¹⁶¹Lu IT decay (7.3 ms) 1973An10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Parent: ¹⁶¹Lu: E=166.5+x; $J^{\pi} = (9/2^{-})$; T_{1/2}=7.3 ms 4; %IT decay=100.0 SY

 161 Lu-%IT decay: evaluator assumes that the ε decay of the isomer is negligible.

Additional information 1.

¹⁶¹Lu isomer produced in the ¹⁴⁸Sm(¹⁹F,6n) reaction, $E(^{19}F)=110-150$ MeV, on an enriched metallic target and in the $Eu(^{16}O,xn)$ reaction. γ 's measured in a multiscaled manner between beam pulses (2-ms wide, 2% duty cycle), using a Ge(Li) detector of volume 8 cm³. The mass assignment was deduced from excitation functions and the elemental assignment was made through observation of the decay of Lu K x-rays with the appropriate half-life. Measured $T_{1/2}$. Noted only one γ between 10 and 550 keV with the 7.3 ms half-life.

The problems In interpretation of the IT decay, noted In the previous evaluation (2000Re14), appear to have been resolved by recent heavy-ion studies (2006Br12). For a discussion of these problems, see (2000Re14).

¹⁶¹Lu Levels

E(level)	$J^{\pi^{\dagger}}$	T _{1/2}	Comments		
0	1/2+		Level not reported in the IT decay, but expected from the decay of the first excited state. J^{π} : bandhead of 1/2[411].		
0+x 135.8+x 2	$(3/2^+)$ $(5/2^+)$		E(level): $x \approx 15$ keV based on systematics. See comment In the Adopted Levels.		
166.5+x	(9/2 ⁻)	7.3 ms 4	E(level): from 'Adopted Levels' based on data from 139 La(28 Si,6n γ). J ^{π} : bandhead of 9/2[514], the most likely candidate for the isomeric level.		

[†] From the Adopted Levels.

$\gamma(^{161}Lu)$

I γ normalization: value assumes a transition intensity of 100% for 135.8 γ .

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	Comments
(30.7)		166.5+x	(9/2 ⁻)	135.8+x	(5/2+)	[M2]	_	1767	$\begin{aligned} \alpha(\text{L}) = 1333 \ 19; \ \alpha(\text{M}) = 341 \ 5; \\ \alpha(\text{N}+) = 93.3 \ 13 \\ \alpha(\text{N}) = 81.4 \ 12; \ \alpha(\text{O}) = 11.34 \ 16; \\ \alpha(\text{P}) = 0.533 \ 8 \\ \text{E}_{\gamma}: \text{ the evaluator assumes that the} \\ \text{ isomer decays to } 135.8 + \text{x}, \ (5/2^+) \\ \text{ through an M2 transition. This energy} \\ \text{ is consistent with a low-energy} \\ \text{ transition, below the K-shell binding} \\ \text{ energy of } 63 \ \text{keV} \text{ as postulated by} \\ 1973\text{An10. Transitions to } 0 + \text{x or } \text{g.s.} \\ \text{ would be higher than the K-shell} \end{aligned}$
135.8 2	100	135.8+x	(5/2+)	0+x	(3/2+)	M1(+E2)	0.6 6	1.41 <i>16</i>	α(K)=1.1 3; α(L)=0.26 9; α(M)=0.062 22; α(N+)=0.017 6 α(N)=0.014 5; α(O)=0.0020 6; α(P)=7.7×10 ⁻⁵ 23 Placement from 'Adopted Gammas', which is based on the work of 2006Br12 in ¹³⁹ La(²⁸ Si,6nγ). Mult.: 1973An10 report multipolarity

¹⁶¹Lu IT decay (7.3 ms) 1973An10 (continued)

$\gamma(^{161}Lu)$ (continued)

Eγ E_i (level)

Comments

from $\alpha(K)\exp=1.1$ 3, after rejecting the possibility of an E3 transition with a half-life of 7 ms. δ : evaluator's analysis of α (K)exp=1.1 3 (1973An10); 1973An10 give ≈10% E2 (δ ≈0.3).

[†] For absolute intensity per 100 decays, multiply by syst 0.41.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{161}_{71}Lu_{90}$