¹⁶¹Gd β⁻ decay 1975Ga16,1976Hn01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Parent: ¹⁶¹Gd: E=0; J^{π}=5/2⁻; T_{1/2}=3.66 min 5; Q(β ⁻)=1955.5 *14*; % β ⁻ decay=100.0 ¹⁶¹Gd-J^{π}: Additional information 1. ¹⁶¹Gd-T_{1/2}: Additional information 2. ¹⁶¹Gd-Q(β ⁻): Additional information 3.

Additional information 4.

¹⁶¹Tb Levels

Decay scheme is primarily that of 1975Ga16, which is the only report of levels above 750 keV. Below 750 keV, similar schemes are given by 1976Hn01, 1974OkZW, 1966Zy02, and 1966FuZZ.

The following data have been measured: γ -ray energies and intensities (1975Ga16, also 1976Hn01,1966Zy02,1966FuZZ), level half-lives (1964Lo09,1965Ma24,1967Ma33,1969Be54), $\gamma\gamma$ coincidences (1966Zy02,1969Be54,1974OkZW,1975Ga16,1976Hn01), and multipolarities from ce data (1959Sc29,1976Hn01) and from $\gamma\gamma(\theta)$ data (1974OkZW).

Additional information 5.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0@	3/2+	6.906 d <i>19</i>	J^{π} : from ¹⁶¹ Tb Adopted Levels; J measured. T _{1/2} : from ¹⁶¹ Tb Adopted Levels.
56.289 [@] 9	5/2+		
133.681 [@] 11	$7/2^{+}$		
230.72 [@] 7	9/2+		
314.914 ^{&} 11	$5/2^{+}$		
394.364 ^{&} 17	$7/2^{+}$		
417.228 ^{<i>a</i>} 12	7/2-	0.88 ns 2	$T_{1/2}$: weighted average of 0.87 ns 5 (1964Lo09), 0.84 ns 4 (1965Ma24), and 0.90 ns 3 (1969Be54) from $\beta\gamma$ (t).
480.130 ^b 12	$5/2^{-}$	<0.1 ns	$T_{1/2}$: from 1967Ma33 from $\beta e^{-}(t)$. Other: <0.2 ns (1965Ma24) from $\beta \gamma(t)$.
488.78 ^{<i>a</i>} 3	9/2-		
585.776 ^b 15	7/2-	<0.2 ns	$T_{1/2}$: from 1965Ma24 from $\beta\gamma(t)$.
707.19 ^b 25	9/2-		
1149.88 7	(3/2+)		J^{π} : authors (1975Ga16) comment that a possible assignment is $K^{\pi}=3/2^{+}\beta$ -vibrational band based on $3/2[411]$ ground state.
1209.72 9			J^{π} : assigned (3/2 ⁺) by 1975Ga16, but assignment not adopted.
1252.37 [°] 6	$5/2^{+}$		
1349.66 5			J^{π} : assigned $J^{\pi}=(5/2^+)$ and as bandhead of $5/2^+ \beta$ -vibrational band based on $5/2[413]$ state at 314 keV by 1975Ga16, but assignment not adopted.
1404.68 12			J^{π} : assigned (5/2 ⁺) by 1975Ga16, but assignment not adopted.
1420.62 7			J^{π} : assigned $J^{\pi} = (7/2^+)$ and as member of $5/2^+ \beta$ -vibrational band based on $5/2[413]$ state at 314 keV by 1975Ga16, but assignment not adopted.
1460.54 10			J^{π} : assigned (7/2) by 1975Ga16, but assignment not adopted.
1477.63 11			J^{π} : assigned $J^{\pi} = (3/2^{-})$ and as bandhead of $3/2^{-}$ [541], but assignment not adopted.
1533.80 9			J^{π} : assigned $J^{\pi} = (5/2)$ and as member of $3/2^{-}[541]$ band, but assignment not adopted.
1537.43 8			
1552.1/12			J [*] : assigned ($1/2$) by 19/5Ga16, but assignment not adopted.
1558.18 11			J assigned $(3/2)$ by 19/30(a10), but assignment not adopted.
1623.11 7			J^{π} : assigned 5 – (7/2) and as includer of 5/2 [541] band, but assignment not adopted.

