09 8 153.4 <i>I</i> 289.0 <i>I</i>	100 <i>30</i> 85 <i>15</i>	1887.67 7 1751.881 6	+ E2+M1 + E2	0.65 7 0.0724	$\alpha(K)=0.47 \ 13; \ \alpha(L)=0.135 \ 48; \ \alpha(M)=0.031 \ 12$ $\alpha(N)=0.0071 \ 27; \ \alpha(O)=9.3\times10^{-4} \ 28; \ \alpha(P)=2.6\times10^{-5} \ 11$ $\alpha(K)=0.0538 \ 8; \ \alpha(L)=0.01438 \ 21; \ \alpha(M)=0.00332 \ 5$
2053.541	5-	550.6 2 302.880 ^c 20 536.8 3 663.41 728.384 ^c 15	15 4.0 ^c 13 21 19 4.0 89 ^c 9	1490.39 7 1751.881 6 1518.426 5 1390.513 5 1324.465 6	+ - - +		$\alpha(N)=0.000753 \ II; \ \alpha(O)=9.87\times10^{-3} \ I4; \ \alpha(P)=2.78\times10^{-6} \ 4$
2071.95	(4)	1505.2 7 1786.9 3 243.95 747.7 1 1108.85 18	75 13 10.4 6 100 11 3.3 124 15 64 9	$\begin{array}{c} 1060.991 \\ 548.520 \\ 6\\ 265.664 \\ 4\\ 1826.753 \\ 4\\ 1324.465 \\ 962.940 \\ 3\end{array}$	- - - - M1	0.00414	$\alpha(K)=0.00352\ 5;\ \alpha(L)=0.000485\ 7;\ \alpha(M)=0.0001059\ 15$ $\alpha(N)=2\ 45\times10^{-5}\ 4;\ \alpha(O)=3\ 61\times10^{-6}\ 5;\ \alpha(P)=2\ 12\times10^{-7}\ 3;$
2080.03	(2,3)	1523.3 <i>10</i> 1989.9 <i>3</i> 216.193 ^{<i>c</i>} <i>13</i> 240.1 <i>2</i> 1114.3 <i>3</i>	10 8 100 <i>I</i> 2 15.5 ^{<i>c</i>} 5 455 24 100 2 <i>I</i>	548.520 6 80.661 2 1863.83 2 1840.486 3 962.940 3	F - F		$\alpha(\text{IPF})=4.52\times10^{-7} 7$

From ENSDF

I.

	Adopted Levels, Gammas (continued)													
						$\gamma(^{162}\text{Dy})$ (cont	inued)							
E _i (level)	J_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	$E_f \qquad J_f^{\pi}$	Mult.&	α^{a}	Comments							
2080.03	(2,3)	1814.62 [°] 7	389 ^c 32	265.664 4+	E2	1.15×10 ⁻³	$\alpha(K)=0.000812 \ 12; \ \alpha(L)=0.0001107 \ 16; \ \alpha(M)=2.41\times10^{-5} \ 4$ $\alpha(N)=5.57\times10^{-6} \ 8; \ \alpha(O)=8.15\times10^{-7} \ 12; \ \alpha(P)=4.69\times10^{-8} \ 7; \ \alpha(IPF)=0.000199 \ 3$ Most of the intensity of this γ is to be associated with the other placement.							
2007 10	10+	1999.5 ^d 5 2079.8 5	342 ^d 18 55 11	$\begin{array}{cccc} 80.661 & 2^+ \\ 0.0 & 0^+ \\ 1670.505 & 0^+ \end{array}$										
2087.49	10*	417.0 <i>I</i> 712.5 <i>I</i> 1166.3 2	100 3 57 3 35 3	1670.505 8 ⁺ 1375.08 10 921.28 8 ⁺	+									
2100.66	9-	725.5 2 1179.6 2	18 5 100 23	1375.08 10 921.28 8 ⁺	+ E1	9.39×10 ⁻⁴	$\alpha(K)=0.000790 \ 11; \ \alpha(L)=0.0001041 \ 15; \ \alpha(M)=2.26\times10^{-5} \ 4$ $\alpha(N)=5.21\times10^{-6} \ 8; \ \alpha(O)=7.62\times10^{-7} \ 11; \ \alpha(P)=4.42\times10^{-8} \ 7; \ \alpha(IPF)=1.612\times10^{-5} \ 24$ Mult.: from (α ,2n γ), $\alpha(K)$ exp=0.0010 3, which gives mult=E1.							
2103.48	(2+)	358.74 468.15 <i>31</i> 529.11 <i>7</i> 1142.3 <i>3</i> 2024.9 <i>11</i> 2104 5 <i>7</i>	0.5 16 4 155 17 100 13 43 20 17 12	$\begin{array}{ccccccc} 1745.716 & 1^{+} \\ 1634.415 & 5^{+} \\ 1574.293 & 4^{+} \\ 962.940 & 3^{+} \\ 80.661 & 2^{+} \\ 0 & 0 & 0^{+} \end{array}$										
2110.70	10-	151.6 <i>I</i> 171.0 <i>I</i> 303.2 <i>I</i>	32 <i>3</i> 21 <i>3</i> 100 <i>3</i>	1959.36 9 ⁻ 1939.65 9 ⁻ 1807.56 8 ⁻			I _γ : note: I _γ (171)/I _γ (303)=1.54 in (α ,2nγ).							
2120.717	(4 ⁻)	120.06 486.322 ^c 8 584.05 6 601.41 1156.2.2	7.3 13 3.0c 5 100 11 0.93 14 6	$\begin{array}{c} 2000.7\\ 1634.415 & 5^{+}\\ 1535.664 & 4^{+}\\ 1518.426 & 5^{-}\\ 962.940 & 3^{+} \end{array}$										
2125.212	0+	399.3 ^c 4 491.03 ^c 10 849.435 ^c 7 2046.6 3	$6^{c} 3$ $45^{c} 4$ $100^{c} 10$ 59 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
2128.6	1-	980.4 7 2047.9 <i>4</i>	9 <i>3</i> 100 <i>3</i>	1148.232 2 ⁻ 80.661 2 ⁺										
2129.497	(2+)	276.92 302.880 ^c 20 399.3 ^c 4 440.9 3 458.991 ^c 2 491.03 ^c 10	0.30 3.1 ^c 10 6 ^c 3 9 3 24 ^c 3 48 ^c 4	1851.811 4 1826.753 4 1728.318 2 ⁺ 1691.340 2 1670.505 8 ⁺ 1637.92 7										

