Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	31-Dec-2014				

 $Q(\beta^{-})=-7610 \ 30$; S(n)=8455 25; S(p)=3330 60; Q(α)=4685 24 2012Wa38

S(2n)=19605 28, S(2p)=5055 29, Q(\varepsilon p)=4561 28 (2012Wa38).

¹⁶¹Hf produced and identified by 1973To02 in ¹⁴⁴, ¹⁴⁷Sm(²⁰Ne,xn), E=80-153 MeV reaction; measured $E\alpha$, $T_{1/2}$. Later studies of ¹⁶¹Hf decay: 1989Br19, 1992Ha10, 1995Hi12.

¹⁶¹Hf Levels

Quasiparticle labels: A: $vi_{13/2}$, $(\pi, \alpha) = (+, +1/2)_1$. B: $vi_{13/2}$, $(\pi, \alpha) = (+, -1/2)_1$. C: $vi_{13/2}$, $(\pi, \alpha) = (+, +1/2)_2$. E: $\nu(h_{9/2}, f_{7/2}), (\pi, \alpha) = (-, +1/2)_1.$ F: $\nu(h_{9/2}, f_{7/2}), (\pi, \alpha) = (-, -1/2)_1.$ A_p: $\pi h_{11/2}$, $(\pi, \alpha) = (-, -1/2)_1$. B_p: $\pi h_{11/2}$, $(\pi, \alpha) = (-, +1/2)_1$.

Cross Reference (XREF) Flags

 165 W α decay (5.1 s) A

 110 Pd(56 Fe,5n γ) 126 Te(40 Ca,5n γ) В

С

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	$(7/2^{-})$	18.4 s 4	AB	$\% \varepsilon + \% \beta^+ > 99.87; \ \% \alpha < 0.13$
				E(level): the evaluator assumes that this half-life is associated with the decay of the 161 Hf g.s.
				J ^{π} : M2-M1 γ cascade from (13/2 ⁺); systematics of neighboring nuclides (2014Ma91) with configuration= $\nu f_{7/2}$.
				$T_{1/2}$: from weighted average of 17 s 2 (1973To02, α decay); 20 s 3 (1989Br19, 136γ decay); 16.8 s 8 (1992Ha10, α decay); 18.7 s 5 (1995Hi12, α decay); 18.7 s 5
				(1995Hi12, 135.6 γ , uncertainty increased from 0.1 s to 0.5 s so that its weight in averaging procedure does not exceed 50%). Half-lives measured in 1995Hi12 from other γ rays are consistent with that from 135.6 γ but much less precise: 17.6 s <i>12</i> for 91.2 γ , 18.7 s <i>I</i> for 135.6 γ , 16.7 s <i>19</i> for 199.6 γ , 18.0 s <i>16</i> for 209.2 γ , 20.3 s
				37 for 217.6 γ , and 18.5 s 12 for 275.9 γ .
				$%\alpha$: deduced by the evaluator by requiring that the hindrance factor of the α transition be greater than unity. From their Iα/Iγ data, 1995Hi12 infer that %α=0.30 5. These authors, however, assume that the total ε+β ⁺ decay intensity is given by the sum of the intensities of the 135, 209 and 276 γ rays from this decay branch. If this is not the case, then the actual α branching fraction will be smaller than this. Also from Iα/Iγ, 1992Ha10 report %α=0.29 5, assuming that the ε+β ⁺ intensity is given by the intensity of the 136 decay γ. Hence, the evaluator's estimated value of %α is consistent with the present experimental knowledge.
126.8 3	(9/2 ⁻)		В	J^{n} : M2 γ from (13/2 ⁺); probable configuration= $\nu h_{9/2}$.
329.0# 5	(13/2+)	4.8 μs 2	BC	%IT=100 Probable configuration= $\nu i_{13/2}$ from systematics. T _{1/2} : from exponential fit to the decay curve from the time differences between ¹⁶¹ Hf implantations and 127- and 202- γ rays (2014Ma91).
662.3 [#] 7	(17/2 ⁺)		BC	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁶¹Hf Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1137.8 [#] 8	$(21/2^+)$	BC	
1418.9 10	$(17/2^{-})$	B	
1698.0 [#] 10	$(25/2^+)$	BC	
1968.8 11	$(21/2^{-})$	В	
1982.2 10		В	
2324.4 [#] 11	$(29/2^+)$	BC	
2399.1 [@] 10	$(25/2^{-})$	В	
2466.3 14	(07/0-)	B	T^{T} AT 1 1' 1 (25/2 ⁺)
2/45.2.13	(21/2)	BC	J [*] : $\Delta J = 1$, dipole γ to (25/2 ⁺).
28/1.6 ^e 11	(29/2)	В	
3002.0" 11	$(33/2^+)$	BC	
3095.5 ^{cc} 11	$(31/2^{-})$	BC	
3359.0 ^w 12	$(33/2^{-})$	В	
3645.1 ^{a} 12	$(35/2^{-})$	BC	
3730.4# 12	$(37/2^+)$	BC	
3924.7 ^{^w} 13	$(37/2^{-})$	В	
4277.9 ^{&} 14	$(39/2^{-})$	BC	
4518.9 [#] 13	$(41/2^+)$	BC	
4571.9 [@] 14	$(41/2^{-})$	В	
4981.9 ^{&} 17	$(43/2^{-})$	BC	
5273.6 [#] 15	$(45/2^+)$	BC	
5280.6 [@] 16	$(45/2^{-})$	В	
5791.9 <mark>&</mark> 22	$(47/2^{-})$	В	
6006.9 [#] 16	$(49/2^+)$	BC	
6082.2 [@] 18	$(49/2^{-})$	В	
6655 <mark>&</mark> 4	$(51/2^{-})$	В	
6790.2 [#] 18	$(53/2^+)$	В	
6921.0 [@] 20	$(53/2^{-})$	В	
7488 ^{&} 4	$(55/2^{-})$	В	
7639.1 [#] 22	$(57/2^+)$	В	
7681.4 [@] 24	$(57/2^{-})$	В	
8480 [@] 3	$(61/2^{-})$	В	
8553 [#] 3	$(61/2^+)$	В	
9361 [@] 3	$(65/2^{-})$	B	
9531 [#] 4	$(65/2^+)$	В	
$10294^{@}$ 4	$(69/2^{-})$	B	
$10546^{\#} 4$	$(69/2^+)$	B	
11599? [#] 5	$(73/2^+)$	В	