Continued on next page (footnotes at end of table)

The $\gamma\gamma$ -coincidence data on the drawing are from 1976Hn01.

161 Gd β^- decay 1975Ga16,1976Hn01 (continued)

¹⁶¹Tb Levels (continued)

E(level)[†]Comments1655.81 7 J^{π} : assigned (7/2) by 1975Ga16, but assignment not adopted.1778.19 12 J^{π} : assigned (7/2⁻) by 1975Ga16, but assignment not adopted.1810.75 121825.2 31853.6 3 J^{π} : assigned (7/2⁻) by 1975Ga16, but assignment not adopted.1856.95 22[†] From least-squares fit to γ energies.[‡] The J^{π} and band assignments are from ¹⁶¹Tb Adopted Levels. They agree with those from the ¹⁶¹Gd β^- decay results of

- ¹ The Jⁿ and band assignments are from ¹⁰ Tb Adopted Levels. They agree with those from the ¹⁰ Gd β decay results of 1975Ga16 and are based on γ multipolarities and expected band structure. Other J^{π} and band assignments from 1975Ga16 which are not adopted are given in comments.
- [#] From ¹⁶¹Tb Adopted Levels. All data are from this decay.
- [@] Band(A): 3/2[411] band.

[&] Band(B): 5/2[413] band.

- ^a Band(C): 7/2[523] band.
- ^b Band(D): 5/2[532] band.
- ^c Band(E): 5/2[402] bandhead.

β^{-} radiations

IB,LOGFT $I\beta^-$ values are computed from γ -intensity balances and the $I\gamma$ values are normalized to give a total $I\beta^-$ of 100%. They are not normalized to give 100% feeding of the ground state because this value depends significantly on the very uncertain α of the 56 γ . $I\beta^-$ and log *ft* values are not given for levels above 600 keV, as the $I\beta^-$ values are too small ($\leq 0.04\%$) to be meaningful, since the unplaced γ 's can change the values significantly. The total $I\beta^-$ given is 99.4%.

E(decay)	E(level)	$I\beta^{-\ddagger\#}$	Log ft	Comments
(1369.7 14)	585.776	5.7	5.83	av Eβ=489.9 7
				$I\beta^-$: value assumes that one-half of the intensity of the 97-keV γ depopulates this level.
(1475.4 14)	480.130	4.4	6.07	av E β =534.4 7
1560 30	417.228	83.5	4.86	av E β =561.2 7
(1561.1 14)	394.364	1.5	6.63	av E β =571.0 7
(1640.6 14)	314.914	5.0	6.19	av $E\beta = 605.1 \ 7$

[†] Measured E(β^{-}) value is from 1966Zy02.

[‡] The calculated $I\beta^{-}(g.s.)=8\%$ 12 is not included since it is assumed that this value results from an error in the transition intensity of the 56-keV γ . This assumption is supported by the calculated $I\beta^{-}(56)=-7\%$ 12. See comments on α for the 56 γ .

[#] Absolute intensity per 100 decays.

