152 Sm(14 N,5n γ), 165 Ho(4 He, 8 N γ) 1984Fo04

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Additional information 1. 1984Fo04: 152 Sm(14 N,5n γ), E(14 N)=65-98 MeV. Enriched (98.3% 152 Sm) self-supporting metallic target of thickness 3 mg/cm². γ radiation was measured using high-resolution 6 cm³ and 50 cm³ Ge(Li) detectors (FWHM=0.67 and 1.01 keV, respectively, at 100 keV). A planar high-resolution Ge(Li) detector was used to study the low-energy level scheme. Measured excitation functions, $E\gamma$, γ singles, $\gamma\gamma$, $\gamma(\theta)$ (at five angles from 90° to 162°). ¹⁶⁵Ho(⁴He,⁸N γ), E(⁴He)=86.5, 97, 106 MeV. Metallic Ho foil, 10m γ /cm² thick. γ radiation studied using a Compton suppression spectrometer. Measured $\gamma\gamma(t)$ using detectors having volumes of 50 cm^3 (true coaxial) and 75 cm^3 .

¹⁶¹Tm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 [#] 7.2 ^{&} 6	7/2 ⁺ 1/2 ⁺	30.2 min 8	$T_{1/2}$: from adopted values. Note that this level may well have a half-life of the order of minutes or so. Thus, it would be expected to decay by both isomeric-transition (M3) and $\varepsilon + \beta^+$ decay. Neither of these
18.90 ^a 12	5/2+		potential decay modes has yet been observed. See the comment on this level in the Adopted Levels data set.
22.62 ^{&} 21	$3/2^{+}$		
78.1 ^b 1	7/2-	108 ns 4	$T_{1/2}$: weighted average of 111 ns 6 (⁴ He-induced reaction) and 106 ns 5 (¹⁴ N-induced reaction), from $\gamma\gamma$ (t) (1984Fo04).
149.10 ^C 13	9/2-		
159.04 ^a 15	7/2+		
161.81 [@] 8	$9/2^{+}$		
167.12 ^{&} 23	$5/2^{+}$		
210.91 20	$7/2^{+}$		
254.70 ^b 13	$11/2^{-}$		
326.62^{a} 16	9/2+		
347.89# 8	$11/2^{+}$		
367.2^{a}_{b}	$1/2^{-}$		
376.36 ^{<i>d</i>} 18	5/2-		
417.40° 14	$\frac{13}{2^{-}}$		
515.09 17	11/2		
510.50° 10	9/2 11/2+		
551.50^{-1} 1/	$11/2^{+}$ $12/2^{+}$		
557.54 = 10	15/2		
377.30° 13 756.25 $\frac{d}{17}$	13/2 $12/2^{-}$		
730.23 17	15/2 $15/2^+$		
815.50 [°] 15	15/2 $17/2^{-}$		
$989 10^{\&} 20$	$15/2^+$		
$1008 30^{b} 16$	$19/2^{-}$		
$1036.73^{@}$ 12	$17/2^+$		
1080.0^{d} 3	$17/2^{-}$		
$1305 03^{\#} 14$	$19/2^+$		
1310.00° 17	$\frac{19/2}{21/2^{-}}$		
1496.0 ^{<i>d</i>} 3	$21/2^{-}$		
	'		

152 Sm(14 N,5n γ), 165 Ho(4 He, 8 N γ)	1984Fo04 (continued)
---	----------------------

¹⁶¹Tm Levels (continued)