[†] From least-squares fit to $E\gamma$ data.

[‡] As proposed by 2014Ma91 based on angular distribution data for selected gamma rays, band structures and previous assignments. [#] Band(A): Yrast band based on $(13/2^+), \alpha = +1/2$. This band undergoes two crossings, first due to pair of $i_{13/2}$ neutrons or pair of $i_{13/2}$ neutrons and a pair of $(f_{7/2}/h_{9/2})$ neutrons, second due to pair of $h_{11/2}$ protons. Configuration=A ->ABC ->ABCA_pB_p or A ->ABCEF ->ABCEFA_pB_p.

Adopted Levels, Gammas (continued)

¹⁶¹Hf Levels (continued)

[@] Band(B): Band based on $(25/2^{-}), \alpha = +1/2$. This band is most likely a 3-qp band, undergoing crossing at $\hbar\omega \approx 0.4$ MeV due to pair of $h_{11/2}$ protons. Configuration=EAB ->EABA_pB_p.

[&] Band(b): Band based on $(31/2^{-}), \alpha = -1/2$. This band is most likely a 3-qp band, undergoing crossing at $\hbar\omega \approx 0.4$ MeV due to pair of h_{11/2} protons. Configuration=FAB ->FABA_pB_p.

E;(level)	\mathbf{J}_{\cdot}^{π}	E _v †	\mathbf{L}^{\dagger}	$E \in J^{\pi}$	Mult.‡	α [@]	Comments
	i	<i>2</i> y	- y		#		
126.8	(9/2 ⁻)	126.8 <i>3</i>	100	0.0 (7/2-)) M1"	2.03	$\alpha(K)=1.692\ 25;\ \alpha(L)=0.263\ 4;\ \alpha(M)=0.0595\ 9;$ $\alpha(N)=0.01413\ 21$
220.0	(10/0+)	202.2 (100			2 06 5	Delayed γ .
329.0	(13/2+)	202.2 4	100	126.8 (9/2-)) M2"	2.86 5	$\alpha(K)=2.204; \alpha(L)=0.5078; \alpha(M)=0.120420; \alpha(N)=0.02885$
((2.2.2)	(17/0+)	222.2.4	100	220.0 (12/2			B(M2)(W.u.)=0.17 I
662.3	$(1^{\prime}/2^{+})$	333.3 4	100	329.0 (13/2	T) Q		Additional information 1.
1137.8	$(21/2^+)$	475.5 5	100	662.3 (17/2	') Q		Additional information 2.
1418.9	$(17/2^{-})$	756.5 10	100	662.3 (17/2	*)		
1698.0	$(25/2^+)$	560.3 5	100	1137.8 (21/2	') Q		Additional information 3.
1968.8	(21/2 ⁻)	549.9 9	100 17	1418.9 (17/2	-) (Q)		$\gamma(\theta)$ for 549.9+549.4 consistent with stretched quadrupole.
		831.1 <i>15</i>	33 17	1137.8 (21/2	+)		
1982.2		563.3 12	50 25	1418.9 (17/2-	-)		
		844.4 6	100 25	1137.8 (21/2-	+)		
2324.4	$(29/2^+)$	626.4 <i>5</i>	100	1698.0 (25/2-	+) Q		Additional information 4.
2399.1	$(25/2^{-})$	416.7 8	100 20	1982.2			Additional information 5.
		430.2 7	100 20	1968.8 (21/2-	-) (Q)		Additional information 6.
2466.3		768.5 <i>13</i>	100	1698.0 (25/2-	+)		
2745.2	$(27/2^{-})$	1047.1 <i>10</i>	100	1698.0 (25/2-	+) D		E_{γ} ,Mult.: from ¹²⁶ Te(⁴⁰ Ca,5n γ). Other
							$E_{\gamma}=1048 \ 3 \ (2014Ma91).$
2871.6	$(29/2^{-})$	405.5 14	20 10	2466.3			
		472.4 7	100 20	2399.1 (25/2-	-) (Q)		Additional information 7.
							$\gamma(\theta)$ for 476+472 consistent with stretched quadrupole.
3002.0	$(33/2^+)$	677.7 5	100	2324.4 (29/2-	+) Q		Additional information 8.
3095.5	$(31/2^{-})$	349.8 22	15 15	2745.2 (27/2-	-)		
		771.1 7	100 8	2324.4 (29/2-	⁺) D		Additional information 9.