 $\gamma(^{161}\text{Tb})$

I γ normalization: the normalization is that of the evaluator. It assumes that the total I β^- is 100% and the I β^- feeding of the ground-state band is $\leq 0.5\%$. The total ground-state feeding is not used for normalization because the transition intensity of the 56 γ is not well known.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\boldsymbol{b}}$	Comments
56.290 12	380 ^{&} 16	56.289	5/2+	0	3/2+	M1		16 <i>3</i>	$\alpha(K)=13.5 \ 30; \ \alpha(L)=2.0 \ 4; \ \alpha(M+)=0.5 \ 1$ Mult.: from L1/M=3.0 5 (1959Sc29) and $\alpha(K)exp=15 \ 3$ (1959Sc29) and 13.5 $\ 30 \ (1976Hn01$ who used ce data of 1959Sc29). From theory, $\alpha=11.51$ and $\alpha(K)=9.67$ for M1. α : values deduced by evaluator who assumes α and $\alpha(K)$ are both anomolous by the ratio $\alpha(K)exp/\alpha(K)$ theory=1.40.
62.910 25	62	480.130	5/2-	417.228	7/2-	[M1,E2]		12 4	$\alpha(K)=4.9\ 22;\ \alpha(L)=5\ 5;\ \alpha(M)=1.3\ 11;\ \alpha(N+)=0.3\ 3$ $\alpha(N)=0.29\ 24;\ \alpha(Q)=0.04\ 3;\ \alpha(P)=0.00034\ 19$
71.57 3	62	488.78	9/2-	417.228	7/2-	[M1,E2]		7.6 18	$\alpha(K)=3.6\ 13;\ \alpha(L)=3.0\ 24;\ \alpha(M)=0.7\ 6;\ \alpha(N+)=0.18\ 15$ $\alpha(N)=0\ 16\ 13;\ \alpha(Q)=0\ 021\ 16;\ \alpha(P)=0\ 00024\ 12$
77.393 10	107 <i>10</i>	133.681	7/2+	56.289	5/2+	M1+E2	0.12 1	4.63	$\alpha(K)=3.84 6; \alpha(L)=0.611 12; \alpha(M)=0.135 3; \alpha(N+)=0.0360 7$ $\alpha(N)=0.0310 6; \alpha(O)=0.00470 9; \alpha(P)=0.000286 4$ Mult.: from K/L≈2.0 and $\alpha(K)\exp=5.3$ (1959Sc29). δ : The expected E2 component in this intraband cascade transition was computed by the evaluator using the Alaga rules (1955A158) and the intensity of the crossover (133.68) E2 transition.
79.41 <i>4</i>	6 1	394.364	7/2+	314.914	5/2+	[M1,E2]		5.2 10	$\alpha(K)=2.8 \ 9; \ \alpha(L)=1.9 \ 14; \ \alpha(M)=0.5 \ 4; \ \alpha(N+)=0.11 \ 9 \ \alpha(N)=0.10 \ 8; \ \alpha(O)=0.013 \ 10; \ \alpha(P)=0.00018 \ 9 \ E_{\star}; \ placement \ by \ 1976Hp01, \ upplaced \ by \ 1975Ga16$
85.79 7	15 3	480.130	5/2-	394.364	7/2+	[E1]		0.453	$\begin{aligned} &\alpha(\mathbf{K}) = 0.377 \ 6; \ \alpha(\mathbf{L}) = 0.0591 \ 9; \ \alpha(\mathbf{M}) = 0.01289 \ 19; \\ &\alpha(\mathbf{N}+) = 0.00336 \ 5 \\ &\alpha(\mathbf{N}) = 0.00292 \ 5; \ \alpha(\mathbf{O}) = 0.000418 \ 6; \ \alpha(\mathbf{P}) = 2.05 \times 10^{-5} \ 3 \end{aligned}$
97.04 ^{cd} 7	5. <i>1</i> 12.5 ^c 20	230.72	9/2+	133.681	7/2+	[M1,E2]		2.7 3	$\alpha(K)=1.6\ 4;\ \alpha(L)=0.8\ 5;\ \alpha(M)=0.19\ 13;\ \alpha(N+)=0.05\ 3$ $\alpha(N)=0.04\ 3;\ \alpha(Q)=0.006\ 4;\ \alpha(P)=0.00011\ 5$
97.04 [°] 7	12.5 ^c 20	585.776	7/2-	488.78	9/2-	[M1,E2]		2.7 3	$\alpha(N)=0.64; \alpha(L)=0.85; \alpha(M)=0.19 \ 13; \alpha(N+)=0.053$ $\alpha(N)=0.043; \alpha(Q)=0.0064; \alpha(P)=0.000115$
102.315 10	1400 80	417.228	7/2-	314.914	5/2+	E1		0.283	$\alpha(K)=0.237 \ 4; \ \alpha(L)=0.0361 \ 5; \ \alpha(M)=0.00786 \ 11; \ \alpha(N+)=0.00206 \ 3 \ \alpha(N)=0.00179 \ 3; \ \alpha(O)=0.000259 \ 4; \ \alpha(P)=1.316\times10^{-5} \ 19 \ Mult.: from K/L=5.5 \ and \ \alpha(K)exp=0.22 \ (1959Sc29). E1 \ also deduced by 1976Hn01 \ from \ \alpha(K)exp \ based \ on \ ce \ data \ of 1959Sc29, \ but \ \alpha(K)exp \ value \ is \ not \ reported.$
105.64 2	74 10	585.776	7/2-	480.130	5/2-	[M1,E2]		2.00 13	$\alpha(K)=1.3 \ 3; \ \alpha(L)=0.6 \ 4; \ \alpha(M)=0.13 \ 8; \ \alpha(N+)=0.033 \ 20 \ \alpha(N)=0.029 \ 18; \ \alpha(O)=0.0039 \ 22; \ \alpha(P)=8.E-5 \ 4$

