		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Parent: ¹⁶¹Tm: E=0; $J^{\pi}=7/2^+$; $T_{1/2}=30.2 \text{ min } 8$; $Q(\varepsilon)=3310\ 24$; $\%\varepsilon+\%\beta^+$ decay=?

 161 Tm-J^{π}: J measured (1971Ek01), see 161 Tm Adopted Levels.

¹⁶¹Tm-Q(ε): from 2009AuZZ. 2003Au03 report 3310 29. 1993Al03 measure 3180 100.

Additional information 1.

- Data and decay scheme are primarily from 1975Ad08 and secondarily from 1980Ab18. Both produced ¹⁶¹Tm by spallation of Ta target with 660-MeV p and chemical separation; 1980Ab18 also did isotope separation. Both measured γ singles for 73 γ 's with Ge detectors and ce's in magnetic spectrographs. 1975Ad08 measured $\gamma\gamma$ coincidences as well as β^+ spectra with a SiLi detector. γ data of 1980Ab18 are the same as those of 1975Ad08.
- Other experimental results are: measured ce (1959Ha09,1964Ab11), parent $T_{1/2}$ (1960Bu27,1963Gr14,1963Ra15), level $T_{1/2}$ (1972AnZL,1974BuZM,1975Bu10,1975VaYW,1979AlZU,1980Ab22,1980FrZQ, 1981AbZU,1983Be17), δ (1991AbZZ), total-absorption γ spectra (1982Bv03,1993Al03). reports by same authors As 1975Ad08 (1974StYR,1975AdZH).
- The β^+ end-point is 1800 100 keV (1975Ad08). It is suggested that these decays are to levels from 143 to 267 keV. This datum gives $Q(\varepsilon)=3000\ 200$ keV.
- No values are listed for the intensities of the ε transitions, because of the problems in obtaining reliable intensity balances in the decay scheme. From the intensities of the γ 's deexciting the 266 and 2004 levels, it seems clear that, at least, these two are directly populated. The large number of unplaced γ 's, including 75 above 1 MeV, suggests that most of the ε decay will be to higher lying states than what would be calculated from intensity balances in the current decay scheme. This argument is supported by the beta-strength function measurements of 1982By03, which indicate that $\approx 22\%$ of the decays are to levels below 400 keV, compared to the 61% calculated from the present decay scheme.

¹⁶¹Er Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.@	3/2-	3.21 h <i>3</i>	$T_{1/2}$: from ¹⁶¹ Er Adopted Levels.
59.501 [@] 24	$5/2^{-}$	≤0.15 ns	$T_{1/2}$: from 1983Be17. Other: ≤ 0.17 ns (1975VaYW, 1979AlZU).
143.89 [@] 3	$7/2^{-}$	≤0.18 ns	$T_{1/2}$: from 1983Be17. Other: ≤ 0.2 ns (1979AlZU).
172.06 ^{&} 3	$5/2^{-}$	0.35 ns 10	$T_{1/2}$: average of 0.25 ns 4 (1983Be17) and 0.45 ns 5 (1979AlZU).
189.42 ^{<i>a</i>} 3	9/2+	84 ns 10	$T_{1/2}$: average of 93 ns 4 (1975Bu10) and 74 ns 3 (1979AIZU).
212.91 ^{<i>a</i>} 3	$5/2^{+}$	0.81 ns 6	$T_{1/2}$: from 1983Be17.
217.34 ^{<i>a</i>} 4	$7/2^{+}$	0.55 ns 5	$T_{1/2}$: from 1983Be17.
249.77 [@] 3	9/2-		
266.44 ^{&} 3	$7/2^{-}$	0.21 ns 3	$T_{1/2}$: from 1983Be17. Other: ≤ 0.30 ns (1979AlZU).
267.45 ^a 4	$13/2^{+}$	2.0 ns 2	$T_{1/2}$: average of 1.9 ns 2 (1983Be17) and 2.2 ns 2 (1979AlZU).
296.69 ^{<i>a</i>} 4	$11/2^{+}$		
369.48 ^b 5	$3/2^{+}$		
388.45 [@] 6	$11/2^{-}$		
390.20 ^{&} 4	9/2-		
396.44 ^C 4	$11/2^{-}$	8 µs	T _{1/2} : from 1972AnZL.
463.11 ^d 9	$3/2^{+}$		
496.28 ^d 8	$5/2^{+}$		
590.06 ^d 12	$7/2^{+}$		
724.84 ^e 20	$(3/2^{-})$		
843.16 ^{<i>f</i>} 21	$(5/2^{-})$		

Additional information 2.

¹⁶¹Tm-T_{1/2}: from ¹⁶¹Tm Adopted Levels.

161 Tm ε decay 1975Ad08,1980Ab18 (continued)

¹⁶¹Er Levels (continued)

E(level) [†]	J#‡	Comments
1481.20? 19	(5/2,7/2-)	
1960.25 17	$(7/2^{-})$	
2044.6 ^g 3	9/2+	J ^{π} : Possible K ^{π} =9/2 ⁺ bandhead. Probable conf is π 7/2[404]+ π 7/2[523]- ν 5/2[523], from population via an allowed-unhindered ε transition from π 7/2[404].
2063.09? 21	$(5/2^+, 7/2)$	
2066.89? 17	(5/2,7/2 ⁻)	

 † From least-squares fit to the $\gamma\text{-ray energies.}$

[‡] From ¹⁶¹Er Adopted Levels.

^{*} From ¹⁰¹Er Adopted Levels. [#] Values for excited levels are from measurements made following ¹⁶¹Tm ε decay. For other values, see ¹⁶¹Er Adopted Levels.

[@] Band(A): 3/2[521] band.

[&] Band(B): 5/2[523] band.

^{*a*} Band(C): Mixed positive-parity band.

^b Band(D): bandhead of 3/2[651], with an admixture of 3/2[402].

^c Band(E): bandhead of 11/2[505].

^d Band(F): 3/2(402) band with an admixture of 3/2[651].

^e Band(G): bandhead of 3/2[532].

 f Band(H): bandhead of 5/2[512].

^{*g*} Band(I): probable $K^{\pi}=9/2^+$ bandhead.

 $\gamma(^{161}\text{Er})$

Iγ normalization: From 1975Ad08, computed to give 100% feeding of g.s. Because of the likely incompleteness of the decay scheme, the evaluator regards this normalization is approximate only.

