History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011			

 $Q(\beta^{-}) = -5.28 \times 10^{3} 4$; S(n) = 7746 22; $S(p) = 4.83 \times 10^{3} 4$; $Q(\alpha) = 3.13 \times 10^{3} 3$ 2012Wa38 Note: Current evaluation has used the following Q record \$ -5280 32 7746 22 4829 38 3146 31 2009AuZZ. $Q(\beta^{-})$: Essentially the same value is listed in 2003Au03.

 $S(n),S(p),Q(\alpha)$ 2003Au03 report: S(n)=7798; S(p)=4716; $Q(\alpha)=3078$; all from systematics. Additional information 1.

¹⁶¹Yb Levels

Cross Reference (XREF) Flags

 $^{148}{\rm Sm}(^{16}{\rm O},3{\rm n}\gamma),^{122}{\rm Sn}(^{44}{\rm Ca},5{\rm n}\gamma)$
 $^{161}{\rm Lu}~\varepsilon~{\rm decay}$ A В

E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$	XREF	Comments
0@	3/2-	4.2 min 2	AB	 %ε+%β⁺=100 μ=-0.327 8; Q=+1.03 2 J^π: J value is from laser spectroscopy (1983Ne13). With this J value, 3/2[521] is the expected Nilsson orbital, and the calculated μ (1989Be04) value is consistent with this. Hence, π= From an evaluation of data on nuclear rms charge radii, 2004An14 report <r<sup>2>^{1/2}=5.183 fm 8.</r<sup> T_{1/2}: from the ¹⁶¹Yb ε decay (1974Ad10). %ε+%β⁺: evaluator has assumed that any α-decay branch is negligible. μ: from laser spectroscopy (1983Ne13) and adopted in the evaluation by 1989Ra17. This value is also listed in the compilation by 2005St24. Q: from laser spectroscopy (1983Ne13) and adopted in the evaluation by 1989Ra17. This value is also listed in the compilation by 2005St24.
43.67 [@] 18	5/2-		AB	J^{π} : assigned as the J=5/2 member of the g.s. band.
110.79 [@] 9	7/2-		AB	J^{π} : assigned as the J=7/2 member of the g.s. band.
197.20 25	(2)(2-)		В	
211.08 12	(3/2 ⁻)		В	J^{π} : γ' 's to $3/2^{-}$ and $1/2^{-}$ levels indicate $J^{\pi}=3/2^{-}$, $5/2$, $1/2^{-}$. Possible population in the ε decay of the ¹⁶¹ Lu g.s. ($J^{\pi}=1/2^{+}$) suggests J=3/2. Note, however, that this decay scheme is incomplete, casting doubt on any deduced $\varepsilon + \beta^{+}$ intensities.
211.1 ^b	(9/2+)		A	E(level): The interpretation of the in-beam data is based on the existence of a $9/2^+$ level at or near this energy.
220.7 [@]	9/2-		Α	
230.6 ^b	(13/2 ⁺)		A	E(level): value reported by 1990TeZW, from 122 Sn(44 Ca,5n), but the basis for it is not given. In particular, no deexciting γ transition is reported. The decay presumably takes place through a low-energy γ to the 9/2 ⁺ level at 211.1 KeV.
367.28 14			В	
462.6 ^b	$(17/2^+)$	85 ps 6	Α	
552.7 [@]	13/2-	6 ps 3	A	
703.0 ^c	$(15/2^+)$		A	
859.90	$(21/2^+)$	7.2 ps 6	A	
1006.7 ^w	$17/2^{-}$	3.5 ps 21	A	
111/.0°	$(19/2^{+})$	1.5 3	A	
1382.5	$(25/2^{+})$	1.5 ps 3	A	