ω

 $^{161}_{65}{
m Tb}_{96}{
m -3}$

					16	${}^{1}\mathbf{Gd}\beta^{-}\mathbf{deca}$	y 1975Ga16	5,1976Hn01 (continued)
							$\gamma(^{161}\text{Tb})$ (con	ntinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\boldsymbol{b}}$	Comments
121.7 <i>3</i>	1.0 3	707.19	9/2-	585.776	7/2-	[M1,E2]		1.265 24	$\alpha(K)=0.87\ 20;\ \alpha(L)=0.31\ 16;\ \alpha(M)=0.07\ 4;\ \alpha(N+)=0.019\ 10$
133.68 2	16 2	133.681	7/2+	0	3/2+	[E2]		0.915	$\alpha(N)=0.016 \ 9; \ \alpha(O)=0.0022 \ 11; \ \alpha(P)=5.7\times10^{-5} \ 23$ $\alpha(K)=0.516 \ 8; \ \alpha(L)=0.307 \ 5; \ \alpha(M)=0.0725 \ 11; \ \alpha(N+)=0.0185$ 3
165.213 <i>15</i>	260 20	480.130	5/2-	314.914	5/2+	E1		0.0780	$ \begin{aligned} &\alpha(N) = 0.01630 \ 23; \ \alpha(O) = 0.00214 \ 3; \ \alpha(P) = 2.68 \times 10^{-5} \ 4 \\ &\alpha(K) = 0.0658 \ 10; \ \alpha(L) = 0.00957 \ 14; \ \alpha(M) = 0.00208 \ 3; \\ &\alpha(N+) = 0.000549 \ 8 \end{aligned} $
									$\alpha(N)=0.000475 7; \alpha(O)=7.03\times10^{-5} 10; \alpha(P)=3.91\times10^{-6} 6$ Mult.: from $\alpha(K)\exp=0.10$ (1959Sc29). E1 also deduced by 1976Hn01 from $\alpha(K)\exp$ based on ce data of 1959Sc29, but $\alpha(K)\exp$ value is not reported
168.47 7	8.2 12	585.776	7/2-	417.228	$7/2^{-}$	[M1,E2]		0.46 5	$\alpha(R) = 0.34 \ \text{$\%$} \ \alpha(L) = 0.09 \ \text{$\%$} \ \alpha(M) = 0.020 \ \text{$\%$} \ \alpha(N+) = 0.0052 \ \text{16}$
181.232 12	75 <i>3</i>	314.914	5/2+	133.681	$7/2^{+}$	M1+E2	≈-0.87	0.371 25	$\alpha(N)=0.0045 \ 15; \ \alpha(O)=0.00064 \ 17; \ \alpha(P)=2.3\times10^{-5} \ 9 \ \alpha(K)\approx 0.288; \ \alpha(L)\approx 0.0645; \ \alpha(M)\approx 0.01463; \ \alpha(N+)\approx 0.00383$
191.38 <i>3</i>	64 <i>3</i>	585.776	7/2-	394.364	7/2+	[E1]		0.0528	$\alpha(N) \approx 0.00334; \ \alpha(O) \approx 0.000477; \ \alpha(P) \approx 1.97 \times 10^{-5}$ $\alpha(K) = 0.0446 \ 7; \ \alpha(L) = 0.00641 \ 9; \ \alpha(M) = 0.001394 \ 20;$ $\alpha(N+) = 0.000369 \ 6$