Data and decay scheme are primarily from 1975Ad08 and secondarily from 1980Ab18.

ω

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	$\delta^{\#}$	α [@]	Comments
16.70 5		266.44	7/2-	249.77 9/2-	M1+E2	0.06	130.3 24	ce(L)/(γ +ce)=0.771 <i>10</i> ; ce(M)/(γ +ce)=0.175 <i>4</i> ; ce(N+)/(γ +ce)=0.0460 <i>12</i> ce(N)/(γ +ce)=0.0404 <i>10</i> ; ce(O)/(γ +ce)=0.00543 <i>14</i> ; ce(P)/(γ +ce)=0.000216 <i>6</i> Mult.: α (M1)(exp)/ α (M2)(exp)=100 <i>35</i> /35 <i>10</i> (1980Ab18); other: 1975Ad08. δ : from %E2=0.36 (1980Ab18).
23.49 2		212.91	5/2+	189.42 9/2+	E2		2.11×10 ³	ce(L)/(γ +ce)=0.768 8; ce(M)/(γ +ce)=0.185 4; ce(N+)/(γ +ce)=0.0463 10 ce(N)/(γ +ce)=0.0415 9; ce(O)/(γ +ce)=0.00474 10; ce(P)/(γ +ce)=1.67×10 ⁻⁶ 4 Mult.: α (L2)(exp)/ α (L3)(exp)=100 23/132 23 (1989Ab18); other: 1975Ad08
27.92 3		217.34	7/2+	189.42 9/2+	M1+E2	0.10	28.0	ce(L)/(γ +ce)=0.750 8; ce(M)/(γ +ce)=0.171 4; ce(N+)/(γ +ce)=0.0449 9 ce(N)/(γ +ce)=0.0394 8; ce(O)/(γ +ce)=0.00530 11; ce(P)/(γ +ce)=0.000211 5 Mult.: α (L1)(exp)/ α (L2)(exp)/ α (L3)(exp)= 100 11/33 4/29 4 (1989Ab18);
28.18 <i>3</i>		172.06	5/2-	143.89 7/2-	M1+E2	0.08	24.1	other: 1975Ad08. δ : from %E2=1.0 6 (1975Ad08) and 1.1 (1980Ab18). ce(L)/(γ +ce)=0.747 7; ce(M)/(γ +ce)=0.169 3; ce(N+)/(γ +ce)=0.0447 9 ce(N)/(γ +ce)=0.0391 8; ce(O)/(γ +ce)=0.00536 11; ce(P)/(γ +ce)=0.000238 5
29.26 2	5.7 7	296.69	11/2+	267.45 13/2+	M1+E2	0.07	20.2	Mult.: $\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp) = 100 \ 10/25 \ 4/18 \ 4 \ (1980Ab18);$ other: 1975Ad08. δ : from %E2=0.7 4 (1975Ad08) and 0.7 (1980Ab18). $ce(L)/(\gamma+ce)=0.742 \ 7; \ ce(M)/(\gamma+ce)=0.167 \ 3; \ ce(N+)/(\gamma+ce)=0.0443 \ 9$ $ce(N)/(\gamma+ce)=0.0387 \ 8; \ ce(O)/(\gamma+ce)=0.00538 \ 11; \ ce(P)/(\gamma+ce)=0.000252 \ 5$
40.86 <i>3</i>		212.91	5/2+	172.06 5/2-	E1		0.670	Mult.: $\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=100\ 11/25\ 3/12.7\ 13$ (1980Ab18); other: 1975Ad08. δ : from %E2=0.5 3 (1975Ad08) and 0.6 (1980Ab18). ce(L)/(γ +ce)=0.313 4; ce(M)/(γ +ce)=0.0701 10; ce(N+)/(γ +ce)=0.0177 3 ce(N)/(γ +ce)=0.01575 24; ce(O)/(γ +ce)=0.00194 3; ce(P)/(γ +ce)=6.24×10 ⁻⁵ 10 Mult.: $\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=100\ 13/60\ 7/60\ 7\ (1980Ab18).$

