¹⁶¹Lu ε decay 1980Be39

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011							

Parent: ¹⁶¹Lu: E=0; $J^{\pi}=1/2^+$; $T_{1/2}=77$ s 2; Q(ε)=5280 32; % ε +% β^+ decay=100.0

¹⁶¹Lu-J^{π}: From ¹⁶¹Lu Adopted Levels. ¹⁶¹Lu-T_{1/2}: From ¹⁶¹Lu Adopted Levels.

¹⁶¹Lu-Q(ε): From 2009AuZZ. 2003Au03 report Q=5.09×10⁰³ 21.

Additional information 1.

The decay scheme is that of 1980Be39. Note that, with a Q+ value of 5.28 MeV and no ¹⁶¹Yb levels reported above 0.37 MeV,

the proposed decay scheme is incomplete and thus no meaningful intensities can be deduced for the $\varepsilon + \beta^+$ transitions feeding the ¹⁶¹Yb levels.

¹⁶¹Yb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0^{\ddagger}	3/2-	4.2 min 2	$T_{1/2}$: from ¹⁶¹ Yb Adopted Levels (1974AdZR).
43.67 [‡] 18	$5/2^{-}$		
110.79 [‡] 9	7/2-		
197.20? 25			
211.08 12	$(3/2^{-})$		
367.28 14			

[†] From adopted values.

[‡] Band(A): $K^{\pi}=3/2^{-}$ band, probably containing a mixture of the 3/2[521] and 3/2[532] Nilsson orbitals.

$\gamma(^{161}\text{Yb})$

Since the γ multipolarities are unknown, a γ intensity normalization is not possible. The 43-keV γ can have an α from 6.4 to 118, so there is a factor of 10 uncertainty in this transition intensity.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
43.7 3	≈70	43.67	5/2-	0	3/2-	[M1,E2]	6.×10 ¹ 6	
67.13 20	48 5	110.79	7/2-	43.67	5/2-	[M1,E2]	13 <i>3</i>	
86.79 [‡] 15	17 4	197.20?		110.79	$7/2^{-}$			
100.32 10	95 9	211.08	$(3/2^{-})$	110.79	7/2-			
^x 105.20 10	28 5							
110.78 <i>10</i>	100 9	110.79	7/2-	0	3/2-	[E2]	2.17	$\begin{aligned} &\alpha(\mathbf{K}) = 0.807 \ 12; \ \alpha(\mathbf{L}) = 1.045 \ 16; \ \alpha(\mathbf{M}) = 0.257 \\ &4; \ \alpha(\mathbf{N}+) = 0.0655 \ 10 \\ &\alpha(\mathbf{N}) = 0.0587 \ 9; \ \alpha(\mathbf{O}) = 0.00678 \ 10; \\ &\alpha(\mathbf{P}) = 3.41 \times 10^{-5} \ 5 \end{aligned}$
156.24 10	49 5	367.28		211.08	$(3/2^{-})$			
170.08 20	14 4	367.28		197.20?				
^x 177.13 20	14 4							
^x 204.57 20	30 6							
211.10 20	20 10	211.08	$(3/2^{-})$	0	$3/2^{-}$			
^x 221.76 20	20 4							
256.24 25	49 8	367.28		110.79	$7/2^{-}$			

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

$^{161} {\rm Lu} \ \varepsilon \ {\rm decay}$ 1980Be39 (continued)

$\gamma(^{161}$ Yb) (continued)

^{\pm} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

¹⁶¹Lu ε decay 1980Be39

 $^{161}_{70} \mathrm{Yb}_{91}$

 $^{161}_{70} {
m Yb}_{91}$