258.62 <i>3</i>	99 4	314.914	5/2+	56.289	5/2+	M1+E2	-0.6 +3-2	0.140 11	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.000319 \ 5; \ \alpha(\mathrm{O}) = 4.74 \times 10^{-5} \ 7; \ \alpha(\mathrm{P}) = 2.70 \times 10^{-6} \ 4 \\ \alpha(\mathrm{K}) = 0.115 \ 11; \ \alpha(\mathrm{L}) = 0.0192 \ 4; \ \alpha(\mathrm{M}) = 0.00425 \ 13; \\ \alpha(\mathrm{N}+) = 0.00113 \ 3 \end{array} $
									α (N)=0.00098 3; α (O)=0.0001462 21; α (P)=8.3×10 ⁻⁶ 10 δ : from 1974OkZW; authors report only smaller of the two values from the analysis based on α (K)exp \approx 0.22 (1959Sc29) which implies predominately M1. M1 also deduced by 1976Hn01 from α (K)exp based on ce data of 1959Sc29, but α (K)exp value is not reported
270.87 5	88 4	585.776	7/2-	314.914	5/2+	[E1]		0.0214	$\alpha(K) = 0.0182 \ 3; \ \alpha(L) = 0.00256 \ 4; \ \alpha(M) = 0.000555 \ 8; \ \alpha(N+) = 0.0001475 \ 21$
283.55 3	600 25	417.228	7/2-	133.681	7/2+	E1		0.0191	$\alpha(N)=0.0001272 \ 18; \ \alpha(O)=1.91\times10^{-5} \ 3; \ \alpha(P)=1.139\times10^{-6} \ 16$ $\alpha(K)=0.01618 \ 23; \ \alpha(L)=0.00227 \ 4; \ \alpha(M)=0.000493 \ 7;$ $\alpha(N+)=0.0001311 \ 19$
									$\alpha(N)=0.0001131 \ 16; \ \alpha(O)=1.701\times10^{-5} \ 24; \ \alpha(P)=1.019\times10^{-6} \ 1.$ Mult.: from $\alpha(K)\exp=0.041 \ (1959Sc29)$. E1 also deduced by 1976Hn01 from $\alpha(K)\exp$ based on ce data of 1959Sc29, but $\alpha(K)\exp$ is parted.
314.92 2	2290 90	314.914	5/2+	0	3/2+	M1+E2	+0.29 6	0.0884 18	$\alpha(K) \exp value is not reported.$ $\alpha(K) = 0.0745 \ 16; \ \alpha(L) = 0.01092 \ 16; \ \alpha(M) = 0.00239 \ 4; \ \alpha(N+) = 0.000641 \ 10$
									$\alpha(N)=0.000551 \ \delta; \ \alpha(O)=8.46\times10^{-5} \ 13; \ \alpha(P)=5.45\times10^{-6} \ 13$ $\delta:$ from 1974OkZW; authors report only smaller of the two values from the analysis based on $\alpha(K)\exp=0.10$ and $K/L\ge6.3$ (1959Sc29) which imply predominately M1. E2+M1 is report by 1976Hn01 from $\alpha(K)\exp$ based ce data of 1959Sc29 which

