160 Dy(t,p) 1988Bu08

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	N. Nica	NDS 195,1 (2024)	19-Sep-2023			

Additional information 1. 1988Bu08: 160 Dy(t,p), E(t)=17 MeV. Enriched (63.3%) target. p(θ) measured using a magnetic spectrograph with FWHM=15-20 keV. 13 excited states reported.

¹⁶²Dy Levels

E(level)	$J^{\pi \dagger}$	L	$d\sigma/d\Omega(\mu b/sr)^{\ddagger\#}$	Comments
0@	0+	0	260	
81 [@]	2+		27	
266 [@]	4+		4	
545 [@]	6+		≤5	
890 <mark>&</mark>	2+		≤4	
1062 <mark>&</mark>	4+		9	
1208			5	J^{π} : Adopted Level has $J^{\pi}=3^{-}$.
1359	3-		2	
1397	0_{+}	0	8	
1533	4+		1	
1574			2	J^{π} : Adopted Levels near this energy have $J^{\pi}=4^{+}$ and 6^{-} .
1746			3	J^{π} : Adopted Levels near this energy have $J^{\pi}=1^{+}$ and 6^{+} .
2104	3-		8	
2126	(0^{+})	0	21	

[†] From 1988Bu08, but, except for the 0⁺ states, are based on previous studies. These assignments agree with those for the Adopted Levels except where noted.

 $^{^{\}ddagger}$ Values at θ =30°. $^{\sharp}$ The uncertainties in the absolute cross sections are estimated to be ≈20% for the largest peaks.

[@] Band(A): $K^{\pi}=0^{+}$ ground-state band. & Band(B): $K^{\pi}=2^{+}$ γ -vibrational band.

¹⁶⁰Dy(t,p) 1988Bu08

Band(B): \mathbf{K}^{π} =2⁺ γ -vibrational band

4+ 1062

Band(A): K^{π} =0⁺ $\frac{2^{+}}{\text{ground-state band}}$

<u>6</u>⁺ 545

4+ 266

2⁺ **81**

0+ 0

 $^{162}_{66}\mathrm{Dy}_{96}$