¹²⁶Te(⁴⁰Ca,5nγ) 1988Hu05

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	31-Dec-2014					

1988Hu05: the reaction is ${}^{126}\text{Te}({}^{40}\text{Ca},5n\gamma)$, with E(${}^{40}\text{Ca}$)=195 MeV. Targets were foils of ${}^{126}\text{Te}$, 0.44 mg/cm² thick evaporated on 0.37 mg/cm² Au backings (which faced the beam). The γ radiation was measured using an array of 21 Compton-suppressed Ge detectors. Measured E γ , I γ , triple and higher-fold coincidences, and $\gamma(\theta)$ at two angles.

¹⁶¹Hf Levels

Band 2 in figure 2 of 2014Ma91 seems populated in the work of 1988Hu05 as well, since there several unplaced γ rays may belong to 802-709-647-566-487-472-430 γ cascade in this band.

E(level) [†]	Jπ‡	Comments
0+x	(13/2+)	Additional information 1. E(level): x=329.0 in Adopted Levels.
333.1+x <i>3</i>	$(17/2^+)$	
808.8+x 5	$(21/2^+)$	
1369.1+x 6	$(25/2^+)$	
1995.7+x 6	$(29/2^+)$	
2416.2+x 12	$(27/2^{-})$	E(level): level is not shown in authors' level scheme, but is indicated in their table.
2673.5+x 7	$(33/2^+)$	
2767.3+x 8	$(31/2^{-})$	
3317.1+x 10	$(35/2^{-})$	
3402.4+x 8	$(37/2^+)$	
3950.5+x 11	$(39/2^{-})$	
4191.7+x 8	$(41/2^+)$	
4653.5+x 15	$(43/2^{-})$	
4947.0+x 10	$(45/2^+)$	
5682.6+x 14	$(49/2^+)$	
6425.6+x? 17	$(53/2^+)$	

[†] From $E\gamma$ data.

[‡] Values assigned by the authors on the basis of angular-correlation ratios, as well as considerations of systematics. This latter basis includes the fact that the prominent transitions strongly populated form a cascade of stretched E2 transitions and, as is observed in the neighboring nuclides, are most likely based on a $13/2^+$ state.

$\gamma(^{161}\text{Hf})$

 $R=I\gamma(30^\circ)/I\gamma(80^\circ).$

The angular-correlation ratios ($R=I\gamma(30^\circ)/I\gamma(80^\circ)$) are given for most γ rays and can be used to distinguish between stretched E2 and dipole transitions. Values close to unity are indicative of stretched quadrupoles, while those close to 0.6 represent stretched dipoles.

E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	Comments
333.1 3	92 5	333.1+x	$(17/2^+)$	0+x	$(13/2^+)$	Q	R=0.99.
^x 416.9 <i>10</i>	5.8 12						
^x 429.8 [@] 5	10.8 11						R=1.18 25.
^x 472.9 [@] 5	14.8 15						R=0.90 16.
475.7 <i>3</i>	100 5	808.8+x	$(21/2^+)$	333.1+x	$(17/2^+)$	Q	R=1.04 <i>3</i> .
^x 487.5 [@] 5	13.3 <i>13</i>						R=2.04 50.

Continued on next page (footnotes at end of table)

126 Te(40 Ca,5n γ) 1988Hu05 (continued) $\gamma(^{161}\text{Hf})$ (continued) Mult.[†] E_{ν} $L_{\nu}^{\#}$ E_i (level) J_c^{π} Comments E_f R=0.68 13. 549.8 5 14.4 14 3317.1+x $(35/2^{-})$ $2767.3 + x (31/2^{-})$ (Q) E_{γ} , I_{γ} : multiple line (1988Hu05). Mult.: the angular-correlation ratio suggests a dipole transition, but the placement requires $\Delta J=2$, quadrupole. 560.3 3 102 5 1369.1+x $(25/2^+)$ 808.8+x (21/2⁺) R=1.06 *13*. Q x562.8.5 19.5 20 R=0.74 13. x565.3[@] 10 R=0.93 13. Value includes contribution from the 567 γ. I_{γ} : $I_{\gamma}(565+567)=21.4$. x567.3 10 R=0.93 13. Value includes contribution from the 565 γ. I_{γ} : $I_{\gamma}(565+567)=21.4$. 626.6 3 75 4 1995.7+x $(29/2^+)$ $1369.1 + x (25/2^+)$ Ŕ=1.10 7. Q 633.4 5 13.9 14 3950.5 + x $(39/2^{-})$ 3317.1+x (35/2⁻) R=1.45 20. Q $x_{647.2}^{@} 5$ 15.9 16 R=1.09 9. 677.8 3 2673.5+x 53 3 $(33/2^+)$ $1995.7 + x (29/2^+)$ 0 R=1.02 14. 703.0 10 9.0 18 4653.5+x $(43/2^{-})$ 3950.5+x (39/2⁻) x708.9[@].5 10.8 11 R=0.85 20. 728.9 3 31.7 16 3402.4+x $(37/2^+)$ $2673.5 + x (33/2^+)$ R=1.23 14. 0 $(49/2^+)$ R=0.86 14. 735.6 10 4947.0+x (45/2⁺) 6.1 12 5682.6+x Q 743.0 [&] 10 6425.6+x? $(53/2^+)$ $5682.6+x (49/2^+)$ 755.3 5 13.4 13 4947.0+x $(45/2^+)$ $4191.7 + x (41/2^+)$ R=0.77 18. (Q) Mult .: the angular-correlation ratio suggests a dipole transition, but the placement requires $\Delta J=2$, quadrupole. 771.6.5 R=0.35 10. 11.6 12 2767.3 + x $(31/2^{-})$ $1995.7 + x (29/2^+)$ D 789.3 *3* 23.2 12 4191.7+x $(41/2^+)$ $3402.4 + x (37/2^+)$ Q R=0.93 14. x800.7 10 5.7 11 $x_{802.7}^{@} 10$ 6.0 12 ^x845.0 10 7.5 15 R=1.30 40. 1047.1 10 4.4 9 2416.2+x $(27/2^{-})$ $1369.1 + x (25/2^+)$ R=0.38 30. D E_{γ} : placement is not shown in authors' level scheme, but is indicated in their table.

[†] Values inferred by the evaluator from the angular-correlation ratios given by 1988Hu05. It is expected that the quadrupole transitions are E2. Being of high energy, the stretched dipoles are most likely E1.

[‡] Uncertainties range from 0.3 keV for strong single peaks up to 1.0 keV for weak peaks and doublets (1988Hu05). Following are assigned by the evaluator: 0.3 keV for $I\gamma$ >20, 0.5 keV for $I\gamma$ =10-15 and 1 keV for $I\gamma$ <10 and doublets.

[#] Uncertainties are between 5% and 20% (1988Hu05). Following are assigned by the evaluator: 5% for I γ >20, 10% for I γ =10-15 and 20% for I γ <10 and doublets.

^(a) Comparison to level scheme in 2014Ma91 shows that this γ most likely belongs to 802-709-647-566-487-472-430 γ cascade in band 2 shown in figure 2 of 2014Ma91.

[&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{161}_{72}\mathrm{Hf}_{89}$