E(level) [†]	J π ‡	E(level) [†]	J π ‡	E(level) [†]	J π ‡	E(level) [†]	J π ‡
1525.43 ^b 18	23/2-	2108.85 ^b 19	27/2-	2736.48 ^b 24	31/2-	3476.7 [°] 3	37/2-
1581.66 [@] 15	$21/2^+$	2172.25 [@] 25	$25/2^+$	3050.79 ^c 24	33/2-	3739.6 ^b 3	39/2-
1873.87 ^c 19	$25/2^{-}$	2478.0 [#] 3	$27/2^+$	3206.3 ^d 5	33/2-	4012.6 ^C 3	$41/2^{-}$
1876.73 [#] 25	$23/2^+$	2480.85 [°] 22	$29/2^{-}$	3255.24 ^b 25	$35/2^{-}$	4330.3 ^b 3	$43/2^{-}$
1996.1 ^d 4	$25/2^{-}$	2570.2 ^d 4	$29/2^{-}$	3380.8 4	$35/2^{-}$		

[†] From a least-squares fit to the γ energies.

^{\ddagger} From adopted values. For the present in-beam data, the J^{π} assignments rely largely on considerations of the expected rotational band structure, supplemented with information on γ multipolarities.

[#] Band(A): 7/2[404] band; $\alpha = -1/2$ branch.

[@] Band(a): 7/2[404] band; $\alpha = +1/2$ branch.

[&] Band(B): 1/2[411] band.

^a Band(C): 5/2[402] band.

- ^b Band(D): 7/2[523] band; $\alpha = -1/2$ branch.
- ^c Band(E): 7/2[523] band; $\alpha = +1/2$ branch.

^d Band(F): 1/2[541] band; $\alpha = +1/2$ branch. Only the $\alpha = +1/2$ portion is observed.

$\gamma(^{161}\text{Tm})$

Extensive $\gamma\gamma$ coincidence results (1984Fo04) are included in their level-scheme drawing. These support the placements of most of the γ' s, but, with the long decay sequences that occur, they may not be unique for the order within a sequence.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
(7.4)		7.2	$1/2^{+}$	0.0	$7/2^{+}$		
(15.4)		22.62	$3/2^{+}$	7.2	$1/2^{+}$		
(18.90 12)		18.90	$5/2^{+}$	0.0	$7/2^+$	M1	E_{γ} , Mult.: from ¹⁶¹ Yb ε decay (1981Ad02).
71.0 1	267	149.10	9/2-	78.1	$\frac{1}{7/2^{-}}$		$A_2 = -0.07 9; A_4 = -0.03 14.$
78.1 <i>I</i>	1400	78.1	$7/2^{-}$	0.0	7/2+		
105.6 <i>1</i>	526	254.70	$11/2^{-}$	149.10	9/2-		
^x 133.4 1	115					D	$A_2 = -0.425; A_4 = -0.236.$
139.9 <i>1</i>	<115	516.36	9/2-	376.36	5/2-		$A_2 = -0.13$ 7; $A_4 = 0.00$ 9. (Values for both the 139.9 and 140.2 γ 's.).
140.2 <i>1</i>	<115	159.04	7/2+	18.90	5/2+		I_{γ} : peak contains two γ' s. The listed I γ value is for the pair. A ₂ =-0.13 7; A ₄ =0.00 9. (Values for both the 139.9 and 140.2 γ' s.).
							I_{γ} : peak contains two γ' s. The listed I_{γ} value is for the pair.
144.5 <i>1</i>	30	167.12	$5/2^{+}$	22.62	3/2+		
159.9 <i>1</i>	576	577.30	$15/2^{-}$	417.40	$13/2^{-}$		
161.8 <i>1</i>	261	161.81	9/2+	0.0	7/2+	u	$A_2=0.25 8; A_4=0.20 13.$
162.7 <i>1</i>	780	417.40	$13/2^{-}$	254.70	$11/2^{-}$	D	$A_2 = -0.07 4$; $A_4 = -0.02 6$.
^x 164.3 1	73						
167.6 <i>1</i>	148	326.62	9/2+	159.04	7/2+	D	$A_2 = -0.21 \ 10; \ A_4 = 0.01 \ 16.$
176.6 <i>1</i>	<220 [@]	254.70	$11/2^{-}$	78.1	$7/2^{-}$		
186.1 <i>1</i>	117	347.89	$11/2^{+}$	161.81	$9/2^{+}$	a	$A_2=0.27$ 7; $A_4=0.06$ 12.
188.3 <i>1</i>	139	210.91	7/2+	22.62	3/2+		$A_2=0.02$ 4; $A_4=-0.08$ 6. (Values for both the 188.3 and 189.0 γ 's.).
							Mult.: ce data suggest E1 or E2.