¹⁶²₆₆Dy₉₆-37

From ENSDF

γ ⁽¹⁶²Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	$E_f J_f^{\pi}$	Mult.&	α^{a}	Comments
2129.497	(2^{+})	769.0 <i>1</i>	100 4	1357.928 3-			
		2048.1 <i>3</i>	19 4	80.661 2+			
		2129.3 20	15 4	$0.0 0^+$			
2148.681	(2)	321.928 [°] 2	C	1826.753 4-			I_{γ} : most of the intensity of this peak is associated with the other placement. See the comment in the (n,γ) data set.
		578.52	12	1570.912 3-			
		1088.56	88	1060.991 4+			
		1186.8 6	$1.2 \times 10^2 5$	962.940 3+			
		1261.6 4	100 21	888.161 2+			
2163.3	1,2,3	1014.9 6	100 11	1148.232 2-			
		2082.8 6	54 <i>4</i>	80.661 2+			
2181.0	4+	1218.0	113 24	962.940 3+			
		1292.8	100	888.161 2+			B(E2)(W.u.)=2.8 8
							B(E2)(W.u.) is from 2001Wu05 (162 Dy, 162 Dy' γ).
2187.9	8+	146.4 <i>1</i>	1.6 2	2040.97 8+	[M1]	0.810	α (K)=0.682 <i>10</i> ; α (L)=0.0999 <i>15</i> ; α (M)=0.0219 <i>3</i>
							α (N)=0.00507 8; α (O)=0.000743 11; α (P)=4.24×10 ⁻⁵ 6
							$B(M1)(W.u.) = 7.3 \times 10^{-9} 9$
		228.6 1	1.5 3	1959.36 9-	[E1]	0.0343	α (K)=0.0290 4; α (L)=0.00417 6; α (M)=0.000911 13
							α (N)=0.000209 3; α (O)=2.95×10 ⁻⁵ 5; α (P)=1.489×10 ⁻⁶ 21
							$B(E1)(W.u.) = 1.86 \times 10^{-11} 37$
		248.0 1	0.4 1	1939.65 9-	[E1]	0.0278	$\alpha(K)=0.0235$ 4; $\alpha(L)=0.00336$ 5; $\alpha(M)=0.000735$ 11
							$\alpha(N)=0.0001684\ 24;\ \alpha(O)=2.39\times10^{-5}\ 4;\ \alpha(P)=1.219\times10^{-6}\ 18$
							$B(E1)(W.u.)=3.9\times10^{-12}$ 10
		300.3 1	4.0 <i>3</i>	1887.67 7+	[M1]	0.1126	$\alpha(K)=0.0951$ 14; $\alpha(L)=0.01370$ 20; $\alpha(M)=0.00300$ 5
							$\alpha(N)=0.000695 \ 10; \ \alpha(O)=0.0001019 \ 15; \ \alpha(P)=5.87\times10^{-6} \ 9$
							$B(M1)(W.u.)=2.11\times10^{-9}$ 18
		341.8 <i>I</i>	0.9 2	1845.53 8-	[E1]	0.01248	$\alpha(K)=0.01058\ 15;\ \alpha(L)=0.001485\ 21;\ \alpha(M)=0.000324\ 5$
							$\alpha(N)=7.44\times10^{-5}$ 11; $\alpha(O)=1.065\times10^{-5}$ 15; $\alpha(P)=5.64\times10^{-7}$ 8
							$B(E1)(W.u.)=3.3\times10^{-12}$ 7
		380.2 1	65 2	1807.56 8-	[E1]	0.00966	$\alpha(K)=0.00820$ 12; $\alpha(L)=0.001144$ 16; $\alpha(M)=0.000249$ 4
							$\alpha(N) = 5.73 \times 10^{-5} 8$; $\alpha(O) = 8.23 \times 10^{-6} 12$; $\alpha(P) = 4.40 \times 10^{-7} 7$
							$B(E1)(W_{III})=1.75\times10^{-10}$ 7
		435.4 1	1.3.2	1751.881 6+	[E2]	0.0219	$\alpha(K)=0.01739$ 25; $\alpha(L)=0.00352$ 5; $\alpha(M)=0.000798$ 12
							$\alpha(N) = 0.000182 \ 3^{\circ} \alpha(O) = 2.48 \times 10^{-5} \ 4^{\circ} \alpha(P) = 9.59 \times 10^{-7} \ 14$
							$B(E_2)(W_{\rm H}) = 5.8 \times 10^{-7} \ 9$
		504 3 1	100.7	1683 35 7-	[E1]	0.00504	$\alpha(K) = 0.00429.6$; $\alpha(L) = 0.000589.9$; $\alpha(M) = 0.0001282.18$
		501.51	100 1	1005.55 /	[[1]]	0.00001	$\alpha(N) = 2.95 \times 10^{-5} 5$; $\alpha(\Omega) = 4.26 \times 10^{-6} 6$; $\alpha(P) = 2.34 \times 10^{-7} 4$
							$B(F1)(W_{H}) = 1.153 \times 10^{-10} \pm 47 - 43$
		550 3 1	621	1637 02 7-	[F1]	0.00/16	$\alpha(K) = 0.00354.5; \alpha(I) = 0.000484.7; \alpha(M) = 0.0001053.15$
		550.5 1	0.2 4	1037.74 /	[[1]]	0.00410	$u(\mathbf{x}) = 0.0003 \pm 3, u(\mathbf{L}) = 0.0000 \pm 7, u(\mathbf{w}) = 0.0001033 13$