¹⁶¹ Tm ε decay 1975Ad08,1980Ab18 (continued)											
							γ (¹⁶¹ E	Er) (contin	ued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ [#]	α [@]	Comments		
45.54 3	250×10 ¹ 25	189.42	9/2+	143.89	7/2-	E1		0.495	α(L)=0.387 6; α(M)=0.0864 13; α(N+)=0.0220 4		
									$\alpha(N)=0.0195 \ 3; \ \alpha(O)=0.00243 \ 4; \ \alpha(P)=8.11\times10^{-5} \ 12$		
46.86 5		296.69	$11/2^{+}$	249.77	9/2-	E1		0.457	ce(L)/ $(\gamma+ce)=0.245$ 3; ce(M)/ $(\gamma+ce)=0.0547$ 8; ce(N+)/ $(\gamma+ce)=0.01393$		
									$ce(N)/(\gamma+ce)=0.01234$ 19; $ce(O)/(\gamma+ce)=0.001544$ 23;		
									$ce(P)/(\gamma+ce)=5.21\times10^{-5} 8$ Mult : $\alpha(L1)(exp)/\alpha(L2)(exp)=100/12/36/6 (1980Ab18); other:$		
									1975Ad08.		
59.51 <i>3</i>	545 45	59.501	5/2-	0.	3/2-	M1+E2	0.14	12.82	$\alpha(K)=10.37 \ 15; \ \alpha(L)=1.91 \ 3; \ \alpha(M)=0.431 \ 6; \ \alpha(N+)=0.1144 \ 17 \ \alpha(N)=0.0998 \ 14; \ \alpha(O)=0.01390 \ 20; \ \alpha(P)=0.000654 \ 10$		
									Mult.: $\alpha(K)(exp)/\alpha(L1)(exp)/\alpha(L2)(exp)/\alpha(L3)(exp) = 750/100 \ 10/21.2$		
									δ : from %E2=3 (1964Ab11), 0.4 2 (1975Ad08), and 3.2 (1980Ab18).		
^x 68.10 6	94					(E2)		13.40	$\alpha(K)=2.04$ 3; $\alpha(L)=8.71$ 13; $\alpha(M)=2.12$ 4; $\alpha(N+)=0.535$ 8 $\alpha(N)=0.470$ 7; $\alpha(O)=0.0555$ 9; $\alpha(D)=0.0001030$ 15		
69.00 10	35 6	212.91	5/2+	143.89	7/2-	[E1]		0.860	$\alpha(N)=0.4797, \alpha(O)=0.05559, \alpha(T)=0.000105915$ $\alpha(K)=0.70511; \alpha(L)=0.121418; \alpha(M)=0.02704; \alpha(N+)=0.0069611$		
									α (N)=0.00613 9; α (O)=0.000798 12; α (P)=3.03×10 ⁻⁵ 5		
73.48 <i>3</i>	15 6	217.34	7/2+	143.89	7/2-	E1		0.731	$\alpha(K)=0.601 \ 9; \ \alpha(L)=0.1018 \ 15; \ \alpha(M)=0.0226 \ 4; \ \alpha(N+)=0.00584 \ 9$		
									$\alpha(N)=0.00515 \ 8; \ \alpha(O)=0.000673 \ 10; \ \alpha(P)=2.60\times10^{-5} \ 4$		
78.07 4	90	267.45	$13/2^{+}$	189.42	$9/2^{+}$	E2		7.69	Mult.: $\alpha(K)(exp)=0.74$ (1980Ab18). $\alpha(K)=1.758$ 25; $\alpha(L)=4.54$ 7; $\alpha(M)=1.107$ 16; $\alpha(N+)=0.279$ 4		
			,						$\alpha(N)=0.250 4; \alpha(O)=0.0291 5; \alpha(P)=7.80\times10^{-5} 11$		
									Mult.: $\alpha(K)(\exp)=1.8$ 4 and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=1067$ 200/100 13/1307		
50.25 (15.5	201110	11/2+	015.04	7./Q+	50		5.01	133/1353 133 (1980Ab18); other: 1975Ad08.		
79.35 4	15 5	296.69	11/2+	217.34	7/2+	E2		7.21	$\alpha(K)=1.714\ 24;\ \alpha(L)=4.21\ 6;\ \alpha(M)=1.025\ 15;\ \alpha(N+)=0.259\ 4$ $\alpha(N)=0.232\ 4;\ \alpha(O)=0.0270\ 4;\ \alpha(P)=7\ 54\times 10^{-5}\ 11$		
									Mult.: $\alpha(K)(exp)=1.77$ and		
									$\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp) = 1040 \ 160/100 \ 12/1240 \ 120/1280 \ 120 \ (1980Ab18); other: 1975Ad08.$		
84.40 <i>3</i>	945 90	143.89	$7/2^{-}$	59.501	5/2-	M1+E2	0.23	4.69	$\alpha(K)=3.776; \alpha(L)=0.71410; \alpha(M)=0.161823; \alpha(N+)=0.04286$		
									$\alpha(N)=0.03/5 6$; $\alpha(O)=0.00517 8$; $\alpha(P)=0.000232 4$ Mult.: $\alpha(K)(exp)=3.6 7$ and		
									$\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp) = 679 \ 121/100 \ 9/25.0 \ 24/22.8 \ 22 \ (1980Ab18); other: 1975Ad08.$		
r07 00 (15.0					F 1		0.467	δ: from %E2=2 (1964Ab11), 5 3 (1975Ad08), and 6.4 (1980Ab18).		
~87.22.6	15 8					EI		0.467	$\alpha(\mathbf{K})=0.380\ 0;\ \alpha(\mathbf{L})=0.0051\ 9;\ \alpha(\mathbf{M})=0.01400\ 20;\ \alpha(\mathbf{N}+)=0.00364\ 6$ $\alpha(\mathbf{N})=0.00319\ 5;\ \alpha(\mathbf{O})=0.000423\ 6;\ \alpha(\mathbf{P})=1.707\times10^{-5}\ 24$		
94.38 <i>3</i>	124 45	266.44	7/2-	172.06	5/2-	M1+E2	2.5	3.62	$\alpha(K) = 1.445 \ 21; \ \alpha(L) = 1.669 \ 24; \ \alpha(M) = 0.405 \ 6; \ \alpha(N+) = 0.1025 \ 15$		
									α (N)=0.0916 13; α (O)=0.01082 16; α (P)=6.81×10 ⁻⁵ 10		