Adopted Levels, Gammas (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
1535.9 [@]	$21/2^{-}$	<21 ps	Α	5631.6 [@]	49/2-	Α
1649.0 ^C	$(23/2^+)$		Α	5963.5 <mark>&</mark>	$(49/2^{-})$	Α
1999.2 <mark>b</mark>	$(29/2^+)$	1.6 ps 3	Α	6120.2 ^{<i>a</i>}	$(51/2^{-})$	Α
2044.4 <mark>&</mark>	$(25/2^{-})$		Α	6405.6 ^b	$(53/2^+)$	Α
2098.1 [@]	25/2-		Α	6500.1 [@]	53/2-	Α
2259.0 ^C	$(27/2^+)$		Α	6813.8 <mark>&</mark>	$(53/2^{-})$	Α
2304.6 ^a	$(27/2^{-})$		Α	6977.5 ^a	$(55/2^{-})$	Α
2478.3 [@]	29/2-		Α	7288.8 ^b	$(57/2^+)$	Α
2560.6 <mark>&</mark>	$(29/2^{-})$		Α	7347.4 [@]	57/2-	Α
2680.1 ^b	$(33/2^+)$	<1.4 ps	Α	7876.7 <mark>a</mark>	$(59/2^{-})$	Α
2686.5 ^a	$(31/2^{-})$		Α	8194.7 [@]	61/2-	Α
2915.7 [@]	33/2-	4.2 ps 8	Α	8198.0 ^b	$(61/2^+)$	Α
2919.0 ^C	$(31/2^+)$		Α	8832.3 ^a	$(63/2^{-})$	Α
3108.8 <mark>&</mark>	$(33/2^{-})$		Α	9090.2 [@]	65/2-	Α
3167.4 ^a	$(35/2^{-})$		Α	9095.0 ^b	$(65/2^+)$	Α
3387.4 <mark>b</mark>	$(37/2^+)$		Α	9844.3 ^a	$(67/2^{-})$	Α
3443.5 [@]	$37/2^{-}$	<2.8 ps	Α	10010.5 ^b	$(69/2^+)$	Α
3627.0 ^C	$(35/2^+)$		Α	10053.2 [@]	69/2-	Α
3712.6 <mark>&</mark>	$(37/2^{-})$		Α	10914.3? ^a	$(71/2^{-})$	Α
3766.9 <mark>a</mark>	$(39/2^{-})$		Α	10972.5 ^b	$(73/2^+)$	Α
4074.9 [@]	$41/2^{-}$		Α	11105.2 [@]	73/2-	Α
4092.5 ^b	$(41/2^+)$		Α	11988.5 ^b	$(77/2^+)$	Α
4350.0 ^C	$(39/2^+)$		Α	12044.3? ^a	$(75/2^{-})$	Α
4382.8 <mark>&</mark>	$(41/2^{-})$		Α	12218.2 [@]	77/2-	Α
4473.2 ^a	$(43/2^{-})$		Α	13054.5 ^b	$(81/2^+)$	Α
4811.4 [@]	$45/2^{-}$		Α	13364.5 [@]	81/2-	Α
4812.0 ^b	$(45/2^+)$		Α	14181.5 ^b	$(85/2^+)$	Α
5142.9 <mark>&</mark>	$(45/2^{-})$		Α	14531.5 [@]	85/2-	Α
5266.4 ^a	$(47/2^{-})$		A	15709.4? [@]	(89/2-)	Α
5578.6 <mark>b</mark>	$(49/2^+)$		A			

¹⁶¹Yb Levels (continued)

[†] For those levels seen only in the (HI,xn γ) reactions, the level energies are those listed by 1990TeZW from the ¹²²Sn(⁴⁴Ca,5n) reaction. For the others, they are computed from the γ energies.

[‡] The spins from the heavy-ion studies are based largely on the observed γ -deexcitation of the levels, general considerations of rotational-band structure and $\gamma(\theta)$ data, which, especially, establish a sequence of stretched E2 transitions. With the exception of those for the members of the g.s. band, the J^{π} values are shown in parentheses.

[#] Unless noted otherwise, the values are from the in-beam study of 1988Fe01, using the recoil-distance technique. Preliminary values are given by the same authors for six excited levels (1985Fe02).

^(a) Band(A): $K^{\pi}=3/2^{-}$ g.s. band. Based on the deduced alignment (≈ 2.5) and the signature, 1980Ri08 conclude that the configuration is a mixture of the $3/2^{-}[521]$ and $3/2^{-}[532]$ Nilsson orbitals. Above the J=7/2 level, only the signature=+1/2 portion of the band has been established. (See, however, the comment on the "negative-parity band, $\alpha = -1/2$ band" below.) A=8.16 keV, B=+71 eV, from the energies of the $3/2^{-}$ through $7/2^{-}$ levels, but these parameters do not provide a good description of the higher-spin members of this band.