						Adopted	Levels, Gam	nas (continued)
							$\gamma(^{162}\text{Dy})$ (con	tinued)
E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	\mathbf{E}_{f}	J_f^{π}	Mult.&	α ^{<i>a</i>}	Comments
2187.9	8+	1266.5 2	0.6 2	921.28	8+	[M1]	0.00303	$\alpha(N)=2.42\times10^{-5} 4; \ \alpha(O)=3.51\times10^{-6} 5; \ \alpha(P)=1.94\times10^{-7} 3$ B(E1)(W.u.)=5.50×10 ⁻¹² +41-39 $\alpha(K)=0.00257 4; \ \alpha(L)=0.000352 5; \ \alpha(M)=7.68\times10^{-5} 11$ $\alpha(N)=1.778\times10^{-5} 25; \ \alpha(O)=2.62\times10^{-6} 4; \ \alpha(P)=1.543\times10^{-7} 22;$ $\alpha(IPF)=1.618\times10^{-5} 23$ B(M1)(Wu)=4.2×10^{-12} +13 -14
		1639.2 2	1.0 2	548.520	6+	[E2]	1.28×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000980 \ 14; \ \alpha(\mathbf{L}) = 0.0001350 \ 19; \ \alpha(\mathbf{M}) = 2.94 \times 10^{-5} \ 5 \\ &\alpha(\mathbf{N}) = 6.80 \times 10^{-6} \ 10; \ \alpha(\mathbf{O}) = 9.93 \times 10^{-7} \ 14; \ \alpha(\mathbf{P}) = 5.66 \times 10^{-8} \ 8; \\ &\alpha(\mathbf{IPF}) = 0.0001243 \ 18 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 5.9 \times 10^{-10} \ 12 \end{aligned}$
2189.71	(2^{+})	1226.4 2	66 19	962.940	3+			
		2110.0 4	100 16	80.661	2^{+}			
		2190.8 6	22 9	0.0	0^{+}			
2211.59	9+	170.7 2	63 7	2040.97	8+	E2+M1	0.47 7	$\alpha(K)=0.349\ 96;\ \alpha(L)=0.090\ 26;\ \alpha(M)=0.0207\ 66$ $\alpha(N)=0.0047\ 15;\ \alpha(O)=0.00062\ 15;\ \alpha(P)=1.96\times10^{-5}\ 80$
		323.9 1	100 7	1887.67	7+	E2	0.0512	$\alpha(K)=0.0389\ 6;\ \alpha(L)=0.00953\ 14;\ \alpha(M)=0.00219\ 3$ $\alpha(N)=0.000497\ 7;\ \alpha(O)=6.59\times10^{-5}\ 10;\ \alpha(P)=2.05\times10^{-6}\ 3$
		333.9 2	30 4	1878.05	9+	E2+M1	0.066 20	$\alpha(K)=0.054 \ 18; \ \alpha(L)=0.0094 \ 9; \ \alpha(M)=0.00211 \ 16$ $\alpha(N)=0.00048 \ 4; \ \alpha(O)=6.8\times10^{-5} \ 9; \ \alpha(P)=3.2\times10^{-6} \ 13$
		541.4 2	11	1670.505	8+			
2234.18	10^{-}	356.2 1	62 <i>3</i>	1878.05	9+			
		388.5 1	100 3	1845.53	8-			
2262.30	10^{+}	276.6 ^e 2	<50	1985.88	8+			
		887.3 1	100	1375.08	10+	M1	0.00710	α (K)=0.00603 9; α (L)=0.000837 12; α (M)=0.000183 3 α (N)=4.23×10 ⁻⁵ 6; α (O)=6.22×10 ⁻⁶ 9; α (P)=3.64×10 ⁻⁷ 6 Mult.: from (α ,2n γ), α (K)exp=0.0082 12, which gives mult=M1.
		1340.9 5	≤77	921.28	8^{+}			from $(\alpha, 2n\gamma)$. γ not reported in $(^7\text{Li}, p4n\gamma)$.
2280.88	11-	905.8 1	100	1375.08	10+	E1	1.50×10^{-3}	$\alpha(K)=0.001286 \ 18; \ \alpha(L)=0.0001713 \ 24; \ \alpha(M)=3.72\times10^{-5} \ 6 \ \alpha(N)=8.58\times10^{-6} \ 12; \ \alpha(O)=1.251\times10^{-6} \ 18; \ \alpha(P)=7.16\times10^{-8} \ 10 \ Mult.: from (\alpha, 2n\gamma), \ \alpha(K)exp\leq0.0013, which gives mult=E1.$
2292.4	5+	1231.4 1329.4	$2.2 \times 10^2 7$	1060.991 962 940	4+ 3+			
2314.1		2233.3 5 2315 1 [°] 12	100 16 97 ^C 30	80.661	2^+ 0^+			
2330.95	11-	370.9 <i>1</i> 430.4 2	53 6 12	1959.36 1901.10	9- 12+			γ not reported in (α ,2n γ). I _{γ} : from I γ (430.4 γ)/I γ (957.0 γ) in (α ,2n γ) and I γ (955.8 γ). γ not reported in the heavy-ion studies.
		955.8 1	100 6	1375.08	10^{+}			r in the new j for states.
2337.35	11^{+}	459.1 <i>1</i>	100 4	1878.05	9+			
		962.3 1	46 2	1375.08	10^{+}			

