		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

 $Q(\beta^{-})=593.7 \ 14$; $S(n)=7696.6 \ 6$; $S(p)=6808.9 \ 11$; $Q(\alpha)=-427 \ 5 \ 2012Wa38$

Note: Current evaluation has used the following Q record \$ 593.0 13 7696.6 6 6808.6 10 -426 5 2009AuZZ.

Values are essentially the same as those of 2003Au03.

S(p): other: 6815.9 17, as measured by 1975Bu02.

Additional information 1.

The data adopted here are from the ¹⁶¹Gd β^- decay and the ¹⁶⁰Gd(³He,d), ¹⁶⁰Gd(α ,t), and ¹⁶²Dy(t, α) reactions.

For calculations of the wave functions for some of these levels, see 1972So12 or 1973Ga29 and 1970WeZS. For a discussion of the band assignments, see 1975Ni03.

The contributions of Nilsson states and vibrations to the various bandheads have been calculated by 1970WeZS, 1971SoZW,

1972So12, 1973Ga29, and 1983So01. The last four articles have some authors in common and similar results. These contributions are greater than 90% for the $3/2^+[411]$, $5/2^+[413]$, and $5/2^-[532]$ bandheads. For spins of 7/2 and greater, the $7/2^-[523]$ and $5/2^-[532]$ bands are mixed, with the main contributions being 63% to 73% in the $7/2^-$ levels and less at $9/2^-$. For the $1/2^+[411]$ bandhead, the various calculations give a 54% to 73% contribution from the Nilsson state and 24% to 35% contribution from a vibrational state based on the $3/2^+[411]$ ground state. For the $5/2^+[402]$ band, the calculations give a 65% contribution from the Nilsson state and 11% and 12% from two vibrational states. 1970WeZS also give the calculated contributions for the first one or two rotational states in these bands.

¹⁶¹Tb Levels

Additional information 2.

Cross Reference (XREF) Flags

Α	160 Gd(p,p) IAR
	O(p,p)/m(n)

B 161 Gd β^- decay

C 160 Gd(³He,d), 160 Gd(α ,t)

D 162 Dy(t, α)

E(level) [†]	J ^{π‡#}	T _{1/2}	XREF	Comments
0.0@	3/2+	6.89 d 2	BCD	$%β^{-}=100$ $μ=2.2 \ 1; \ Q=+1.2 \ 6$ J^{π} : J measured by atomic-beam, magnetic resonance (1964Bu09). Calculated $μ$ (1989Be04) consistent with 3/2[411]. Hence, $\pi=+$. $T_{1/2}$: weighted average of: 6.75 d <i>10</i> (1949Bu01); 7.2 d 2 (1950He18); 6.8 d <i>1</i> (1952Co33); 7.2 d 5 (1955Ba90); 6.9 d <i>1</i> (1956Bi55); 6.88 d <i>10</i> (1963Ho15); 7.3 d 6 (1964Fu11); 6.90 d 2 (1971Ba28); 6.91 d 5 (1985An25); and 6.8985 d 5 (1989Ab22, from the same group as 1985An25). Because of the large reduced- χ^2 value implied using the listed uncertainties, the following choices were adopted in computing this average: the quoted uncertainty in the 1971Ba28 value (0.02 d) was increased to 0.04 d; the value, 7.20 d 7, of 1958Ba44 was not included; and the quoted uncertainty (0.0005 d) in the value from 1989Ab22 was increased to 0.05 d. (Note that even doubling the uncertainties in the last two T _{1/2} values included in the average does not materially alter the adopted value.) Other half-lives, without uncertainties, are given by 1955Fo18, 1956Co58, 1956Sm10, and 1972WyZZ. $μ$,Q: from 1989Ra17 evaluation and based on $\gamma(\theta,t)$ data for ¹⁶¹ Tb $β^-$ decay (1983Ri15) of oriented nuclei. The same values are listed in the compilation by 2005St24.
30.289 9	5/2		RCD	

161Tb Levels (continued)