3359.0	$(33/2^{-})$	263.7 10	30 10	3095.5 (31/2-	-)́		
		487.4 5	100 10	2871.6 (29/2-	-) (Q)		Additional information 10.
3645.1	$(35/2^{-})$	549.4 7	100 11	3095.5 (31/2-	-) (O)		Additional information 11.
							$\gamma(\theta)$ for 549.9+549.4 consistent with stretched
							quadrupole.
		643.3 9	44 11	3002.0 (33/2-	+)		
3730.4	$(37/2^+)$	728.4 5	100	3002.0 (33/2	+) Q		Additional information 12.
3924.7	$(37/2^{-})$	279.6 14	14 7	3645.1 (35/2-	-)		
		565.7 6	100 7	3359.0 (33/2-	-) (Q)		Additional information 13.
4277.9	$(39/2^{-})$	632.8 8	100	3645.1 (35/2-	-) 0 (-		Additional information 14.
4518.9	$(41/2^+)$	788.5 <i>5</i>	100	3730.4 (37/2-	+) Õ		Additional information 15.
4571.9	$(41/2^{-})$	647.2 6	100	3924.7 (37/2-	-)		Additional information 16.
4981.9	$(43/2^{-})$	704.0 9	100	4277.9 (39/2	-j		Additional information 17.
5273.6	$(45/2^+)$	754.7 6	100	4518.9 (41/2	⁺) (O)		Additional information 18.
5280.6	$(45/2^{-})$	708.7 7	100	4571.9 (41/2	-) ``		Additional information 19.
5791.9	$(47/2^{-})$	810.0 14	100	4981.9 (43/2	-)		
6006.9	$(49/2^+)$	733.3 6	100	5273.6 (45/2	+) O		Additional information 20.
6082.2	$(49/2^{-})$	801.6 8	100	5280.6 (45/2	-)		Additional information 21.
6655	$(51/2^{-})$	863 <i>3</i>	100	5791.9 (47/2	-)		

$\gamma(^{161}\text{Hf})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{161}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Comments
6790.2	$(53/2^+)$	783.3 8	100	6006.9	$(49/2^+)$	Additional information 22.
6921.0	$(53/2^{-})$	838.8 9	100	6082.2	$(49/2^{-})$	
7488	$(55/2^{-})$	833.0 13	100	6655	$(51/2^{-})$	
7639.1	$(57/2^+)$	848.9 12	100	6790.2	$(53/2^+)$	
7681.4	$(57/2^{-})$	760.4 13	100	6921.0	$(53/2^{-})$	
8480	$(61/2^{-})$	798.5 14	100	7681.4	$(57/2^{-})$	
8553	$(61/2^+)$	914.3 20	100	7639.1	$(57/2^+)$	
9361	$(65/2^{-})$	881.4 <i>12</i>	100	8480	$(61/2^{-})$	
9531	$(65/2^+)$	978 2	100	8553	$(61/2^+)$	
10294	$(69/2^{-})$	933 2	100	9361	$(65/2^{-})$	
10546	$(69/2^+)$	1015 2	100	9531	$(65/2^+)$	
11599?	$(73/2^+)$	1053 ^{&} 2	100	10546	$(69/2^+)$	

[†] From ¹¹⁰Pd(⁵⁶Fe,5n γ) (2014Ma91). Some of the E γ values in ¹²⁶Te(⁴⁰Ca,5n γ) (1988Hu05) are more precisely listed as shown in document comments on γ records, however, all data for excited states are adopted here from 2014Ma91 for internal consistency since these authors present a much more extensive level scheme than in 1988Hu05.

[‡] From angular anisotropy ratios in both the high-spin reactions (1988Hu05,2014Ma91), mult=Q in dictates ΔJ =2, quadrupole (most likely E2) transition and mult=D indicates ΔJ =1, dipole.

[#] From ce data in 110 Pd(56 Fe,5n γ) (2014Ma91).

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Placement of transition in the level scheme is uncertain.

¹⁶¹₇₂Hf₈₉

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{161}_{72}{\rm Hf}_{89}$

6

Adopted Levels, Gammas

¹⁶¹₇₂Hf₈₉