$\frac{^{152}\text{Sm}(^{14}\text{N},5n\gamma),^{165}\text{Ho}(^{4}\text{He},^{8}\text{N}\gamma)}{1984\text{Fo04}} \text{ (continued)}$

γ (¹⁶¹Tm) (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
189.0 <i>1</i>	80	515.69	11/2+	326.62	9/2+		A ₂ =0.02 4; A ₄ =-0.08 6. (Values for both the 188.3 and 189.0 γ 's.).
192.8 <i>1</i>	370	1008.30	$19/2^{-}$	815.50	$17/2^{-}$	D	$A_2 = -0.11 4$; $A_4 = -0.01 4$.
204.5 1	225	3255.24	35/2-	3050.79	33/2-	D	$A_2 = -0.20$ 7; $A_4 = 0.09$ 8.
204.8 <i>1</i>	62	531.30	$11/2^{+}$	326.62	9/2+		
209.5 1	74	557.34	$13/2^{+}$	347.89	$11/2^{+}$		$A_2 = -0.05$ 7; $A_4 = 0.26$ 10.
215.4 <i>1</i>	166	1525.43	$23/2^{-}$	1310.00	$21/2^{-}$		$A_2 = -0.06 \ 12; \ A_4 = -0.06 \ 16.$
221.4 <i>I</i>	179	3476.7	37/2-	3255.24	35/2-	D	$A_2 = -0.226; A_4 = 0.048.$
225.0 I	84	756.25	$13/2^{-}$	531.30	$11/2^{+}$		$A_2 = 0.01 \ 15; \ A_4 = -0.06 \ 16.$
*230.3 1	49		1 7 10 1		10/01		$A_2 = -0.03 \ 21$; $A_4 = 0.14 \ 30$.
231.2	26 ^w	788.50	15/2+	557.34	13/2+		$A_2 = -0.04 8$; $A_4 = 0.15 12$.
235.0 1	84	2108.85	27/2	18/3.8/	25/2		A 0.07 4. A 0.04 8
238.2 1	494	815.50	$\frac{1}{2}$	516.26	15/2	0	$A_2=0.074; A_4=0.048.$
239.8 1	101 64	756.25	$\frac{15}{2}$ $\frac{13}{2^{-}}$	515.50	9/2 11/2 ⁺	Q	$A_2=0.19$ 0; $A_4=-0.13$ 11. $A_5=0.03$ 15: $A_4=-0.01$ 23
240.01 248.21	68	1036 73	15/2 $17/2^+$	788 50	$15/2^+$		$A_2 = 0.05 \ 15, \ A_4 = 0.01 \ 25.$ $A_2 = 0.20 \ 21; \ A_4 = -0.04 \ 30$
255.6.2	70	2736.48	$31/2^{-}$	2480.85	$29/2^{-}$		$n_2 = 0.20 \ 21, \ n_4 = 0.01 \ 30.$
263.0 2	51	3739.6	$39/2^{-}$	3476.7	$37/2^{-}$		$A_2 = -0.06\ 20;\ A_4 = 0.27\ 30.$
268.3 <mark>b</mark> 1	234 <mark>b</mark>	417.40	13/2-	149.10	9/2-		$A_2=0.21$ 5: $A_4=0.00$ 8. Note: γ is doubly placed.
268.3 ^b 1	234 ^b	1305.03	$19/2^{+}$	1036.73	$17/2^+$		$A_2=0.21.5$: $A_4=0.00.8$. Note: γ is doubly placed.
^x 270.6 1	46 [#]		- /				2
273.1 1	54	4012.6	$41/2^{-}$	3739.6	39/2-		
276.7 2	19	1581.66	$21/2^{+}$	1305.03	$19/2^{+}$		
^x 278.0 1	73 [#]						
^x 282.7 1	46						
^x 294.1 2	≈25						
^x 296.7 2	≈24						
301.7 <i>1</i>	278	1310.00	$21/2^{-}$	1008.30	19/2-		$A_2=0.05$ 6; $A_4=0.13$ 10.
305.5 2	æ	516.36	9/2-	210.91	7/2+		
307.8 2	&	326.62	9/2+	18.90	$5/2^{+}$		
314.4 <i>1</i>	≈69	3050.79	33/2-	2736.48	31/2-	D	$A_2 = -0.27 \ 15; \ A_4 = 0.00 \ 15.$
317.7 1	47	4330.3	$43/2^{-}$	4012.6	$41/2^{-}$	_	$A_2=0.05 \ 13; \ A_4=-0.12 \ 15.$
x319.6 <i>I</i>	134	521.20	11/2+	2 10.01	= /o+	D	$A_2 = -0.31\ 25;\ A_4 = -0.23\ 30.$
320.4 2	105	531.30	11/2	210.91	1/2	0	$A_2=0.20\ 20;\ A_4=0.28\ 30.$
322.6 1	450	5//.30	15/2	254.70	11/2 $12/2^{-}$	Q	$A_2=0.24$ 8; $A_4=-0.07$ 10.
323.1 2 x326.0.2	70	1080.0	1//2	730.23	15/2	Q	$A_2 = 0.24$ o; $A_4 = -0.21$ 12.
x329 5 ^C 2	70						E : 1984Fo04 place this γ from a 45/2 ⁻ level at 4660.0
527.5 2							However, 1995Sm02, in ¹²⁸ Te(37 Cl,4n γ), place the 45/2 ⁻ level 3 keV lower and show different γ' s deexciting it.
344.4	32	367.2	$1/2^{-}$	22.62	3/2+		
347.9 1	185	347.89	$11/2^{+}$	0.0	7/2+		
348.4 2	187	1873.87	$25/2^{-}$	1525.43	23/2-		
353.7 2	56	376.36	5/2-	22.62	$3/2^{+}$		
357.1 <mark>b</mark> 2	67 ^{b#}	376.36	5/2-	18.90	5/2+		
357.1 <mark>b</mark> 2	67 ^{b#}	515.69	$11/2^{+}$	159.04	$7/2^{+}$		
358		3739.6	39/2-	3380.8	35/2-		From 1995Sm02. 1984Fo04 report a 357.1 γ , but indicate that it is contaminated by a γ from ¹⁶² Tm.
359.9 2 ^x 368.8 2 ^x 369.6 2	& 52 40	367.2	1/2-	7.2	1/2+		
372.0 ^b 2	154 ^b	531.30	$11/2^{+}$	159.04	7/2+		A ₂ =-0.04 2; A ₄ =-0.05 4. Note: γ is doubly placed.