E(level) [†]	$J^{\pi \ddagger \#}$	T _{1/2}	XREF	Comments
133.681 [@] 11	$7/2^{+}$		BCD	
230.72 [@] 7	$9/2^{+}$		BCD	XREF: C(236)D(233).
314.914 ^{&} 11	$5/2^{+}$		BCD	J^{π} : M1+E2 γ 's to 3/2 ⁺ and 7/2 ⁺ levels.
394.364 <mark>&</mark> 17	$7/2^+$		BCD	
417.228 ^{<i>a</i>} 13	7/2-	0.88 ns 2	BCD	J^{π} : E1 γ 's to $5/2^+$ and $7/2^+$ levels, and log ft =4.86 in β^- decay. This log ft value indicates that the β - transition is allowed-unhindered. In this mass region, such a transition connects the neutron and proton Nilsson orbitals $5/2[523]$ and $7/2[523]$, respectively. This establishes the J^{π} assignments for both levels and also provides the conf assignments for them. T _{1/2} : weighted average of 0.87 ns 5 (1964Lo09), 0.84 ns 4 (1965Ma24) and 0.90 ns 3 (1969Be54) from ¹⁶¹ Gd β^- decay.
480.130 ^b 12	5/2-	<0.1 ns	Βd	XREF: d(486). J^{π} : E1 γ to 5/2 ⁺ level and γ 's to 3/2 ⁺ , 7/2 ⁺ , and 7/2 ⁻ . $T_{1/2}$: from ¹⁶¹ Gd β^- decay (1967Ma33). Other: <0.2 ns from ¹⁶¹ Gd β^- decay
				(1965Ma24).
488.78 ^{<i>a</i>} 3	9/2-		BCd	XREF: d(486).
499 ^{&}	9/2+		CD	
520 ^C 3	$1/2^+$		CD	
$558^{\circ} 5$ $584^{\circ} 3$	$\frac{3}{2}$		CD Cd	
585 776 <mark>0</mark> 15	7/2-	<0.2 ns	R d	I^{π_1} I from $\gamma\gamma(\theta)$ (1974 Ω kZW) and π from hand assignment
505.770 15	7/2 5/0 ⁺	<0.2 lis	bu	$T_{1/2}$: from ¹⁶¹ Gd β^- decay (1965Ma24).
602° 3 638 4	5/21		CD C	
698 [°] 3	$7/2^{+}$		C d	XREF: d(699)
707.19 ^b 25	9/2-		B d	XREF: d(699). I^{π} from band structure deduced in (t α)
743 <i>3</i> 772 5			C C	(,,,)
847 ^b 3	$11/2^{-}$		CD	
920 ^d 3	$1/2^{-}$		CD	
950 ^d 3	5/2-		CD	
980 <i>f</i>	$1/2^{+}$		D	
997 <mark>8</mark> 3	,		CD	J ^{π} : Proposed doublet, from (t, α), consisting of 7/2 ⁺ ,7/2[404] and 3/2 ⁺ ,1/2[411].
1020^{a} 3	3/2-		С	
1064^{a}_{f} 3	9/2-		С	
1080/ 3	$(5/2^+)$		CD	J^{π} : In (t, α), a 1078 level is assigned as a doublet consisting of 9/2 ⁻ ,1/2[541] and 5/2 ⁺ ,1/2[411]. Note that here the 9/2 ⁻ state is placed at 1064 keV.
1111 3			CD	
1130 3			CD C	
1149.88 7	$(3/2^+)$		В	J ^{π} : Proposed in β^{-} decay as the bandhead of a β vibration built on the g.s. $(J^{\pi}=3/2^{+})$.
1178 ^d 3	$7/2^{-}$		CD	
1209.72 9			BCD	
1232 3	5 /0±		CD	
1252.37 ^e 6 1281 2	5/2+		BCD D	J^{π} : assigned, in (t, α), as a doublet of the 3/2 ⁺ and 5/2 ⁺ members of the
1302 <i>3</i> 1333			C D	1/2[420] band.
			-	

¹⁶¹Tb Levels (continued)

