$^{165}\mathrm{Re}~\alpha$ decay (2.32 s)

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011	

Parent: ¹⁶⁵Re: E=48 26; $J^{\pi} = (11/2^{-})$; $T_{1/2} = 2.32$ s 9; $Q(\alpha) = 5657$ SY; $\%\alpha$ decay=13 3

¹⁶⁵Re-E: From 1999Po09, based on energy differences of the α transitions from the 11/2⁻ states and the 1/2⁺ states In the α decays from the sequence of nuclides headed by ¹⁷⁷Tl.

¹⁶⁵Re-T_{1/2}: Weighted average of: 2.37 s +10-9 (2005Sc22); 1.9 s 3 (1996Pa01); and 2.4 s 6 (1981Ho10). Other: 2.2 s 4 (1984Sc06; 1978Sc26), but the evaluator has not adopted the assignment of this activity to this decay.

¹⁶⁵Re-J^{π}: Member of a sequence of (presumably) favored α transitions headed by the (11/2⁻) level In ¹⁷⁷Tl (1999Po09).

¹⁶⁵Re-Q(α): From 2009AuZZ. See the comment on the Q(g.s.) value for the ¹⁶⁵Re g.s.

¹⁶⁵Re-% α decay: from 1981Ho10. 1984Al36 suggest that ¹⁶⁵Re should decay by proton emission as well as α and $\varepsilon + \beta^+$ decay. Additional information 1.

Nuclide produced In a variety of heavy-ion-induced reactions on a variety of targets. Most studies utilized recoil mass separation and double-sided Si-strip detectors to study the decay chains of the respective nuclides. Data are primarily from 2005Sc22, 1999Po09, 1996Pa01, 1981Ho10.

A 2.2-s activity (E_{α} =5495 *10*) was originally assigned (1978Sc26) to ¹⁶⁶Re, but was subsequently (1984Sc06) assigned to ¹⁶⁵Re. The similarity of this energy with that of 2005Sc22 might suggest that this activity may be assigned to the decay of the ¹⁶⁵Re g.s. However, the data from 2005Sc22 have not been confirmed in a subsequent study by some of the same authors. (See the comment on the T_{1/2} and Q(α) values for the ¹⁶⁵Re g.s.) Thus, the origin of this 2.2-s activity remains an open question.

1999Po09: ¹⁶⁵Re produced As α decay product of ¹⁷⁷Tl, produced via ¹⁰²Pd(⁷⁸Kr,p2n), E(⁷⁸Kr)=370 MeV. Reaction products separated In the ANL fragment mass analyzer and studied using a parallel grid avalanche counter and a double-sided Si-strip detector.

2005Sc22: ¹⁶⁵Re produced In the decay of ¹⁶⁹Ir, produced via ¹¹²Sn(⁵⁸Ni,p2n), E(⁵⁸Ni)=266 MeV. Reaction products separated In the RITU separator and studied using a double-sided Si-strip detector and the JUROGRAM array. Recoil-decay tagging.

¹⁶¹Ta Levels

E(level)	J^{π}	Comments		
X	(11/2 ⁻)	J ^{π} : fed by an α transition from an (11/2 ⁻) state In ¹⁶⁵ Re.		
α radiations				
Εα	E(level)	$I\alpha^{\dagger}$	Comments	
5518 <i>3</i>	X	100	E α : weighted average of: 5520 5 (2005Sc22); 5518 5 (1996Pa01); and 5506 10 (1981Ho10). Other: 5495 10 (1978Sc26,1984Sc06), but the evaluator has left open the question As to which ¹⁶¹ Ta state this activity belongs.	

 † For absolute intensity per 100 decays, multiply by 0.13 3.