Continued on next page (footnotes at end of table)

¹⁵²Sm(¹⁴N,5nγ),¹⁶⁵Ho(⁴He,⁸Nγ) **1984Fo04** (continued)

$\gamma(^{161}\text{Tm})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	Comments
372.0 ^b 2	154 ^b	2480.85	29/2-	2108.85	27/2-		$A_2 = -0.04 2$; $A_4 = -0.05 4$. Note: γ is doubly placed.
395.5 1	214	557.34	$13/2^{+}$	161.81	$9/2^{+}$	Q	$A_2=0.22$ 4; $A_4=-0.29$ 6.
398.1 <i>1</i>	373	815.50	$17/2^{-}$	417.40	$13/2^{-}$	Q	$A_2=0.26 6; A_4=-0.03 8.$
416.0 <i>1</i>	132	1496.0	$21/2^{-}$	1080.0	$17/2^{-}$	Q	$A_2=0.28$ 6; $A_4=-0.01$ 7.
425.9 <i>1</i>	94	3476.7	$37/2^{-}$	3050.79	$33/2^{-}$	Q	$A_2=0.32$ 4; $A_4=-0.26$ 8.
431.0 <i>1</i>	597	1008.30	$19/2^{-}$	577.30	$15/2^{-}$	Q	$A_2=0.24$ 7; $A_4=-0.02$ 10.
440.6 <i>1</i>	254	788.50	$15/2^{+}$	347.89	$11/2^{+}$	Q	$A_2=0.17 4; A_4=-0.12 6.$
457.8 <i>1</i>	61	989.10	$15/2^{+}$	531.30	$11/2^{+}$		
479.4 <i>1</i>	327	1036.73	$17/2^{+}$	557.34	$13/2^{+}$	Q	$A_2=0.28 \ 8; \ A_4=-0.11 \ 7.$
484.3 1	100	3739.6	39/2-	3255.24	$35/2^{-}$	Q	$A_2=0.23 5; A_4=-0.01 8.$
^x 490.2 2	79						
494.5 <i>1</i>	342	1310.00	$21/2^{-}$	815.50	$17/2^{-}$	Q	$A_2=0.275; A_4=-0.108.$
^x 496.4 3	26						
500.1 2	100	1996.1	$25/2^{-}$	1496.0	$21/2^{-}$	Q	$A_2=0.27$ 15; $A_4=-0.16$ 28.
^x 502.4 2	69						
^x 515.6 2	154						
516.6 2	<540	1305.03	19/2+	788.50	15/2+	(Q)	$A_2=0.26$ 2; $A_4=-0.12$ 2. (Values are for both the 516.6 and 517.1 γ 's.).
							I_{γ} : peak contains two γ' s. The listed $I\gamma$ value is for the pair.
517.1 2	<540	1525.43	23/2-	1008.30	19/2-	(Q)	$A_2=0.26$ 2; $A_4=-0.12$ 2. (Values are for both the 516.6 and 517.1 γ 's.).
							I_{γ} : peak contains two γ' s. The listed I_{γ} value is for the pair
518.4 2	74	3255.24	$35/2^{-}$	2736.48	$31/2^{-}$		ł
536.2	78	4012.6	$41/2^{-}$	3476.7	$37/2^{-}$		