¹⁶²₆₆Dy₉₆-39

From ENSDF

¹⁶²Dy₉₆-39

γ ⁽¹⁶²Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.&	α^{a}	Comments
2368.9 2371.3	(9 ⁺) 1 ⁻ ,2,3	181 1161.1 6 1223.0 6 1483.3 5 2290.2 10	100 52 10 100 13 35 10 16 3	2187.9 1210.089 1148.232 888.161 80.661	8 ⁺ 3 ⁻ 2 ⁺ 2 ⁺ 2 ⁺			
2394.85	1+	2314.1 2	51 3	80.661	2+	[M1]	1.26×10 ⁻³	B(M1)(W.u.)=0.0540 +47-43 α (K)=0.000640 9; α (L)=8.63×10 ⁻⁵ 12; α (M)=1.88×10 ⁻⁵ 3 α (N)=4.34×10 ⁻⁶ 6; α (O)=6.41×10 ⁻⁷ 9; α (P)=3.81×10 ⁻⁸ 6; α (IPF)=0.000514 8
		2394.9 2	100 5	0.0	0+	M1	1.25×10 ⁻³	B(M1)(W.u.)=0.096 +7-6 α (K)=0.000593 9; α (L)=7.98×10 ⁻⁵ 12; α (M)=1.737×10 ⁻⁵ 25 α (N)=4.02×10 ⁻⁶ 6; α (O)=5.93×10 ⁻⁷ 9; α (P)=3.52×10 ⁻⁸ 5; α (IPF)=0.000560 8 B(M1)(W.u.) computed directly from B(M1)↑.
2398.27	10^{+}	186.6 ^e 357.3 2	100	2211.59 2040.97	9+ 8+			E γ and placement is from $(\alpha, 2n\gamma)$. E _v : from $(\alpha, 2n\gamma)$.
2421.0	6+	1238.2	100	1182.763	5+			
2482.34	12-	151.0 <i>I</i> 202.0 <i>I</i> 371.0 <i>I</i>	11 2 20 2 100 5	2330.95 2280.88 2110.70	11 ⁻ 11 ⁻ 10 ⁻			
2491.65	14 ⁺	590.6 1	100 5	1901.10	$10^{-10^{+}}$	[E2]	0.00995	B(E2)(W.u.)=330 +42-33 α (K)=0.00812 12; α (L)=0.001421 20; α (M)=0.000318 5 α (N)=7.29×10 ⁻⁵ 11; α (O)=1.018×10 ⁻⁵ 15; α (P)=4.61×10 ⁻⁷ 7
2503.83	11-	403.3 2 602.7 2	<33 36 7	2100.66 1901.10	9- 12+	51	1.00 10-3	E_{γ}, I_{γ} : from ($\alpha, 2n\gamma$). γ not reported in the heavy-ion studies.
		1129.0 2	100	1375.08	10+	EI	1.00×10^{-5}	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.000855 \ 12; \ \alpha(\mathbf{L}) = 0.0001128 \ 16; \ \alpha(\mathbf{M}) = 2.45 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 5.65 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 8.26 \times 10^{-7} \ 12; \ \alpha(\mathbf{P}) = 4.78 \times 10^{-8} \ 7; \\ &\alpha(\mathbf{IPF}) = 4.47 \times 10^{-6} \ 7 \end{aligned} $
								Mult.: from $(\alpha, 2n\gamma)$, $\alpha(K)exp=0.0008 \ 2$, which is interpreted as E1, but peak is doublet including an E1 γ from the 1210 level.
2510.3		2429.6 10	100	80.661	2^{+}			
2520.4	1-	2440	100	80.661	2+	[E1]	1.14×10^{-3}	B(E1)(W.u.)=0.00113 +11-9 α (K)=0.000237 4; α (L)=3.06×10 ⁻⁵ 5; α (M)=6.61×10 ⁻⁶ 10 α (N)=1.528×10 ⁻⁶ 22; α (O)=2.25×10 ⁻⁷ 4; α (P)=1.333×10 ⁻⁸ 19; α (IPF)=0.000863 12
		2520	84 6	0.0	0+	E1	1.18×10 ⁻³	B(E1)(W.u.)=8.6×10 ⁻⁴ +8-7 α (K)=0.000226 4; α (L)=2.91×10 ⁻⁵ 4; α (M)=6.29×10 ⁻⁶ 9 α (N)=1.452×10 ⁻⁶ 21; α (O)=2.14×10 ⁻⁷ 3; α (P)=1.269×10 ⁻⁸ 18; α (IPF)=0.000912 13 B(E1)(W.u.) computed directly from B(E1)↑.