From ENSDF

						161 Tm ε d	ecay	1975Ad08,1	980Ab18 (continued)
							<u> </u>	¹⁶¹ Er) (conti	nued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.	δ#	α [@]	Comments
									Mult.: $\alpha(K)(\exp)=1.5 \ 6 \ \text{and} \alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=974 \ 158/100 \ 21/505 \ 53/474 \ 53 \ (1980Ab18); \ \text{other: } 1975Ad08.$ δ : from %M1=13.7 (1980Ab18).
99.76 4	237 25	396.44	11/2-	296.69	11/2+	E1		0.327	$\alpha(K)=0.272 4; \alpha(L)=0.0434 6; \alpha(M)=0.00963 14; \alpha(N+)=0.00251 4$ $\alpha(N)=0.00220 3; \alpha(O)=0.000294 5; \alpha(P)=1.224\times10^{-5} 18$ Mult.: $\alpha(K)(\exp)=0.38 9$ and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)= 450 100/100 10/25 5/30$ 5 (1980Ab18); other: 1975Ad08
105.88 2	340 <i>30</i>	249.77	9/2-	143.89	7/2-	M1+E2	0.23	2.41	$\alpha(K)=1.97 \ 3; \ \alpha(L)=0.344 \ 5; \ \alpha(M)=0.0774 \ 11; \ \alpha(N+)=0.0206 \ 3 \\ \alpha(N)=0.0180 \ 3; \ \alpha(O)=0.00252 \ 4; \ \alpha(P)=0.0001207 \ 17 \\ Mult.: \ \alpha(K)(exp)=2.0 \ 3 \ and \\ \alpha(K)(exp)/\alpha(L1)(exp)/\alpha(L2)(exp)/\alpha(L3)(exp)= \ 739 \ 108/100 \ 11/16.6 \\ 15/12.5 \ 15 \ (1980Ab18); \ other: \ 1975Ad08. $
107.22 5	51 7	296.69	11/2+	189.42	9/2+	M1+E2	1.2	2.29	δ: from %E2=5.2 (1980Ab18); other: M1 (1975Ad08). $\alpha(K)=1.338 \ I9; \ \alpha(L)=0.733 \ I1; \ \alpha(M)=0.1754 \ 25; \ \alpha(N+)=0.0448 \ 7$ $\alpha(N)=0.0399 \ 6; \ \alpha(O)=0.00487 \ 7; \ \alpha(P)=7.18\times10^{-5} \ I0$ Mult.: $\alpha(K)(exp)=1.36 \ I9$ and $\alpha(K)(exp)/\alpha(L1)(exp)/\alpha(L2)(exp)/\alpha(L3)(exp)=839 \ I2/100 \ I3/199$ $28/166 \ 23 \ (1980Ab18); \ other: 1975Ad08.$
112.56 3	308 27	172.06	5/2-	59.501	5/2-	M1+E2	0.14	2.03	δ: from %E2=59.8 (1980Ab18). $\alpha(K)=1.684\ 24;\ \alpha(L)=0.266\ 4;\ \alpha(M)=0.0593\ 9;\ \alpha(N+)=0.01589\ 23$ $\alpha(N)=0.01381\ 20;\ \alpha(O)=0.00197\ 3;\ \alpha(P)=0.0001035\ 15$ Mult.: $\alpha(K)(exp)=1.7\ 3$ and $\alpha(K)(exp)/\alpha(L1)(exp)/\alpha(L2)(exp)/\alpha(L3)(exp)=\ 732\ 113/100\ 11/14.1$ $13/7.0\ 7\ (1980Ab18);\ other:\ 1975Ad08.$
122.55 5	155 12	266.44	7/2-	143.89	7/2-	M1+E2	0.20	1.584	o: from %E2=0.5 10 (19/5Ad08) and 5.5 (1980Ab18). $\alpha(K)=1.309 \ I9; \ \alpha(L)=0.214 \ 3; \ \alpha(M)=0.0479 \ 7; \ \alpha(N+)=0.01279 \ I8$ $\alpha(N)=0.01113 \ I6; \ \alpha(O)=0.001578 \ 23; \ \alpha(P)=8.02\times10^{-5} \ I2$ Mult.: $\alpha(K)(exp)=1.31 \ 22$ and $\alpha(K)(exp)/\alpha(L1)(exp)/\alpha(L2)(exp)/\alpha(L3)(exp)= \ 725 \ I07/100 \ I1/16.8$ $I4/8.2 \ 7 \ (1980Ab18); \ other: \ 1975Ad08.$ S: from %E2=3 2 (1975Ad08) and 5.4 (1980Ab18)
123.80 6	35 10	390.20	9/2-	266.44	7/2-	M1+E2	0.52	1.501 22	a(K)=1.155 <i>17</i> ; α (L)=0.268 <i>4</i> ; α (M)=0.0618 <i>9</i> ; α (N+)=0.01619 <i>23</i> α (N)=0.01423 <i>20</i> ; α (O)=0.00189 <i>3</i> ; α (P)=6.86×10 ⁻⁵ <i>10</i> Mult.: α (K)(exp)=1.2 <i>5</i> and α (K)(exp)/ α (L1)(exp)/ α (L2)(exp)/ α (L3)(exp)= 712 <i>153</i> /100 <i>20</i> /34 7/20 <i>7</i> (1980Ab18); other: 1975Ad08. δ: from %F2=25 10 (1975Ad08) and 16.6 (1980Ab18)
^x 125.60 6	158 <i>13</i>					(E1)		0.1775	$\alpha(K)=0.1481\ 21;\ \alpha(L)=0.0230\ 4;\ \alpha(M)=0.00508\ 8;\ \alpha(N+)=0.001330\ 19$ $\alpha(N)=0.001165\ 17;\ \alpha(O)=0.0001580\ 23;\ \alpha(P)=6.90\times10^{-6}\ 10$
128.90 7	295 25	396.44	11/2-	267.45	13/2+	E1		0.1657	$\alpha(K) = 0.1383 \ 20; \ \alpha(L) = 0.0214 \ 3; \ \alpha(M) = 0.00473 \ 7; \ \alpha(N+) = 0.001239 \ 18 \ \alpha(N) = 0.001085 \ 16; \ \alpha(O) = 0.0001473 \ 21; \ \alpha(P) = 6.47 \times 10^{-6} \ 9$