E(level) [†]	J ^{π‡#}	L	XREF	Comments
1349.66 5			BCD	
1386 <i>3</i>			CD	
1404.68 12			BC	
1420.62 7			BC	
1433 <i>3</i>			С	
1436 2			D	J^{π} : assigned, in (t, α), as a doublet of the 7/2 ⁺ and 9/2 ⁺ members of the 1/2[420] band.
1460.54 10			В	
1477.63 11			В	
1498 <i>3</i>			С	
1524			D	
1533.80 9			BC	
1537.43 8			В	
1552.17 12			ΒD	
1558.18 <i>11</i>			BC	
1601.02 7			BC	
1623.11 7			В	
1655.81 7			ΒD	
1680 <i>3</i>			C	
1718 8			C	
1756 3			С	
1778.19 12			BC	XREF: C(1782).
1810.75 12			BC	
1825.2 3			вр	
1845			D	
1853.6 3			BC	
1830.95 22			В	
1900 a	$11/2^{-}$		D	
1946			D	
1979			D	
17040	$(5/2^{-})$		Α	J^{π} : If level is the isobaric analog of the ¹⁰¹ Gd g.s.
17113	$(7/2^{-})$		Α	J^{π} : If level is the isobaric analog of the 72 level in ¹⁶¹ Gd.
17353	$(3/2^{-})$	1	Α	J^{π} : If level is the isobaric analog of the 314 level in ¹⁶¹ Gd.
17369	$(1/2^{-})$	1	Α	J^{π} : If level is the isobaric analog of the 355 level in ¹⁶¹ Gd.
17478	$(5/2^{-})$	3	Α	J^{π} : If level is the isobaric analog of the 438 level in ¹⁶¹ Gd.
17569	$(7/2^{-})$		Α	J^{π} : If level is the isobaric analog of the 529 level in ¹⁶¹ Gd.
17874	$(1/2^-, 3/2^-)$	1	Α	J^{π} : If level is the isobaric analog of the 834 level in ¹⁶¹ Gd.
17929	$(7/2^{-})$	3	Α	J^{π} : If level is the isobaric analog of the 889 level in ¹⁶¹ Gd.

[†] From least-squares fit to γ energies for ¹⁶¹Gd decay and otherwise from reactions.

[‡] J^{π} and band assignments are from agreement of calculated cross sections for (³He,d), (α ,t), and (t, α) reactions with measured cross sections and intensity patterns and level spacings within bands. Other J^{π} arguments are noted explicitly.

[#] See levels from ¹⁶¹Gd β^- decay for possible band assignment for β -vibrational bandheads at 1149 and 1349 keV and 3/2[541] band at 1477 keV.

[@] Band(A): 3/2[411] band. A=11.47 keV, B=-17 eV.

[&] Band(B): 5/2[413] band. A=11.35 keV.

^a Band(C): 7/2[523] band. A=7.95 keV.

^b Band(D): 5/2[532] band. A=17.54 keV.

^{*c*} Band(E): $K^{\pi} = 1/2^+$ band. A=11.2 keV, a=+0.19. The assigned configuration is the 1/2[411] Nilsson orbital mixed with the K-2 γ -vibrations based on the 3/2[411] g.s. and on the 5/2[413] state at 314 keV.

^d Band(F): 1/2[541] band. A=9.5 keV, a=+2.4.

^e Band(G): 5/2[402] bandhead.

^f Band(H): fragment of 1/2[411].

^g Band(I): 7/2[404] bandhead.