						Adopted L	evels, Gamma	as (continued)
						γ	(¹⁶² Dy) (contin	nued)
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger \#}$	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.&	α^{a}	Comments
2534.86	12+	272.6 ^e 2	6.2 11	2262.30	10+	[E2]	0.0868	B(E2)(W.u.)= $2.4 \times 10^2 + 3-4$ α (K)= $0.0637 \ 9; \ \alpha$ (L)= $0.0179 \ 3; \ \alpha$ (M)= $0.00413 \ 6$ α (N)= $0.000937 \ 14; \ \alpha$ (O)= $0.0001221 \ 18; \ \alpha$ (P)= $3.26 \times 10^{-6} \ 5$ I _{γ} : computed from I γ (272 γ)/I γ (447 γ) in (¹⁶² Dy, ¹⁶² Dy' γ) and I γ (447). 2002Ju08, (⁷ Li,p4n γ), report I γ <15. B(E2)(Wu) is from 2001Wu05 (¹⁶² Dy' γ)
		447.3 1	100 3	2087.49	10+	[E2]	0.0204	B(E2)(W.u.) is from 2001Wu05 (1 by, 1 by y). B(E2)(W.u.)= $3.2 \times 10^2 + 1 - 11$ $\alpha(K)=0.01621 \ 23; \ \alpha(L)=0.00324 \ 5; \ \alpha(M)=0.000732 \ 11$ $\alpha(N)=0.0001672 \ 24; \ \alpha(O)=2.28 \times 10^{-5} \ 4; \ \alpha(P)=8.97 \times 10^{-7} \ 13$ B(E2)(W.u.) is from 2001Wu05 (162 Dy, 162 Dy' γ).
		633.6 1	74 3	1901.10	12^{+}			
		1160.1 2	29 <i>3</i>	1375.08	10+			I _γ : from 2002Ju08, (⁷ Li,p4nγ). 2001Wu05, in (¹⁶² Dy, ¹⁶² Dy'γ), report Iγ(1160γ)/Iγ(633γ)=1.36 <i>16</i> .
2537.4	1	2457	26 13	80.661	2+			
2551 2		2537	100	0.0	0^+ 2+			
2334.3		2475.00	47 13	0.001	$\frac{2}{0^{+}}$			
2567.9	(10 ⁺)	199 380	17 15	2368.9 2187.9	(9 ⁺) 8 ⁺			
2569.4	1+	2489	39 8	80.661	2+	[M1]	1.25×10 ⁻³	B(M1)(W.u.)=0.0102 <i>18</i> α (K)=0.000544 <i>8</i> ; α (L)=7.32×10 ⁻⁵ <i>11</i> ; α (M)=1.592×10 ⁻⁵ <i>23</i> α (N)=3.68×10 ⁻⁶ <i>6</i> ; α (O)=5.43×10 ⁻⁷ <i>8</i> ; α (P)=3.23×10 ⁻⁸ <i>5</i> ; α (IPF)=0.000613 <i>9</i>
		2569	100	0.0	0+	M1	1.25×10 ⁻³	B(M1)(W.u.)=0.0239 +32-25 α (K)=0.000507 8; α (L)=6.82×10 ⁻⁵ 10; α (M)=1.482×10 ⁻⁵ 21 α (N)=3.43×10 ⁻⁶ 5; α (O)=5.06×10 ⁻⁷ 7; α (P)=3.01×10 ⁻⁸ 5; α (IPF)=0.000657 10 B(M1)(W.u.) computed directly from B(M1)↑.
2601.32	11+	263.3 2 389.9 <i>1</i>	<83 100 <i>17</i>	2337.35 2211.59	11 ⁺ 9 ⁺			
2622.78	12+	360.8 [@] 2	8×10 ¹ [@] 4	2262.30	10+	[E2]	0.0372	B(E2)(W.u.)=9×10 ¹ +2-7 α (K)=0.0288 4; α (L)=0.00655 10; α (M)=0.001494 22 α (N)=0.000340 5; α (O)=4.56×10 ⁻⁵ 7; α (P)=1.548×10 ⁻⁶ 22 B(E2)(W.u.) is from 2001Wu05 (¹⁶² Dy, ¹⁶² Dy' γ).
		535.5 [@] 1	6.6×10 ² [@] 9	2087.49	10+	[E2]	0.01270	B(E2)(W.u.)=95 +8-29 α (K)=0.01029 15; α (L)=0.00188 3; α (M)=0.000422 6 α (N)=9.66×10 ⁻⁵ 14; α (O)=1.339×10 ⁻⁵ 19; α (P)=5.79×10 ⁻⁷ 9 B(E2)(W.u.) is from 2001Wu05 (¹⁶² Dy ¹⁶² Dy'y)
		$721.7^{@}$ 1	100@	1001 10	12+			$\Sigma_{(2-)}(\dots, m)$ is non-zoot (D_j, D_j).

 $^{162}_{66}\mathrm{Dy}_{96}$ -41

From ENSDF

 $^{162}_{66}\mathrm{Dy}_{96}$ -41

I.