4

				161	$\operatorname{Gd}\beta^{-}$	decay 1	975Ga16,19	976Hn01 (c	continued)
						$\gamma(^{161}$	Tb) (contin	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	<i>δ</i> #	α b	Comments
									might support larger δ value, but $\alpha(K)$ exp value is not
338.07 2	170 10	394.364	7/2+	56.289	5/2+	M1+E2	+0.08 3	0.0755	reported. $\alpha(K)=0.0639 \ 10; \ \alpha(L)=0.00910 \ 13; \ \alpha(M)=0.00198 \ 3; \ \alpha(N+)=0.000534 \ 8$
360.94 2	606×10 ¹ 15	417.228	7/2-	56.289	5/2+	E1		0.01051	$ \begin{aligned} \alpha(\mathrm{N}) = 0.000458 \ 7; \ \alpha(\mathrm{O}) = 7.07 \times 10^{-5} \ 10; \ \alpha(\mathrm{P}) = 4.70 \times 10^{-6} \ 7 \\ \alpha(\mathrm{K}) = 0.00893 \ 13; \ \alpha(\mathrm{L}) = 0.001237 \ 18; \ \alpha(\mathrm{M}) = 0.000268 \ 4; \\ \alpha(\mathrm{N}+) = 7.15 \times 10^{-5} \ 10 \end{aligned} $
									$\alpha(N)=6.16\times10^{-3} \ 9; \ \alpha(O)=9.33\times10^{-6} \ 13; \ \alpha(P)=5.73\times10^{-7} \ 8$ Mult.: from $\alpha(K)\exp=0.018 \ (1959Sc29)$. E1 also deduced by 1976Hn01 from $\alpha(K)\exp$ based on ce data of 1959Sc29, but $\alpha(K)\exp$ value is not reported.
394.34 6	22 2	394.364	7/2+	0	3/2+	[E2]		0.0278	$\alpha(K)=0.0219 \ 3; \ \alpha(L)=0.00456 \ 7; \ \alpha(M)=0.001030 \ 15; \ \alpha(N+)=0.000270 \ 4$
417.0 4	31 4	417.228	7/2-	0	3/2+	[M2]		0.1524	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000235 \ 4; \ \alpha(\mathrm{O}) = 5.37 \times 10^{-5} \ 5; \ \alpha(\mathrm{P}) = 1.428 \times 10^{-6} \ 20 \\ \alpha(\mathrm{K}) = 0.1254 \ 18; \ \alpha(\mathrm{L}) = 0.0211 \ 3; \ \alpha(\mathrm{M}) = 0.00470 \ 7; \\ \alpha(\mathrm{N}+) = 0.001265 \ 19 \end{array}$
423.86 7	18 3	480.130	5/2-	56.289	5/2+	[E1]		0.00718	$\alpha(N)=0.001088 \ I6; \ \alpha(O)=0.0001664 \ 24; \ \alpha(P)=1.053\times10^{-5} \ I6 \ \alpha(K)=0.00611 \ 9; \ \alpha(L)=0.000839 \ I2; \ \alpha(M)=0.000182 \ 3; \ \alpha(N+)=4.85\times10^{-5} \ 7 \ \alpha(N)=4.18\times10^{-5} \ 6; \ \alpha(O)=6.25\times10^{-6} \ 9; \ \alpha(D)=2.06\times10^{-7} \ 6$
452.2 2	6 1	585.776	7/2-	133.681	$7/2^{+}$				$a(n) = 4.18 \times 10^{-6}$, $a(0) = 0.55 \times 10^{-6}$, $a(r) = 5.90 \times 10^{-6}$
480.12 2	270 15	480.130	5/2-	0	3/2+	[E1]		0.00539	α (K)=0.00459 7; α (L)=0.000627 9; α (M)=0.0001357 19; α (N+)=3.63×10 ⁻⁵ 5 α (N)=3.12×10 ⁻⁵ 5; α (Q)=4.75×10 ⁻⁶ 7; α (P)=3.00×10 ⁻⁷ 5
529.50 2 772 18 10	127 7	585.776 1252 37	$7/2^{-}$ 5/2 ⁺	56.289 480 130	$5/2^+$ $5/2^-$				
818.9 [@] 3 *832.0 3	0.07 2 0.10 2	1404.68	5/2	585.776	5/2 ⁻				
835.0 [°] 3	0.09 ^c 2	1149.88	$(3/2^+)$	314.914	$5/2^{+}$				
835.0 ^d 3	0.09 2	1252.37	$5/2^{+}$	417.228	$7/2^{-}$				
835.0 ^{cd} 3 857.93 11 *869.3 2	0.09 ^c 2 0.21 2 0.097 15	1420.62 1252.37	5/2+	585.776 394.364	7/2 ⁻ 7/2 ⁺				
x911.53 12 924.55 12 x928.42 14	0.19 2 0.19 2 0.13 2	1404.68		480.130	5/2-				
^x 932.85 10	0.29 2	1252 27	5/2+	314 014	5/2+				
937.33 9	0.92 5	1533.80	5/2	585 776	$\frac{5}{2}$				
951.10 22	0.055 6	1537.43		585.776	$7/2^{-}$				
955.35 8	0.79 4	1349.66		394.364	7/2+				
972.3 [@] 8	0.024 8	1460.54		488.78	9/2-				