$\gamma(^{161}\text{Tb})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α [@]	Comments
56.289	$5/2^{+}$	56.290 12	100	0.0	$3/2^{+}$	M1		16 3	
133.681	7/2+	77.393 10	100 9	56.289	5/2+	M1+E2	0.12 1	4.63	
		133.68 2	15 2	0.0	3/2+			0.915	
230.72	9/2+	97.04 7	100	133.681	7/2+			2.7 3	
314.914	$5/2^{+}$	181.232 12	3.3 1	133.681	7/2+	M1+E2	≈ -0.87	0.371 25	
		258.62 <i>3</i>	4.3 2	56.289	5/2+	M1+E2	-0.6 + 3 - 2		
		314.92 2	100 4	0.0	3/2+	M1+E2	+0.29 6		
394.364	7/2+	79.41 <i>4</i>	3.5 6	314.914	5/2+			5.2 10	
		338.07 2	100 6	56.289	5/2+	M1+E2	+0.08 3		
		394.34 6	13 <i>I</i>	0.0	3/2+				5
417.228	7/2-	102.315 10	23.1 13	314.914	5/2+	E1		0.283	$B(E1)(W.u.)=4.0\times10^{-5}$ 3
		283.55 <i>3</i>	9.9 4	133.681	7/2+	E1		0.0191	$B(E1)(W.u.)=8.0\times10^{-7}$ 4
		360.94 2	100. 2	56.289	5/2+	E1		0.01051	$B(E1)(W.u.)=3.91\times10^{-6}$ 14
		417.0 4	0.51 7	0.0	3/2+	[M2]		0.1524	B(M2)(W.u.)=0.34 5
480.130	$5/2^{-}$	62.910 25	2.2 7	417.228	7/2-	[M1+E2]		12 4	_
		85.79 7	5.6 11	394.364	7/2+	[E1]		0.453	$B(E1)(W.u.) > 8.2 \times 10^{-5}$
		165.213 <i>15</i>	96. 7	314.914	5/2+	E1		0.0780	B(E1)(W.u.)>0.00020
		423.86 7	6.7 11	56.289	5/2+	[E1]		0.00718	$B(E1)(W.u.) > 8.1 \times 10^{-7}$
		480.12 2	100.6	0.0	3/2+	[E1]		0.00539	$B(E1)(W.u.) > 8.4 \times 10^{-6}$
488.78	9/2-	71.57 3	100	417.228	7/2-			7.6 18	
585.776	7/2-	97.04 7	≤11.4	488.78	9/2-			2.7 3	
		105.64 2	58 8	480.130	5/2-			2.00 13	
		168.47 7	6.5 9	417.228	7/2-			0.46 5	
		191.38 <i>3</i>	50.4 24	394.364	7/2+			0.0528	
		270.87 5	69 3	314.914	5/2+			0.0214	
		452.2 2	4./8	133.681	1/2'				
707 10	0/2-	529.50 2	100.6	56.289	5/2'			1 265 24	
/0/.19	$\frac{9/2}{(2/2^{+})}$	121./ 3	100	385.776	1/2 5/2+			1.265 24	
1149.00	(3/2)	855.0 5 1002 52 0	≤9.2 52.2	56 280	5/2 5/2+				
		11/0 0/ 0	100 5	0.0	3/2+				
1209 72		1153 43 12	83 11	56 289	5/2+				
1207.72		1209 72 11	100.8	0.0	$3/2^+$				
1252.37	$5/2^{+}$	772.18.10	39.3	480.130	$5/2^{-}$				
	-,-	835 0 8 3	<12	417 228	7/2-				
		857.93.11	$^{\leq 12}$	394 364	7/2+				
		937 53 9	100 5	314 914	5/2+				
		1252.42.12	19.7 13	0.0	$3/2^+$				
1349.66		955.35 8	28.8 15	394.364	$7/2^+$				
		1034.72 8	100 3	314.914	5/2+				
		1349.60 9	18.6 11	0.0	3/2+				
1404.68		818.9 <i>3</i>	<47	585.776	7/2-				
		924.55 12	100 11	480.130	5/2-				
1420.62		835.0 ^{&} 3	32 7	585.776	7/2-				
		1026.25 10	100 7	394.364	7/2+				
		1105.84 13	48 4	314.914	5/2+				
		1364.19 <i>13</i>	42 5	56.289	5/2+				
1460.54		972.3 8	<22	488.78	9/2-				
		1066.22 12	100 10	394.364	7/2+				
		1145.50 18	62 14	314.914	5/2+				
1477.63		1344.2 4	<45	133.681	7/2+				
		1421.37 15	100 8	56.289	$5/2^+$				
1522.00		1477.55 15	<164	0.0	3/2 ⁺				
1555.80		947.75 24	50 5	585.776	1/2				