Adopted Levels, Gammas (continued) γ ⁽¹⁶²Dy) (continued)</sup> $E_{\gamma}^{\dagger \ddagger \#}$ Mult.& α^{a} J_{r}^{π} Comments E_i (level) J^{π} \mathbf{E}_{f} 1247.9[@] 2 3.4×10²[@] 5 12^{+} 1375.08 10^{+} 2622.78 0^{+} 2663.0 8 100 0^{+} 2663.0 0.0 2670.65 12^{-} 333.6 2 19 2337.35 11^{+} E_{γ}, I_{γ} : values from ($\alpha, 2n\gamma$). γ not reported in the heavy-ion studies. 2234.18 436.4 1 100 10^{-} 2682.59 13^{-} 402.0 1 42 3 2280.88 11-781.6 1 100 3 1901.10 12^{+} 2695.9 (10^{+}) 327 100 2368.9 (9^+) 2777.99 13^{-} 446.1 2 <25 2330.95 11-877.0 1 100 5 1901.10 12^{+} (11^{+}) 2784.9 217 2567.9 (10^{+}) 416 2368.9 (9^+) 0^{+} 2802.7 2721.3 9 50 19 80.661 2⁺ 2803.2 8 100 19 0.0 0^{+} 2815 1 90 30 80.661 2+ 2735 2815 100 0.0 0^{+} 2817 12^{+} 419 100 2398.27 10^{+} 2859.63 13^{+} 522.2 1 100 3 11^{+} 2337.35 12^{+} 958.5 1 32 *3* 1901.10 1^{+} 2900.0 2819.0 4 46 2 80.661 2+ [M1] 1.27×10^{-3} B(M1)(W.u.)=0.152 11 $\alpha(K)=0.000413$ 6; $\alpha(L)=5.54\times10^{-5}$ 8; $\alpha(M)=1.204\times10^{-5}$ 17 $\alpha(N)=2.79\times10^{-6} 4; \alpha(O)=4.11\times10^{-7} 6; \alpha(P)=2.45\times10^{-8} 4;$ α(IPF)=0.000790 11 I_{γ} : from (γ, γ') . Other: 56 25 from $(n, n'\gamma)$. 2900.3 4 100 0^{+} M1 1.29×10^{-3} B(M1)(W.u.)=0.302 19 0.0 $\alpha(K)=0.000389~6$; $\alpha(L)=5.20\times10^{-5}~8$; $\alpha(M)=1.131\times10^{-5}~16$ $\alpha(N)=2.62\times10^{-6}$ 4; $\alpha(O)=3.86\times10^{-7}$ 6; $\alpha(P)=2.30\times10^{-8}$ 4; α (IPF)=0.000832 12 B(M1)(W.u.) computed directly from $B(M1)\uparrow$. 2909.4 2829 100 28 80.661 2+ 1 2909 56 0.0 0^{+} 2919.55 14^{-} 237.0 2 < 102682.59 13-437.2 1 100 4 2482.34 12^{-} 1.32×10^{-3} $B(E1)(W.u.)=1.76\times10^{-4}+27-24$ 1^{-} 80.661 2+ 2929.4 2849 56.8 [E1] $\alpha(K)=0.000187 \ 3; \ \alpha(L)=2.41\times10^{-5} \ 4; \ \alpha(M)=5.20\times10^{-6} \ 8$ $\alpha(N)=1.202\times10^{-6}$ 17; $\alpha(O)=1.771\times10^{-7}$ 25; $\alpha(P)=1.053\times10^{-8}$ 15; α (IPF)=0.001104 16 $B(E1)(W.u.)=2.90\times10^{-4}+38-31$ 2929 100 0.0 0^{+} E1 1.35×10^{-3} $\alpha(K)=0.000180 \ 3; \ \alpha(L)=2.31\times10^{-5} \ 4; \ \alpha(M)=4.99\times10^{-6} \ 7$ $\alpha(N)=1.153\times10^{-6}$ 17; $\alpha(O)=1.698\times10^{-7}$ 24; $\alpha(P)=1.010\times10^{-8}$ 15; α (IPF)=0.001143 16

From ENSDF

 $^{162}_{66} Dy_{96}$ -42

	Adopted Levels, Gammas (continued)													
							$\gamma(^{162}]$	Dy) (continued)						
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.&	α^{a}	Comments						
2934.55	14+	311.6 2	5.1 8	2622.78	12+	[E2]	0.0575	B(E2)(W.u.)=53 +65-19 α (K)=0.0434 7; α (L)=0.01094 16; α (M)=0.00251 4 α (N)=0.000571 9; α (O)=7.54×10 ⁻⁵ 11; α (P)=2.28×10 ⁻⁶ 4 I _{γ} : from 2001Wu05 (1620y, ¹⁶² Dy' γ). 2002Ju08, (⁷ Li,p4n γ), report I γ <13. B(E2)(W.u.) is from 2001Wu05 (¹⁶² Dy, ¹⁶² Dy' γ).						
		399.8 1	100 3	2534.86	12+	[E2]	0.0278	B(E2)(W.u.)=3.1×10 ² +8-11 α (K)=0.0218 3; α (L)=0.00464 7; α (M)=0.001055 15 α (N)=0.000241 4; α (O)=3.25×10 ⁻⁵ 5; α (P)=1.189×10 ⁻⁶ 17 B(E2)(W.u.) is from 2001Wu05 (¹⁶² Dy, ¹⁶² Dy' γ).						
2963.94	13-	1033.8 2 460.2 <i>I</i> 1062.6 2	16 3 100 9 100 9	2491.05 1901.10 2503.83 1901.10	14^{+} 12^{+} 11^{-} 12^{+} 10^{+}									
2965	1+	1588.0 5 2885	42 10	80.661	10 ⁺ 2 ⁺	[M1]	1.28×10 ⁻³	$\begin{array}{l} \text{P} \text{ praced only by 2006Ap01 } (\alpha, 2n\gamma). \\ \text{B}(\text{M1})(\text{W.u.}) = 0.0082 + 20 - 18 \\ \alpha(\text{K}) = 0.000393 \ 6; \ \alpha(\text{L}) = 5.26 \times 10^{-5} \ 8; \ \alpha(\text{M}) = 1.144 \times 10^{-5} \ 16 \\ \alpha(\text{N}) = 2.65 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 3.91 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 2.33 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 0.000824 \\ 12 \end{array}$						
		2965	100	0.0	0+	M1	1.30×10 ⁻³	B(M1)(W.u.)=0.0180 +37-25 $\alpha(K)=0.000370 \ 6; \ \alpha(L)=4.96\times10^{-5} \ 7; \ \alpha(M)=1.077\times10^{-5} \ 15$ $\alpha(N)=2.49\times10^{-6} \ 4; \ \alpha(O)=3.68\times10^{-7} \ 6; \ \alpha(P)=2.19\times10^{-8} \ 3; \ \alpha(IPF)=0.000866$ 13 B(M1)(W.u.) computed directly from B(M1) ⁺						
3052.82	13+	451.5 <i>1</i>	100	2601.32	11+			D(W1)(w.u.) computed directly noin D(W1)].						
3061.2	1+	2980.3 4	29 8	80.661	2+	[M1]	1.30×10 ⁻³	B(M1)(W.u.)=0.048 +11-12 $\alpha(K)=0.000366 \ 6; \ \alpha(L)=4.90\times10^{-5} \ 7; \ \alpha(M)=1.065\times10^{-5} \ 15$ $\alpha(N)=2.46\times10^{-6} \ 4; \ \alpha(O)=3.64\times10^{-7} \ 5; \ \alpha(P)=2.17\times10^{-8} \ 3; \ \alpha(IPF)=0.000873$ 13 13 1 ; from (α, α') Other: 41.6 from $(n, n'\alpha)$						
		3061.4 4	100	0.0	0+	M1	1.32×10 ⁻³	B(M1)(W.u.)=0.152 +21-17 $\alpha(K)=0.000345$ 5; $\alpha(L)=4.62\times10^{-5}$ 7; $\alpha(M)=1.004\times10^{-5}$ 14 $\alpha(N)=2.32\times10^{-6}$ 4; $\alpha(O)=3.43\times10^{-7}$ 5; $\alpha(P)=2.04\times10^{-8}$ 3; $\alpha(IPF)=0.000914$ 13 D(M1)(W.u.) computed directly from P(M1) ⁺						
3123.25 3138.55 3145.63	14 ⁻ 16 ⁺ 15 ⁻	452.6 <i>1</i> 647.0 <i>1</i> 463.2 <i>1</i> 654 2 <i>1</i>	100 100 100 <i>3</i> 66 3	2670.65 2491.65 2682.59 2491.65	12 ⁻ 14 ⁺ 13 ⁻ 14 ⁺			B(M1)(w.u.) computed directly from B(M1)].						
3145.64	14^{+}	523.2 1	82 6	2622.78	12^{+}	[E2]	0.01348	$B(E2)(W.u.)=3.2\times10^2 6$						