S

	$\frac{161}{10} \text{Tm } \varepsilon \text{ decay} \qquad 1975 \text{Ad08,1980Ab18 (continued)}$									
							<u>.</u>	γ(¹⁶¹ Er) (α	continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	$\delta^{\#}$	α [@]	Comments	
138.68 7	60 7	388.45	11/2-	249.77	9/2-	M1+E2	0.23	1.109	Mult.: $\alpha(K)(\exp)=0.15 \ 4 \ \text{and} \ \alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)= \ 643 \ 129/100 \ 14/\approx 29 \ (1980Ab18); \ \text{other:} \ 1975Ad08.$ $\alpha(K)=0.916 \ 13; \ \alpha(L)=0.1498 \ 22; \ \alpha(M)=0.0336 \ 5; \ \alpha(N+)=0.00896 \ 13 \ \alpha(N)=0.00780 \ 11; \ \alpha(O)=0.001105 \ 16; \ \alpha(P)=5.60\times 10^{-5} \ 8 \ \text{Mult.:} \ \alpha(K)(\exp)=0.93 \ 17 \ \text{and} \ \alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)= \ 747 \ 107/100 \ 125 \ A^{-1}(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)= \ 747 \ 107/100 \ 120/100 \ 12$	
140.40 7	42 6	390.20	9/2-	249.77	9/2-	M1+E2	0.44	1.044	<i>I</i> 2/15 3 (1980Ab18); other: 1975Ad08. δ: from %E2=5 (1980Ab18). $\alpha(K)=0.833$ <i>I</i> 2; $\alpha(L)=0.1639$ 24; $\alpha(M)=0.0373$ 6; $\alpha(N+)=0.00986$ <i>I</i> 4 $\alpha(N)=0.00863$ <i>I</i> 3; $\alpha(O)=0.001180$ <i>I</i> 7; $\alpha(P)=5.00\times10^{-5}$ 7 Mult.: $\alpha(K)(exp)=0.87$ <i>I</i> 7 and $\alpha(K)(exp)/\alpha(L1)(exp)/\alpha(L2)(exp)/\alpha(L3)(exp)=$ 743 <i>I</i> 06/100 <i>I</i> 4/29 4/16 4 (1980Ab18); other: 1975Ad08.	
143.92 8	375	143.89	7/2-	0.	3/2-	E2		0.779	δ: from %E2=17 10 (1975Ad08) and 15 (1980Ab18). α (K)=0.416 6; α (L)=0.278 4; α (M)=0.0670 10; α (N+)=0.01706 25 α (N)=0.01522 22; α (O)=0.00183 3; α (P)=1.82×10 ⁻⁵ 3	
146.65 8	482 <i>35</i>	396.44	11/2-	249.77	9/2-	M1+E2	0.23	0.945	Mult.: $\alpha(K)(\exp)=0.42$ 7 and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=$ 981 <i>125</i> /100 <i>19</i> /300 <i>31</i> /256 <i>25</i> (1980Ab18); other: 1975Ad08 and 1964Ab11. $\alpha(K)=0.783$ <i>11</i> ; $\alpha(L)=0.1267$ <i>18</i> ; $\alpha(M)=0.0284$ <i>4</i> ; $\alpha(N+)=0.00758$ <i>11</i> $\alpha(N)=0.00659$ <i>10</i> ; $\alpha(O)=0.000936$ <i>14</i> ; $\alpha(P)=4.78\times10^{-5}$ 7 Mult.: $\alpha(K)(\exp)=0.80$ <i>12</i> and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=$ 740 <i>96</i> /100 <i>12</i> /14.2 <i>15</i> /5.8 <i>6</i> (1980Ab18); other: 1975Ad08.	
153.37 8	300 25	212.91	5/2+	59.501	5/2-	E1		0.1045	δ: from %E2=5.1 (1980Ab18). $\alpha(K)=0.0875\ 13;\ \alpha(L)=0.01327\ 19;\ \alpha(M)=0.00293\ 5;\ \alpha(N+)=0.000771\ 11$ $\alpha(N)=0.000675\ 10;\ \alpha(O)=9.24\times10^{-5}\ 13;\ \alpha(P)=4.19\times10^{-6}\ 6$ Mult.: $\alpha(K)(exp)=0.117\ 19$ and $\alpha(K)(exp)/\alpha(L1)(exp)=1167\ 167/100\ 13$	
156.52 8	71 7	369.48	3/2+	212.91	5/2+	M1+E2	0.36	0.772	(1989Ab18). Other: 1975Ad08. $\alpha(K)=0.630 \ 9; \ \alpha(L)=0.1104 \ 16; \ \alpha(M)=0.0249 \ 4; \ \alpha(N+)=0.00662 \ 10$ $\alpha(N)=0.00578 \ 9; \ \alpha(O)=0.000806 \ 12; \ \alpha(P)=3.81\times10^{-5} \ 6$ Mult.: $\alpha(K)(\exp)=0.69 \ 7$ and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)=754 \ 98/100$ $11/20 \ 3 \ (1980Ab18); \ other: 1975Ad08.$	
157.80 8	180 <i>16</i>	217.34	7/2+	59.501	5/2-	E1		0.0969	δ: from %E2=11.7 (1980Ab18). α (K)=0.0812 <i>12</i> ; α (L)=0.01228 <i>18</i> ; α (M)=0.00271 <i>4</i> ; α (N+)=0.000714 <i>10</i> α (N)=0.000624 <i>9</i> ; α (O)=8.56×10 ⁻⁵ <i>12</i> ; α (P)=3.90×10 ⁻⁶ <i>6</i>	
172.05 6	513 40	172.06	5/2-	0.	3/2-	M1+E2	0.18	0.605	Mult.: $\alpha(K)(\exp)=0.6.2$ (1980Ab18). $\alpha(K)=0.505$ 7; $\alpha(L)=0.0780$ 11; $\alpha(M)=0.01738$ 25; $\alpha(N+)=0.00466$ 7 $\alpha(N)=0.00405$ 6; $\alpha(O)=0.000580$ 9; $\alpha(P)=3.09\times10^{-5}$ 5 Mult.: $\alpha(K)(\exp)=0.51$ 9 and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=$ 732 113/100 11/12.4 14/4.2 6 (1980Ab18); other: 1975Ad08.	
172.92 7	55 15	390.20	9/2-	217.34	7/2+	(E1)		0.0761	δ: from %E2=1.5 15 (1975Ad08) and 4.8 (1980Ab18). $\alpha(K)=0.0638$ 9; $\alpha(L)=0.00958$ 14; $\alpha(M)=0.00212$ 3; $\alpha(N+)=0.000557$ 8 $\alpha(N)=0.000487$ 7; $\alpha(O)=6.71\times10^{-5}$ 10; $\alpha(P)=3.10\times10^{-6}$ 5 Mult.: $\alpha(K)(exp)=0.13$ 5 and $\alpha(K)(exp)/\alpha(L1)(exp)=\approx$ 467 /100 (1980Ab18); other: 1975Ad08.	