544.9 <i>1</i>	289	1581.66	$21/2^{+}$	1036.73	$17/2^{+}$	0	$A_2=0.21$ 6; $A_4=-0.09$ 5.
^x 555.0 2	60		,		,		
^x 558 6 1	115						
563.9 1	320	1873.87	$25/2^{-}$	1310.00	$21/2^{-}$	0	$A_2 = 0.23.9$; $A_4 = -0.08.9$
^x 565.4.2	76	10/010/	20/2	1010100	/-	×	12 0.20 , 1.4 0.00 , 1
570.0 2	188	3050.79	$33/2^{-}$	2480.85	$29/2^{-}$	0	$A_2=0.21.5$; $A_4=-0.18.9$.
571.7 2	212	1876.73	$23/2^+$	1305.03	$19/2^+$	ò	$A_2 = 0.23 I: A_4 = -0.18 I.$
574.1 2	103	2570.2	$29/2^{-}$	1996.1	$25/2^{-}$	(0)	$A_2=0.12$ 8: $A_4=-0.04$ 12.
583.4 <i>1</i>	390	2108.85	$27/2^{-}$	1525.43	$23/2^{-}$	Q	$A_2 = 0.30 6; A_4 = 0.01 8.$
590.6 <mark>b</mark> 2	250 <mark>b</mark>	2172.25	25/2+	1581.66	$21/2^+$	(0)	$A_2=0.27$ 10: $A_4=-0.10$ 17 Note: γ is doubly placed
$500.6^{b} 2$	250b	4220.2	12/2-	2720.6	20/2-	(\mathbf{Q})	$\Lambda = 0.27 10$; $\Lambda = -0.10 17$. Note: γ is doubly placed.
390.0° 2 X505.0.2	230	4550.5	45/2	5759.0	39/2	(Q)	$A_2=0.27$ 10; $A_4=-0.10$ 17. Note: γ is doubly placed.
x500.0.2	104						
599.9 5 601 3 2	40	2478 0	27/2+	1876 73	23/2+	0	$A_{1} = 0.12 0; A_{2} = 0.01 14$
607.0.2	257	2478.0	20/2-	1070.75	25/2	Q	$A_2 = 0.12$ 9, $A_4 = -0.01$ 14. $A_5 = 0.25$ 20: $A_4 = -0.10$ 30
627.6.2	237	2480.85	29/2	2108.85	25/2	0	$A_2 = 0.23 \ 20, \ A_4 = -0.10 \ 30.$
x630.8.2	103	2750.48	51/2	2106.65	21/2	Q	$A_2 = 0.55$ 6, $A_4 = -0.10$ 14. $A_2 = 0.17$ 6; $A_4 = 0.04$ 10
636 1 [°] 3	~00	3206 3	33/2-	2570.2	29/2-		$\Delta_2 = 0.063; \Delta_4 = 0.004$
644 2 3	~ 30 ~ 70	3380.8	35/2-	2370.2	31/2-	(0)	$\Delta_2 = 0.14 \ 9 \ \Delta_4 = -0.15 \ 15$
x647 2 ^C 2	~ 10 ~ 50	5500.0	55/2	2130.40	51/2		$F : 1984F_{0}04$ place this v from a $45/2^{-1}$ level at 4660.0
047.5 5	~50						However, 1995Sm02, in ¹²⁸ Te(37 Cl,4n γ), place the 45/2 ⁻ level 3 keV lower and show different γ 's
							deexciting it.
^x 692.1 3	č						