 $^{162}_{66}\mathrm{Dy}_{96}$ -43

From ENSDF

L.

	Adopted Levels, Gammas (continued)												
						ν	(¹⁶² Dv) (continued)						
E_i (level)	J_i^{π}	Ε _γ †‡#	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. &	α^{a}	Comments						
							$\begin{aligned} \alpha(K) &= 0.01090 \ 16; \ \alpha(L) &= 0.00201 \ 3; \ \alpha(M) &= 0.000452 \ 7 \\ \alpha(N) &= 0.0001034 \ 15; \ \alpha(O) &= 1.432 \times 10^{-5} \ 20; \ \alpha(P) &= 6.12 \times 10^{-7} \ 9 \\ I_{\gamma}: \ from \ 2002Ju08, \ (^{7}Li,p4n\gamma). \ The \ value \ from \ 2001Wu05 \ in \ (^{162}Dy,^{162}Dy'\gamma) \ differs from this. \\ B(E2)(W,u,) \ is \ from \ 2001Wu05 \ (^{162}Dy,^{162}Dy'\gamma). \end{aligned}$						
3145.64	14+	610.5 <i>I</i>	100 6	2534.86 12+	[E2]	0.00917	B(E2)(W.u.)=63 21 α (K)=0.00751 11; α (L)=0.001296 19; α (M)=0.000290 4 α (N)=6.64×10 ⁻⁵ 10; α (O)=9.30×10 ⁻⁶ 13; α (P)=4.27×10 ⁻⁷ 6 I _y : from 2002Ju08, (⁷ Li,p4ny). The value from 2001Wu05 in (¹⁶² Dy, ¹⁶² Dy' γ) differs from this. B(E2)(W.u.) is from 2001Wu05 (¹⁶² Dy, ¹⁶² Dy' γ).						
		1244.2 2	29 6	1901.10 12+			I _y : from 2002Ju08, ('Li,p4n γ). The value from 2001Wu05 in (¹⁰² Dy, ¹⁰² Dy' γ) differs from this.						
3269	14^{+}	452	100	2817 12 ⁺									
3293.21	15^{-}	515.1 <i>I</i>	46 8	2777.99 13-									
		801.6 <i>1</i>	100 8	2491.65 14+									
3373.94	16^{+}	439.4 <i>1</i>	100 3	2934.55 14+									
		882.2 2	<13	2491.65 14+									
3415.95	16-	496.4 1	100	2919.55 14-									
3434.04	15^{+}	574.3 <i>1</i>	100 4	2859.63 13+									
		942.5 1	21 4	2491.65 14+									
3474.84	15^{-}	510.9 <i>1</i>	100	2963.94 13-									
3564.22	15^{+}	511.4 <i>I</i>	100	3052.82 13+									
3627.26	16-	504.0 <i>I</i>	100	3123.25 14-									
3666.92	17^{-}	521.1 <i>I</i>	100	3145.63 15-									
3734.23	16^{+}	588.6 1	100	3145.64 14+									
3830.93	18^{+}	692.4 <i>1</i>	100	3138.55 16+									
3835	16^{+}	566	100	3269 14+									
3874.28	17^{-}	581.0 <i>I</i>	100 10	3293.21 15-									
		735.8 1	60 10	3138.55 16+									
3878.37	18^{+}	504.4 1	100 4	3373.94 16+									
		739.8 1	67 4	3138.55 16+									
3966.65	18^{-}	550.7 1	100	3415.95 16-									
4037.24	17^{-}	562.4 1	100	3474.84 15-									
4039.64	17^{+}	605.6 1	100	3434.04 15+									
4195.56	18^{-}	568.3 1	100	3627.26 16-									
4243.52	19-	576.6 1	100	3666.92 17-									
4342.53	18+	608.3 1	100	3734.23 16+									
4434.60	20^{+}	556.2.1	100 6	3878.37 18+									
1121.00	20	603.7 1	88 6	3830.93 18+									
4516.28	19-	642.01	100	3874.28 17									
4568.76	20-	602.1 /	100	3966.65 18-									
.200170			100	2700.00 10									