From ENSDF

 $^{161}_{68}\mathrm{Er}_{93}$ -6

	$\frac{161}{2}$ Tm ε decay 1975Ad08,1980Ab18 (continued)												
							$\gamma(^{16}$	⁵¹ Er) (conti	nued)				
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult.	δ#	α [@]	Comments				
^x 182.00 9	12 3					M1		0.523	$\alpha(K)=0.439\ 7;\ \alpha(L)=0.0653\ 10;\ \alpha(M)=0.01447\ 21;\ \alpha(N+)=0.00389\ 6$				
190.24 6	340 <i>30</i>	249.77	9/2-	59.501	5/2-	E2		0.298	$\alpha(N)=0.003375; \ \alpha(O)=0.0004887; \ \alpha(P)=2.70\times10^{-6} 4$ $\alpha(K)=0.1873; \ \alpha(L)=0.084712; \ \alpha(M)=0.02023; \ \alpha(N+)=0.005188$ $\alpha(N)=0.004607; \ \alpha(O)=0.0005658; \ \alpha(P)=8.72\times10^{-6} 13$ Mult: $\alpha(K)(\exp)=0.194$ and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=929171/10014/186$				
197.38 8	12 6	369.48	3/2+	172.06	5/2-	(E1)		0.0538	$\alpha(K)=0.0452\ 7;\ \alpha(L)=0.00671\ 10;\ \alpha(M)=0.001483\ 21;\ \alpha(N+)=0.000391\ 6$ $\alpha(N)=0.000342\ 5;\ \alpha(O)=4.73\times10^{-5}\ 7;\ \alpha(P)=2.23\times10^{-6}\ 4$				
200.75 5	83 18	390.20	9/2-	189.42	9/2+	E1		0.0515	Mult: $\alpha(K)(\exp) \le 0.08$ (1980Ab18). $\alpha(K)=0.0433 \ 6; \ \alpha(L)=0.00641 \ 9; \ \alpha(M)=0.001417 \ 20; \ \alpha(N+)=0.000374 \ 6$ $\alpha(N)=0.000327 \ 5; \ \alpha(O)=4.53\times10^{-5} \ 7; \ \alpha(P)=2.14\times10^{-6} \ 3$				
206.95 5	60 18	266.44	7/2-	59.501	5/2-	M1+E2	≤0.33	0.359 9	Mult.: $\alpha(K)(\exp)=0.084$ 25 (1980Ab18). $\alpha(K)=0.300$ 9; $\alpha(L)=0.0463$ 10; $\alpha(M)=0.0103$ 3; $\alpha(N+)=0.00277$ 6 $\alpha(N)=0.00240$ 6; $\alpha(O)=0.000344$ 6; $\alpha(P)=1.83\times10^{-5}$ 7 Mult.: $\alpha(K)(\exp)=0.30$ 12 and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)=$ 738 221/100 29/≤14 (1980Ab18); other: 1975Ad08.				
207.12 6	237 30	396.44	11/2-	189.42	9/2+	E1		0.0475	δ: from %E2 ≤ 9.8 (1980Ab18). α (K)=0.0399 6; α (L)=0.00590 9; α (M)=0.001304 19; α (N+)=0.000344 5 α (N)=0.000301 5; α (O)=4.17×10 ⁻⁵ 6; α (P)=1.98×10 ⁻⁶ 3				
212.88 8	317 27	212.91	5/2+	0.	3/2-	E1		0.0442	Mult.: $\alpha(K)(\exp)=0.038 \ 8 \ (1980Ab18)$. $\alpha(K)=0.0372 \ 6; \ \alpha(L)=0.00549 \ 8; \ \alpha(M)=0.001212 \ 17; \ \alpha(N+)=0.000320 \ 5$ $\alpha(N)=0.000280 \ 4; \ \alpha(O)=3.88\times10^{-5} \ 6; \ \alpha(P)=1.85\times10^{-6} \ 3$				
^x 215.70 6	157 15					M1		0.327	Mult.: $\alpha(K)(\exp)=0.058$ 70 (1980Ab18). $\alpha(K)=0.275$ 4; $\alpha(L)=0.0407$ 6; $\alpha(M)=0.00902$ 13; $\alpha(N+)=0.00242$ 4				
218.10 6	105 10	390.20	9/2-	172.06	5/2-	E2		0.189	$\alpha(N)=0.00210 \ 3; \ \alpha(O)=0.000304 \ 5; \ \alpha(P)=1.683\times10^{-5} \ 24$ $\alpha(K)=0.1260 \ 18; \ \alpha(L)=0.0486 \ 7; \ \alpha(M)=0.01152 \ 17; \ \alpha(N+)=0.00296 \ 5$ $\alpha(N)=0.00263 \ 4; \ \alpha(O)=0.000327 \ 5; \ \alpha(P)=6.06\times10^{-6} \ 9$				
^x 220.10 10	30 4					E1		0.0406	Mult.: $\alpha(\mathbf{K})(\exp)=0.11.5$ (1980A018). $\alpha(\mathbf{K})=0.0341.5; \alpha(\mathbf{L})=0.00503.7; \alpha(\mathbf{M})=0.001110.16; \alpha(\mathbf{N}+)=0.000293.5$				
^x 241.9 3	10 3					(E2)		0.1352	$\begin{array}{l} \alpha(N)=0.000256\ 4;\ \alpha(O)=5.36\times10^{-5}\ 5;\ \alpha(P)=1.708\times10^{-5}\ 24\\ \alpha(K)=0.0934\ 14;\ \alpha(L)=0.0322\ 5;\ \alpha(M)=0.00762\ 12;\ \alpha(N+)=0.00196\ 3\\ \alpha(D)=0.00174\ 2;\ \alpha(D)=0.00196\ 4;\ \alpha(D)=0.00196\ 4;\ \alpha(D)=0.00196\ 4;\ \alpha(D)=0.00196\ 3\\ \alpha(D)=0.00174\ 2;\ \alpha(D)=0.00196\ 4;\ \alpha(D)=0.00196\ 4;\ \alpha(D)=0.00196\ 3;\ \alpha(D)=0.00$				
244.57 8	110 11	388.45	11/2-	143.89	7/2-	E2		0.1305	$\begin{array}{l} \alpha(N)=0.00174\ 3;\ \alpha(O)=0.000219\ 4;\ \alpha(P)=4.60\times10^{-6}\ 7\\ \alpha(K)=0.0905\ 13;\ \alpha(L)=0.0309\ 5;\ \alpha(M)=0.00729\ 11;\ \alpha(N+)=0.00188\ 3\\ \alpha(N)=0.001665\ 24;\ \alpha(O)=0.000210\ 3;\ \alpha(P)=4.47\times10^{-6}\ 7\\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(P)=4.47\times10^{-6}\ 7\\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.00188\ 3\\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.00188\ 3\\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.00729\ 11;\ \alpha(D)=0.00188\ 3\\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.00729\ 11;\ \alpha(D)=0.00188\ 3\\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.00188\ 3\\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.00188\ 3\\ \alpha(D)=0.00188\ 3\\ \alpha(D)=0.00165\ 24;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.000210\ 3;\ \alpha(D)=0.00188\ 3\\ \alpha(D)=0.00$				
246.2 3	≤10	390.20	9/2-	143.89	7/2-	(M1)		0.227	Mult.: $\alpha(\mathbf{K})(\exp)=0.11.3$ (1980Ab18). $\alpha(\mathbf{K})=0.191.3$; $\alpha(\mathbf{L})=0.0282.4$; $\alpha(\mathbf{M})=0.00626.9$; $\alpha(\mathbf{N}+)=0.001683.25$ $\alpha(\mathbf{N})=0.001460.21$; $\alpha(\mathbf{O})=0.000211.3$; $\alpha(\mathbf{P})=1.171\times10^{-5}.17$				
^x 248.5 4	10 3					(E2)		0.1241	Mult.: $\alpha(K)(exp) \approx 0.2$ (1980Ab18). $\alpha(K)=0.0864$ 13; $\alpha(L)=0.0290$ 5; $\alpha(M)=0.00685$ 11; $\alpha(N+)=0.00177$ 3 (N) $\alpha(N)=0.001565$ 24 (G) $\alpha(M)=0.00107$ 3 (D) $\alpha(N)=0.00177$ 3				
250.2 1	74 8	463.11	3/2+	212.91	5/2+	M1		0.218	$\alpha(N)=0.001565\ 24;\ \alpha(O)=0.000197\ 3;\ \alpha(P)=4.28\times10^{-6}7$ $\alpha(K)=0.183\ 3;\ \alpha(L)=0.0270\ 4;\ \alpha(M)=0.00599\ 9;\ \alpha(N+)=0.001610\ 23$				