S

γ (¹⁶¹Tb) (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
^x 979.37 14	0.11 1					1297.9 2	0.073 12	1778.19	_	480.130	5/2-
x1012.90 10	0.30 2					1308.27 10	0.296 20	1623.11		314.914	5/2+
1015.10 14	0.12 2	1601.02		585.776	7/2-	1341.10 12	0.166 15	1655.81		314.914	5/2+
1026.25 10	0.28 2	1420.62		394.364	7/2+	1344.2 ^{@} 4	0.033 7	1477.63		133.681	7/2+
1034.72 8	2.74 7	1349.66		314.914	5/2+	1349.60 9	0.51 3	1349.66		0	$3/2^{+}$
*1044.30 22	0.055 10	1527 42		100 70	0/2-	^x 1354.9 3	0.043 7				
1048.75 12	0.19 2	1557.45		488.78	9/2	*1357.8 5	0.045 /				
1053.7 3	0.045 10	1533.80		480.130	5/2	1364.19 13	0.119 13	1420.62		56.289	5/2 '
x1057.06 10	0.36 2	1550.15		400 70	0/2-	1373.2 ^w 5	0.027 6	1853.6		480.130	5/2-
1063.4 2	0.073 12	1552.17		488.78	9/2 7/2+	13/6.7 3	0.041 6	1856.95		480.130	5/2
1066.22 12	0.145 15	1460.54		394.364	1/2.	*13/9./4 13	0.165 12	1522.00		100 (01	z /2+
10/1.5 4	0.035 6	17/8.19	$(2/2^{\pm})$	707.19	9/2 ⁻	1400.13 12	0.175 12	1533.80		133.681	7/2+ 5/2+
1093.52 9	0.04 4	1149.88	$(3/2^{+})$	314 014	5/2 *	1421.37 13	0.089 /	14//.03		30.289	5/2 · 7/2+
11103.04 13	0.10512	1420.02		100 70	0/2-	1424.52	0.000 5	1925.2		204.264	7/2
1112.20 13 x_{1112} 40 10	0.18 5	1601.02		488.78	9/2	1430.7 = 0	0.012 4	1823.2		394.304	1/2
x1117.15.14	0.33.8					1433.82 10	0.085 0	1856 95		417 228	7/2-
1120.02.10	0.12.2	1601.02		490 120	5/2-	1450.5°	0.035 5	1050.55		204 264	7/2+
x1126.3.3	0.42.5	1001.02		400.150	5/2	x1472 4 2	0.027 5	1655.0		394.304	1/2
1135.2 4	0.038 8	1552.17		417.228	$7/2^{-}$	1477.55 [°] 15	0.136° 10	1477.63		0	$3/2^{+}$
1143 15 12	0.20.2	1537.43		394 364	7/2+	1477 55 ^{cd} 15	0.136 [°] 10	1533.80		56 289	5/2+
1145.50 18	0.09 2	1460.54		314.914	$5/2^+$	1480.9.3	0.040.5	1537.43		56.289	$5/2^+$
1149.94 9	1.20 6	1149.88	$(3/2^+)$	0	$3/2^+$	1489.42 15	0.140 10	1623.11		133.681	$7/2^+$
1153.43 12	0.155 20	1209.72	(-1)	56.289	$5/2^{+}$	1495.82 ^c 16	0.082 [°] 7	1552.17		56.289	$5/2^{+}$
^x 1160.09 <i>12</i>	0.158 15					1495.82 [°] 16	0.082 [°] 7	1810.75		314.914	$5/2^{+}$
^x 1171.4 5	0.030 12					1501.8 2	0.058 5	1558.18		56.289	$5/2^{+}$
1175.82 11	0.20 2	1655.81		480.130	$5/2^{-}$	1533.87 15	0.138 10	1533.80		0	$3/2^{+}$
^x 1186.06 <i>18</i>	0.073 10	1770 10		505 776	7/0-	1538.7 5	0.024 6	1853.6		314.914	5/2+
1192.42 15	0.103 15	1778.19		585.776	1/2	1544.80 14	0.116 8	1601.02		56.289	5/2 '
^x 1197.07 <i>13</i>	0.140 15	1200 72		0	2/2+	1547.5° 5	0.024 6	1778.19		230.72	9/2 ⁺
1209.72 11	0.18/15	1209.72		0	3/2 '	1558.33 15	0.099 8	1558.18		0	3/2
1224.93 20	0.056 10	1810.75		585.776	$7/2^{-}$	1567.0° 6	0.012 3	1623.11		56.289	5/2+
1228.72 14	0.109 10	1623.11		394.364	1/2.	x1600.55.15	$0.024 \ 5$ 0.42 \ 3				
x1238.01 18	0.073 0					1622 05 ^C 15	0.42.5 0.212 [°] 15	1623-11		0	3/2+
1242.04	0.181 12	1252 37	5/2+	0	3/2+	1622.95 I 15	0.212 I I I I I I I I I I I I I I I I I I	1853.6		230 72	$9/2^+$
x1258.88 13	0.126 8	1252.57	5/2	0	5/2	1677.3 4	0.028.5	1810.75		133.681	$7/2^+$
1261.11 11	0.195 10	1655.81		394.364	$7/2^{+}$	1691.7 4	0.029 5	1825.2		133.681	$7/2^+$
$1271.8^{\textcircled{0}}{5}$	0.019 5	1856.95		585.776	7/2 ⁻	^x 1738.8 3	0.033 5				
1286 4 4	0.039 7	1601.02		314 914	5/2+	1768.6 [@] 5	0.022.4	1825.2		56 289	$5/2^{+}$
1200.17	0.00277	1001.02		511.717	512	1700.0 5	0.022 1	1020.2		50.207	512

