Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011		

 $S(p)=6.\times 10^2$ syst; $Q(\alpha)=7066$ 13 2012Wa38

Note: Current evaluation has used the following Q record 7066 12.

Q(α): Computed from E α =6890 12, as reported by 2010Bi03, assuming that the α transition connects the two ground states. Note that 2003Au03 (and 2009AuZZ) list no Q values for ¹⁶¹Os.

Additional information 1.

All data are from the study reported by 2010Bi03. The evaluator has assumed that this is a subsequent version of the information presented in 2008PaZV, which has most of the same authors.

¹⁶¹Os produced via the ¹⁰⁶Cd(58 Ni,3n) reaction, with values of E(58 Ni)=290, 300 and 310 MeV. Enriched (96.5%)

- self-supporting target of thickness 1.1 mg/cm². Reaction products were separated in-flight in a gas-filled separator and implanted into double-sided silicon-strip detectors. Measured $T_{1/2}$, $E\alpha$ and generic relations among members of the decay chain.
- 2010Bi03 report α peaks having energies of 6890 12 and 6580 30, with the latter having a branching ratio=5.5 31-22%. These authors assign these as transitions to the ¹⁵⁷W g.s. and an excited state at 318 30, respectively. With this identification, Q(α)=7066 12 is implied.

¹⁶¹ Os	Levels
-------------------	--------

E(level)	J^{π}	T _{1/2}	Comments
0	(7/2 ⁻)	0.64 ms 6	%α≈100 E(level): assumes that the observed activity represents the ¹⁶¹ Os g.s. %α: The theoretical calculations of 1997Mo25 give a value of 167 ms for the β decay halflife of ¹⁶¹ Os, suggesting that α decay is the dominant decay mode for this nuclide. J ^π : proposed configuration is vf _{7/2} , proposed by 2010Bi03 based on an analysis of the α branching to the ¹⁵⁷ W levels, assumed to Be (7/2 ⁻) and (9/2 ⁻) for the g.s. and 318-keV, respectively. The ¹⁵⁷ W g.s. assignment was proposed by 2008PaZV based on the observation that, among the expected available orbitals, only vf _{7/2} accounts for the ε feeding with comparable intensities to the 11/2 ⁻ and 1/2 ⁺ levels in the daughter nucleus, ¹⁶¹ Ta. T _{1/2} : from analysis of the decay of the α peaks using the method of maximum likelihood, 2010Bi03 deduce T _{1/2} =640 μs 60. 2008PaZV report T _{1/2} =590 μs.