From ENSDF

¹⁶¹₆₈Er₉₃-7

					161 Tm ε decay		1975Ad08,	1980Ab18 (continued)		
								<u> </u>	¹⁶¹ Er) (cont	tinued)
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ #	α [@]	Comments
	252.50 10	155 14	396.44	11/2-	143.89	7/2-	E2		0.1179	$\alpha(N)=0.001397\ 20;\ \alpha(O)=0.000202\ 3;\ \alpha(P)=1.121\times10^{-5}\ 16$ Mult.: $\alpha(K)(\exp)=0.24\ 6\ (1980Ab18).$ $\alpha(K)=0.0825\ 12;\ \alpha(L)=0.0273\ 4;\ \alpha(M)=0.00644\ 9;\ \alpha(N+)=0.001660\ 24$ $\alpha(N)=0.001470\ 21;\ \alpha(O)=0.000186\ 3;\ \alpha(P)=4.10\times10^{-6}\ 6$ Mult.: $\alpha(K)(\exp)=0.084\ 21$ and $\alpha(K)(\exp)/\alpha(L1)(\exp)/\alpha(L2)(\exp)/\alpha(L3)(\exp)=\ 867\ 200/100\ 10/113\ 3/80\ 7$
	^x 260.9 1	37 4					M1		0.194	(1980Ab18); other: 1975Ad08. $\alpha(K)=0.1634\ 23;\ \alpha(L)=0.0241\ 4;\ \alpha(M)=0.00534\ 8;\ \alpha(N+)=0.001435\ 21$
	^x 263.9 1	50 6					(E2)		0.1026	$ \alpha(N) = 0.001245 \ 18; \ \alpha(O) = 0.000180 \ 3; \ \alpha(P) = 1.000 \times 10^{-5} \ 14 \\ \alpha(K) = 0.0727 \ 11; \ \alpha(L) = 0.0231 \ 4; \ \alpha(M) = 0.00542 \ 8; \ \alpha(N+) = 0.001401 \ 20 $
	^x 265.46 10	104 11					M1		0.185	$\alpha(N)=0.001240 \ 18; \ \alpha(O)=0.0001572 \ 23; \ \alpha(P)=3.65\times10^{-6} \ 6 \\ \alpha(K)=0.1560 \ 22; \ \alpha(L)=0.0230 \ 4; \ \alpha(M)=0.00509 \ 8; \ \alpha(N+)=0.001369 \ 20$
	266.32 10	66 7	266.44	7/2-	0.	3/2-	E2		0.0997	$\begin{aligned} &\alpha(N) = 0.001187 \ 17; \ \alpha(O) = 0.0001720 \ 25; \ \alpha(P) = 9.54 \times 10^{-6} \ 14 \\ &\alpha(K) = 0.0708 \ 10; \ \alpha(L) = 0.0223 \ 4; \ \alpha(M) = 0.00524 \ 8; \ \alpha(N+) = 0.001353 \ 19 \\ &\alpha(N) = 0.001197 \ 17; \ \alpha(O) = 0.0001520 \ 22; \ \alpha(P) = 3.56 \times 10^{-6} \ 5 \end{aligned}$
	x270.2 1	17 4					M1		0.1767	Mult.: $\alpha(K)(exp) \approx 0.09 \ (1980Ab18);$ other: 1975Ad08. $\alpha(K)=0.1487 \ 21; \ \alpha(L)=0.0219 \ 3; \ \alpha(M)=0.00485 \ 7; \ \alpha(N+)=0.001304 \ 19$
~	^x 272.07 10	75 10					M1		0.1735	α (N)=0.001131 <i>16</i> ; α (O)=0.0001639 <i>23</i> ; α (P)=9.09×10 ⁻⁶ <i>13</i> α (K)=0.1459 <i>21</i> ; α (L)=0.0215 <i>3</i> ; α (M)=0.00476 <i>7</i> ; α (N+)=0.001280 <i>18</i>
	278.90 10	81 10	496.28	5/2+	217.34	7/2+	M1		0.1622	$ \begin{aligned} &\alpha(N) = 0.001110 \ 16; \ \alpha(O) = 0.0001609 \ 23; \ \alpha(P) = 8.92 \times 10^{-6} \ 13 \\ &\alpha(K) = 0.1365 \ 20; \ \alpha(L) = 0.0201 \ 3; \ \alpha(M) = 0.00445 \ 7; \ \alpha(N+) = 0.001196 \ 17 \\ &\alpha(N) = 0.001038 \ 15; \ \alpha(O) = 0.0001504 \ 22; \ \alpha(P) = 8.34 \times 10^{-6} \ 12 \end{aligned} $
	^x 281.0 <i>1</i>	22 5					M1		0.1590	Mult.: $\alpha(K)(exp) \approx 0.12$ (1980Ab18). $\alpha(K)=0.1338$ 19; $\alpha(L)=0.0197$ 3; $\alpha(M)=0.00436$ 7; $\alpha(N+)=0.001172$ 17
	283.4 1	83 10	496.28	5/2+	212.91	5/2+	M1+E2	0.80	0.1268	$\alpha(N)=0.001017 \ 15; \ \alpha(O)=0.0001473 \ 21; \ \alpha(P)=8.17\times10^{-6} \ 12$ $\alpha(K)=0.1029 \ 15; \ \alpha(L)=0.0186 \ 3; \ \alpha(M)=0.00421 \ 6; \ \alpha(N+)=0.001116 \ 16$ $\alpha(N)=0.000975 \ 14; \ \alpha(O)=0.0001349 \ 19; \ \alpha(P)=6.05\times10^{-6} \ 9$ Mult.: $\alpha(K)(exp)=0.13 \ 3$ and $\alpha(K)(exp)/\alpha(L1)(exp)/\alpha(L2)(exp)=707$
	310.1 <i>I</i>	30 4	369.48	3/2+	59.501	5/2-	E1		0.01708	<i>133</i> /100 <i>13</i> /27 <i>4</i> (1980Ab18); other: 1975Ad08. δ : from %E2=39 (1980Ab18). α (K)=0.01442 <i>21</i> ; α (L)=0.00208 <i>3</i> ; α (M)=0.000458 <i>7</i> ; α (N+)=0.0001215 <i>17</i>
	^x 325.8 2	27 3					(E1)		0.01513	$\begin{aligned} &\alpha(N) = 0.0001059 \ 15; \ \alpha(O) = 1.489 \times 10^{-5} \ 21; \ \alpha(P) = 7.47 \times 10^{-7} \ 11 \\ &\text{Mult.:} \ \alpha(K)(\exp) \approx 0.013 \ (1980 \text{Ab18}). \\ &\alpha(K) = 0.01279 \ 18; \ \alpha(L) = 0.00184 \ 3; \ \alpha(M) = 0.000405 \ 6; \ \alpha(N+) = 0.0001075 \\ &16 \end{aligned}$
	^x 330.6 1	64 7					E1		0.01461	$\begin{aligned} &\alpha(\mathbf{N}) = 9.36 \times 10^{-5} \ 14; \ \alpha(\mathbf{O}) = 1.318 \times 10^{-5} \ 19; \ \alpha(\mathbf{P}) = 6.65 \times 10^{-7} \ 10 \\ &\alpha(\mathbf{K}) = 0.01234 \ 18; \ \alpha(\mathbf{L}) = 0.001770 \ 25; \ \alpha(\mathbf{M}) = 0.000390 \ 6; \\ &\alpha(\mathbf{N}+) = 0.0001036 \ 15 \end{aligned}$
	^x 344.9 <i>I</i>	63 8					(E1)		0.01318	$\begin{aligned} &\alpha(\mathbf{N}) = 9.03 \times 10^{-5} \ 13; \ \alpha(\mathbf{O}) = 1.272 \times 10^{-5} \ 18; \ \alpha(\mathbf{P}) = 6.43 \times 10^{-7} \ 9 \\ &\alpha(\mathbf{K}) = 0.01115 \ 16; \ \alpha(\mathbf{L}) = 0.001595 \ 23; \ \alpha(\mathbf{M}) = 0.000351 \ 5; \\ &\alpha(\mathbf{N}+) = 9.34 \times 10^{-5} \ 13 \\ &\alpha(\mathbf{N}) = 8.13 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 1.147 \times 10^{-5} \ 16; \ \alpha(\mathbf{P}) = 5.83 \times 10^{-7} \ 9 \end{aligned}$