From ENSDF

 $^{162}_{66}\mathrm{Dy}_{96}$ -44

Т

γ ⁽¹⁶²Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger\#}$	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Comments
4577.73	20^{+}	746.8 1	100	3830.93 18+	E_{γ} : from 2002Ju08, (⁷ Li,p4n γ).
4650.55	19-	613.3 <i>1</i>	100	4037.24 17-	
4873.42	21^{-}	629.9 <i>1</i>	100	4243.52 19-	
5061.80	22^{+}	627.2 <i>1</i>	100	4434.60 20+	
5221.06	22^{-}	652.3 1	100	4568.76 20-	
5352.0	22^{+}	774.3 2	<100	4577.73 20+	
5554.13	23^{-}	680.7 <i>1</i>	100	4873.42 21-	
5747.20	24^{+}	685.4 <i>1</i>	100	5061.80 22+	
5920.9	24^{-}	699.8 2	<100	5221.06 22-	
6153.2	24^{+}	801.2 2	<100	5352.0 22+	
6488.7	26^{+}	741.5 2	<100	5747.20 24+	
7276.0	28^{+}	787.3 2	<100	6488.7 26+	

[†] Unplaced γ 's are not listed here, see: ¹⁶²Tb β^- decay; ¹⁶²Ho ε decay (15 min and 67 min); ¹⁶¹Dy(n, γ) E=th; and ¹⁶²Dy(n, $n'\gamma$).

[‡] Values are from evaluator's selection of the best value, or an average of a few values. Some values without uncertainties are quoted in table 5 of 1995Be02 from unpublished curved-crystal spectrometer data from ¹⁶¹Dy(n, γ) E=th. Where E γ values are measured in the curved-crystal-based (n, γ) study of 2006Ap01, these values are generally used.

[#] The primary γ 's from the capture state for thermal, 2-keV, and 24-keV neutron capture are not included here. See the three ¹⁶¹Dy(n, γ) data sets for these data. [@] The listed E γ values are from 2002Ju08, (⁷Li,p4n γ). The I γ values are from 2001Wu05, (¹⁶²Dy,¹⁶²Dy' γ). They differ markedly from those of 2002Ju08, (⁷Li,p4n γ).

& Assignments and values are based on the following: ce data from (n,γ) (1967Ba34,2006Ap01), $(\alpha,2n\gamma)$ (1982Fi15), and ¹⁶²Ho ε decay (1961Ha23, 1961Jo10); $\gamma(\theta)$ following $(\alpha,2n\gamma)$ (1982Fi15) and $(n,n'\gamma)$ (1977Ho11); and $\gamma\gamma(\theta)$ following (n,γ) (1980Hu06) and Coulomb excitation (1972Do01).

^a Additional information 25.

43

^b If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{162}_{66} Dy_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁶²₆₆Dy₉₆

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁶²₆₆Dy₉₆

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

¹⁶²₆₆Dy₉₆

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{162}_{66} Dy_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

From ENSDF

Level Scheme (continued)

Adopted Levels, Gammas

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

0 Y Y

59

 $^{162}_{66}\mathrm{Dy}_{96}$ -59

¹⁶²₆₆Dy₉₆

¹⁶²₆₆Dy₉₆

			Band(L): K	$\pi^{\pi}=1^{+}$ band				
			(6+)	2079			Band(O): Se K ^π =2	econd excited [–] band
							5-	2053.541
Band octupo	l(J): K ^π =1 [−] le-vibrational band				Band(M): Second excited K ^π =3 ⁻ band 2000.7_		<u>4</u> -	1974.10
5-	1963.598							
		Band(K): K ^π =0 ⁺ band 4 ⁺ 1886.82			<u>5-</u> 1913.68	Band(N): Bandhead of a K ^π =4 [−] band	<u>3</u> -	<u>1910.430</u>
<u>4</u> -	1851.811		<u>3</u> +	1840.486	<u>4 </u>	<u>4- 1862.677</u>	2-	1863.83
			<u>2</u> +	1782.68	<u>3-</u> 1766.608			
3-	1738.999	<u>2+ 1728.318</u>	<u>1</u> +	1745.716				
2-	1691.340	<u>0+ 1666.27</u>						
<u>1</u> -	1637.196							
				$^{162}_{66}{ m I}$	Dy ₉₆			

						Band(T): K ^π memb	=6 ⁺ band ber		
						(9 ⁺)	2930		
								Band(U): K ^π memb	=1 ⁺ band er
								(7+)	2847
						(8 ⁺)	2755		
							2100		
				Den d(S): Men				(6+)	2623
				$K^{\pi}=3^+$ b	and				
				(7+)	2562				
						(7+)	2506		
	Band(Q): So K ^π =4	econd excited + band							
	6+	2421.0							
				(6 ⁺)	2374				
	-	2202.4							
	5	2292.4		(5+)	2283				
			Band(R): K ^π =8 ⁺ bandhead						
(2^+) 2189.71	4+	2191.0	(8+) 2203						
• –	4 ·	<u>2101.0</u>							
0 ⁺ 2125.212									
			1/2						

 $^{162}_{\ 66}Dy_{96}$