& Band(B): negative-parity band. $\alpha = +1/2$.

^{*a*} Band(C): Negative-parity band. $\alpha = -1/2$. 1980Ri08 suggest that, although not observed at the lower spins, this band may be the signature=-1/2 portion of the g.s. band.

Adopted Levels, Gammas (continued)

¹⁶¹Yb Levels (continued)

^b Band(D): Yrast band, $\alpha = +1/2$. from the observed alignment, the band is assumed to be associated with the $i_{13/2}$ state and, hence, to have positive parity.

^c Band(E): Positive-parity band, $\alpha = -1/2$. This band structure looks like that expected for the unfavored members of the $i_{13/2}$ band (1980Ri08).

						$\gamma(^{161}\mathrm{Yb})$			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	E_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
13.67	5/2-	1373	100		3/2-	[M1 E2]			
110 79	7/2-	67 13 20	48 5	43 67	5/2-	[M1,E2]			
110.79	1/2	110.78 10	100. 9	0	$3/2^{-}$	[E2]			
197.20		86.79 15	100.	110.79	$7/2^{-}$	[]			
211.08	$(3/2^{-})$	100.32 10	100. 9	110.79	7/2-				
		211.10 20	21.10	0	3/2-				
211.1	$(9/2^+)$	100.3		110.79	7/2-				
220.7	9/2-	109.9		110.79	7/2-				
		176.9 <i>1</i>		43.67	5/2-				
367.28		156.24 10	100. 10	211.08	$(3/2^{-})$				
		170.08 20	29.8	197.20	7/0-				
462.6	$(17/2^{+})$	256.24 25	100. 16	110.79	$\frac{1}{2}$	E2		0.1650	$D(E2)(W_{re}) = 1(2, 12)$
462.6	$(1/2^{-1})$	232.0		230.6	$(13/2^{+})$	E2		0.1650	B(E2)(W.u.) = 103 I2 $D(E2)(W.u.) = 4.2 \times 10^{2} 22$
552.7	13/2	332.0		220.7	9/2	[E2]	# .	0.0547	$B(E2)(W.u.)=4.3\times10^{-22}$
703.0	$(15/2^+)$	240.4		462.6	$(17/2^+)$	M1+E2	$-0.17^{m} 8$	0.283 6	
		472.4		230.6	$(13/2^+)$	M1+E2	$+0.6^{#}$ 4	0.040 7	
859.9	$(21/2^+)$	397.3		462.6	$(17/2^+)$	E2		0.0328	B(E2)(W.u.)=148 13
1006.7	17/2-	454.0		552.7	13/2-	[E2]		0.0229	$B(E2)(W.u.)=1.6\times10^2 \ 10$
1117.0	$(19/2^+)$	256.4	49 12	859.9	$(21/2^+)$	M1+E2	-0.20 11	0.236 7	
		414.5	100	/03.0	$(15/2^{+})$	MIED	05.10.1	0.019.6	
1202.2	$(25/2^{+})$	033.9 532.4	12 13	402.0	$(1/2^{+})$ $(21/2^{+})$	M1+E2	+0.5 + 10 - 1	0.018 0	$D(E2)(W_{cr}) = 1.8 \times 10^2 4$
1582.5	$(25/2^{+})$ 21/2 ⁻	522.4		839.9	$(21/2^{+})$ $17/2^{-}$	E2 [E2]		0.01597	$B(E2)(W.u.)=1.8\times10^{-4}$ B(E2)(W.u.)>12
1649.0	$(23/2^+)$	264 7	15.3	1382.3	$(25/2^+)$	[L2] M1+F2	-0.20.10	0.01540	B(E2)(W.u.) > 12
1047.0	(23/2)	532.8	100	1117.0	$(19/2^+)$	1411 122	0.20 10		
		788.9	49.9	859.9	$(21/2^+)$	M1+E2	+0.40 15	0.0119 7	
1999.2	$(29/2^+)$	616.9		1382.3	$(25/2^+)$	E2		0.01066	B(E2)(W.u.)=75 15
2044.4	$(25/2^{-})$	508.5		1535.9	21/2-				
2098.1	$25/2^{-}$	562.2		1535.9	$21/2^{-}$				
2259.0	$(27/2^+)$	610.5		1649.0	$(23/2^+)$				
2304.6	$(27/2^{-})$	922.3		1382.3	$(25/2^+)$				
2478.3	29/2-	380.2		2098.1	25/2-				
2560 6	(20)(2-)	433.5		2044.4	(25/2)				
2560.6	(29/2)	516.2		2044.4	(25/2)	E2		0 009 49	$\mathbf{D}(\mathbf{E2})(\mathbf{W}_{11}) > 52$
2080.1	(33/2) $(21/2^{-})$	281.0		1999.2	(29/2)	E2		0.00848	B(E2)(W.U.)>32
2080.5	(31/2)	687.3		1999 2	(27/2) $(29/2^+)$				
29157	33/2-	355.1		2560.6	$(29/2^{-})$				
2710.7	55/2	437.4		2478.3	$\frac{(2)}{2}^{-}$				
2919.0	$(31/2^+)$	660.1		2259.0	$(27/2^+)$				
3108.8	$(33/2^{-})$	548.2		2560.6	$(29/2^{-})$				
3167.4	$(35/2^{-})$	480.9		2686.5	$(31/2^{-})$				
		487.3 <mark>&</mark>		2680.1	$(33/2^+)$				
3387.4	$(37/2^+)$	707.3		2680.1	$(33/2^+)$	E2		0.00778	
3443.5	37/2-	527.8		2915.7	33/2-	[E2]		0.01556	B(E2)(W.u.)>93
3627.0	$(35/2^+)$	708.0		2919.0	$(31/2^+)$				