Continued on next page (footnotes at end of table)

$\gamma(^{161}\text{Tb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
1533.80		1053.7 <i>3</i>	<31	480.130 5/2-	1623.11		1567.0 6	<5.1	56.289 5/2+
		1400.13 12	100 7	133.681 7/2+			1622.95 15	<77	$0.0 3/2^+$
		1477.55 15	<83	56.289 5/2+	1655.81		1175.82 11	100. 10	480.130 5/2-
		1533.87 15	79 6	0.0 3/2+			1261.11 11	98. <i>5</i>	394.364 7/2+
1537.43		951.10 22	28. <i>3</i>	585.776 7/2-			1341.10 12	83.8	314.914 5/2+
		1048.75 12	95.10	488.78 9/2-	1778.19		1071.5 4	<40	707.19 9/2-
		1143.15 12	100. 10	394.364 7/2+			1192.42 15	100. 15	585.776 7/2-
		1480.9 <i>3</i>	20.0 25	56.289 5/2+			1297.9 2	71. 12	480.130 5/2-
1552.17		1063.4 2	100 16	488.78 9/2-			1547.5 5	<29	230.72 9/2+
		1135.2 4	52 11	417.228 7/2-	1810.75		1224.93 20	100 18	585.776 7/2-
		1495.82 16	<122	56.289 5/2+			1495.82 16	<159	314.914 5/2+
1558.18		1424.3 2	67 5	133.681 7/2+			1677.3 4	50 9	133.681 7/2+
		1501.8 2	59 <i>5</i>	56.289 5/2+	1825.2		1430.7 6	<55	394.364 7/2+
		1558.33 <i>15</i>	100 8	$0.0 3/2^+$			1691.7 4	100.17	133.681 7/2+
1601.02		1015.10 14	29 5	585.776 7/2-			1768.6 5	<90	56.289 5/2+
		1112.20 15	43 12	488.78 9/2-	1853.6		1373.2 5	<137	480.130 5/2-
		1120.92 10	100 7	480.130 5/2-			1459.5 5	<133	394.364 7/2+
		1286.4 4	9.3 17	314.914 5/2+			1538.7 5	100 25	314.914 5/2+
		1544.80 14	27.6 19	56.289 5/2+			1622.95 15	<946	230.72 9/2+
1623.11		1228.72 14	37 <i>3</i>	394.364 7/2+	1856.95		1271.8 5	<58	585.776 7/2-
		1308.27 10	100 7	314.914 5/2+			1376.7 <i>3</i>	100. 15	480.130 5/2-
		1489.42 15	47 <i>3</i>	133.681 7/2+			1439.5 <i>4</i>	85.12	417.228 7/2-

[†] See ¹⁶¹Gd β^- decay for unplaced γ 's. [‡] From ¹⁶¹Gd β^- decay (1976Hn01,1959Sc29). From K x ray/ γ and L₁/M ratios for 56 γ (1959Sc29,1976Hn01) and α (K)exp for all other γ 's with the γ and ce data scaled to the theoretical M1 value for the 56-keV γ .

[#] From $\gamma\gamma(\theta)$ in ¹⁶¹Gd β^- decay (1974OkZW).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{161}_{65}{\rm Tb}_{96}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{161}_{65}{
m Tb}_{96}$

 ∞

Band(F): 1/2[541] band

11/2- 1900

	7/2-	1178
	9/2-	1064
	3/2-	1020
	5/2-	950
Band(D): 5/2[532] band	1/2-	920

```
11/2- 847
```

Band(E): $K^{\pi} = 1/2^+$ band

¹⁶¹₆₅Tb₉₆

Band(G): 5/2[402] bandhead

5/2+ 1252.37

Band(H): Fragment of 1/2[411]

(5/2⁺) 1080

Band(I): 7/2[404] bandhead

997

997_____

1/2+ 980

¹⁶¹₆₅Tb₉₆