6

¹⁶¹Gd β^- decay **1975Ga16,1976Hn01** (continued)

$\gamma(^{161}\text{Tb})$ (continued)

- [†] From 1975Ga16; the nine doubtful unplaced γ 's and one possible sum peak (1975Ga16) have been omitted. Others: 1976Hn01, 1974OkZW, 1966Zy02, and 1966FuZZ.
- [‡] From K x ray/ γ and L₁/M ratios for 56-keV γ (1959Sc29 and 1976Hn01) and from α (K)exp's (1976Hn01), using ce data of 1959Sc29 for all other γ 's with the γ and ce data scaled to the theoretical M1 value for the 56-keV γ . The precision of the ce data (1959Sc29) is judged by the evaluator to be sufficient to distinguish between E1 and M1+E2 transitions, but not between M1 and E2 transitions.
- [#] From $\gamma\gamma(\theta)$ results of 1974OkZW.
- [@] Authors (1975Ga16) indicate γ is doubtful even though it is placed in scheme and intensity is >0.
- [&] This I γ and the α result in an intensity for the β^- feeding of the 56-keV level of -7% 12. If the theoretical α for an M1 γ is used, this computed I β^- becomes -23%. To obtain an intensity balance, I γ would need to increase by about 10%.
- ^a For absolute intensity per 100 decays, multiply by 0.00991 4.
- ^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^c Multiply placed with undivided intensity.
- ^d Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

¹⁶¹Gd β^- decay 1975Ga16,1976Hn01

Decay Scheme Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given Legend $\begin{array}{ll} \bullet & I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ 0 5/2 3.66 min 5 Q_β-=1955.5 14 $\%\beta^{-}=100.0$ $^{161}_{\ 64}\text{Gd}_{97}$ 1200:0 $I\beta^ \log ft$ 30 1856.95 5 00010 1853.6 1825.2 1810.75 + 1341,00,00,100,1 15 ŝ ŝ 1778.19 115,82 (00.0 (00.0 (00.0 s'10000 0.00120 1655.81 1623.11 5 20 1601.02 1558.18 9/2-707.19 5.83 5.7 585.776 <0.2 ns 7/2 9/2-488.78 . 4.4 6.07 5/2 480.130 <0.1 ns 83.5 4.86 7/2 417.228 0.88 ns 2 7/2+ 1.5 6.63 394.364 5.0 6.19 5/2+ 314.914 9/2+ 230.72 $7/2^+$ 133.681

6.906 d 19

56.289

0

¹⁶¹₆₅Tb₉₆

8

5/2+

3/2+

¹⁶¹Gd β^- decay 1975Ga16,1976Hn01

 $^{161}_{65}{
m Tb}_{96}$

9

161 Gd β^- decay 1975Ga16,1976Hn01