Continued on next page (footnotes at end of table)

				Adopted Levels, Gammas (continued)						
				í	γ(¹⁶¹ Yb) (α	continued)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	J_f^π		
3712.6	$(37/2^{-})$	603.8	3108.8 (33/2-)	7876.7	$(59/2^{-})$	899.2	6977.5	$(55/2^{-})$		
3766.9	$(39/2^{-})$	599.5	3167.4 (35/2-)	8194.7	61/2-	847.3	7347.4	57/2-		
4074.9	$41/2^{-}$	631.4	3443.5 37/2-	8198.0	$(61/2^+)$	909.2	7288.8	$(57/2^+)$		
4092.5	$(41/2^+)$	705.1	3387.4 (37/2+)	8832.3	$(63/2^{-})$	955.6	7876.7	$(59/2^{-})$		
4350.0	$(39/2^+)$	723.0	3627.0 (35/2+)	9090.2	65/2-	895.5	8194.7	61/2-		
4382.8	$(41/2^{-})$	670.2	3712.6 (37/2 ⁻)	9095.0	$(65/2^+)$	897.0	8198.0	$(61/2^+)$		
4473.2	$(43/2^{-})$	706.3	3766.9 (39/2 ⁻)	9844.3	$(67/2^{-})$	1012.0	8832.3	$(63/2^{-})$		
4811.4	45/2-	736.5	4074.9 41/2-	10010.5	$(69/2^+)$	915.5	9095.0	$(65/2^+)$		
4812.0	$(45/2^+)$	719.5	$4092.5 (41/2^+)$	10053.2	69/2-	963.0	9090.2	65/2-		
5142.9	$(45/2^{-})$	760.1	4382.8 (41/2 ⁻)	10914.3?	$(71/2^{-})$	1070.0 ^{&}	9844.3	$(67/2^{-})$		
5266.4	$(47/2^{-})$	793.2	4473.2 (43/2-)	10972.5	$(73/2^+)$	962.0	10010.5	$(69/2^+)$		
5578.6	$(49/2^+)$	766.6	4812.0 (45/2+)	11105.2	73/2-	1052.0	10053.2	69/2-		
5631.6	49/2-	820.1	4811.4 45/2-	11988.5	$(77/2^+)$	1016.0	10972.5	$(73/2^+)$		
5963.5	$(49/2^{-})$	820.6	5142.9 (45/2-)	12044.3?	$(75/2^{-})$	1130.0 <mark>&</mark>	10914.3?	$(71/2^{-})$		
6120.2	$(51/2^{-})$	853.0	5266.4 (47/2-)	12218.2	$77/2^{-}$	1113.0	11105.2	73/2-		
6405.6	$(53/2^+)$	827.0	5578.6 (49/2+)	13054.5	$(81/2^+)$	1066.0	11988.5	$(77/2^+)$		
6500.1	53/2-	868.6	5631.6 49/2-	13364.5	$81/2^{-}$	1146.3	12218.2	$77/2^{-}$		
6813.8	$(53/2^{-})$	850.3	5963.5 (49/2-)	14181.5	$(85/2^+)$	1127.0	13054.5	$(81/2^+)$		
6977.5	$(55/2^{-})$	857.3	6120.2 (51/2 ⁻)	14531.5	85/2-	1167.0	13364.5	$81/2^{-}$		
7288.8	$(57/2^+)$	883.2	6405.6 (53/2+)	15709.4?	(89/2 ⁻)	1177.9 <mark>&</mark>	14531.5	85/2-		
7347.4	57/2-	847.3	6500.1 53/2-							