[†] The listed values are for θ =90° and E(¹⁴N)=82 MeV. (See 1984Fo04 for values from the ¹⁶⁵Ho(⁴He,⁸N γ) reaction at 90° and

¹⁵²Sm(¹⁴N,5nγ),¹⁶⁵Ho(⁴He,⁸Nγ) **1984Fo04** (continued)

$\gamma(^{161}\text{Tm})$ (continued)

 $E(^{4}He)=97$ MEV.) Their uncertainties are stated to vary from 10% to 30%, depending on the line strength.

[‡] Primarily from $\gamma(\theta)$ (1984Fo04), although the deduced multipolarities are not explicitly given there. The evaluator has assigned

Q to the γ 's with A₂>0.20 and A₄=small, and D(=dipole) to those with A₂<0.

[#] Value may include contribution from γ from ¹⁶²Tm.

[@] Value may include contribution from γ from ¹⁶⁰Tm.

& Observed only in the ${}^{165}\text{Ho}(\alpha,8n\gamma)$ reaction.

^{*a*} $\gamma(\theta)$ (1984Fo04) suggests stretched Q, but placement has $\Delta J=1$.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

6

 $^{161}_{69} Tm_{92}$

152 Sm(14 N,5n γ), 165 Ho(4 He, 8 N γ) 1984Fo04

¹⁶¹₆₉Tm₉₂

$\frac{^{152} \mathrm{Sm}(^{14} \mathrm{N}, 5 \mathrm{n} \gamma), ^{165} \mathrm{Ho}(^{4} \mathrm{He}, ^{8} \mathrm{N} \gamma) \qquad 1984 \mathrm{Fo04} \ (\mathrm{continued})}{100}$

¹⁶¹₆₉Tm₉₂

¹⁵²Sm(¹⁴N,5nγ),¹⁶⁵Ho(⁴He,⁸Nγ) 1984Fo04 (continued)

¹⁶¹₆₉Tm₉₂