[†] The unplaced γ 's from the ε decay of ¹⁶¹Lu (1980Be39) are not included here. [‡] From $\gamma(\theta)$ in Sm(^{16,18}O,xn γ) (1976HeZZ) and comments in 1982Ch12. [#] $\gamma(\theta)$ results allow another value of δ (1982Ch12). [@] Values are given only for γ rays from levels with known half-lives so that reduced-transition probabilities can be computed.

[&] Placement of transition in the level scheme is uncertain.

0 4.2 min 2

 $^{161}_{70}$ Yb₉₁

Level Scheme (continued)	$-\!\!\!-\!\!\!-\!$
Intensities: Type not specified	$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
intensities. Type not specified	$ \qquad $

Legend

(39/2+)		4350.0	
	2		
$(41/2^+)$		4092.5	
41/2-		4074.9	
$\frac{(39/2^{-})}{(27/2^{-})}$		3766.9	
$\frac{(31/2)}{(35/2^+)}$		3712.6	
37/2-		3443.5	<2.8 ps
$(37/2^+)$		3387.4	1
(35/2 ⁻)		3167.4	
(33/2 ⁻)		3108.8	
(21/2+)		2010.0	
$\frac{(31/2)}{33/2^{-}}$		2919.0	4.2 ps 8
5512		2)15.7	1.2 ps o
(31/2 ⁻)	। : ↓ & & & & & & & & & & & & & & & &	2686.5	
$(33/2^+)$		2680.1	<1.4 ps
(29/2 ⁻)	$\downarrow \downarrow \tilde{\gamma} \sim \tilde{\gamma}$	2560.6	
29/2-	· · · · · · · · · · · · · · · · · · ·	2478.3	
$\frac{(27/2^{-})}{(27/2^{+})}$		2304.6	
(2112)		2259.0	
25/2-	<u> </u>	2098.1	
$\frac{(25/2^{-})}{(20/2^{+})}$		2044.4	16 2
$(23/2^+)$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1649.0	1.6 ps 3
01/0=		1525.0	-21
21/2		1535.9	<21 ps
(25/2+)		1382.3	1.5 ps 3
(19/2+)		1117.0	
17/2-		1006.7	35 ps 21
(21/2 [±])		1000.7	5.5 ps 21
(21/2+)		859.9	7.2 ps 6
(15/2+)		703.0	
13/2-		557 7	6 ns 3
$\frac{13/2}{(17/2^+)}$		462.6	85 ps 6
<u>,</u> /	¥¥_	402.0	55 Ps 0
(13/2+)	、 ↓ ↓	230.6	
9/2-	·	220.7	
3/2-		0	4.2 min 2

 $^{161}_{70} {
m Yb}_{91}$

6

 $^{161}_{70} Yb_{91}$

 $^{161}_{70} Yb_{91}$