 $^{161}_{68}{
m Er}_{93}$ -8

Т

¹⁶¹Tm ε decay **1975Ad08,1980Ab18** (continued)

$\gamma(^{161}\text{Er})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
^x 349.1 <i>1</i>	50 6					E1	0.01281	$\alpha(K)=0.01083 \ 16; \ \alpha(L)=0.001548 \ 22; \ \alpha(M)=0.000341 \ 5; \ \alpha(N+)=9.07\times10^{-5} \ 13$
x353.8 2	130 12					M1	0.0859	$\alpha(N) = 7.89 \times 10^{-5} I1; \ \alpha(O) = 1.114 \times 10^{-5} I6; \ \alpha(P) = 5.66 \times 10^{-7} 8$ $\alpha(K) = 0.0724 I1; \ \alpha(L) = 0.01059 I5; \ \alpha(M) = 0.00234 4; \ \alpha(N+) = 0.000630 9$ $\alpha(N) = 0.000546 8 \pi \alpha(O) = 7.00 \times 10^{-5} I2; \ \alpha(D) = 4.41 \times 10^{-6} 5$
369.5 1	140 <i>12</i>	369.48	3/2+	0.	3/2-	E1	0.01118	$\alpha(N)=0.000346 \ 3; \ \alpha(O)=7.92\times10^{-1} 12; \ \alpha(P)=4.41\times10^{-7} 7$ $\alpha(K)=0.00946 \ 14; \ \alpha(L)=0.001348 \ 19; \ \alpha(M)=0.000297 \ 5; \ \alpha(N+)=7.89\times10^{-5} \ 11 $ $\alpha(N)=6.87\times10^{-5} \ 10; \ \alpha(O)=9.72\times10^{-6} \ 14; \ \alpha(P)=4.97\times10^{-7} \ 7 $ Mult.: $\alpha(K)(\exp)=0.011 \ 3 \ (1980Ab18).$
x371.2 2	45 6							
372.6 2	105 11	590.06	7/2+	217.34	7/2+	M1	0.0750	$\alpha(K)=0.0632 \ 9; \ \alpha(L)=0.00922 \ 13; \ \alpha(M)=0.00204 \ 3; \ \alpha(N+)=0.000549 \ 8 \\ \alpha(N)=0.000476 \ 7; \ \alpha(O)=6.90\times10^{-5} \ 10; \ \alpha(P)=3.84\times10^{-6} \ 6 \\ Mult.: \ \alpha(K)(exp)=0.067 \ 21 \ (1980Ab18).$
377.1 2	49 6	590.06	7/2+	212.91	5/2+	M1	0.0726	$\alpha(K)=0.0612 \ 9; \ \alpha(L)=0.00893 \ 13; \ \alpha(M)=0.00198 \ 3; \ \alpha(N+)=0.000531 \ 8 \ \alpha(N)=0.000461 \ 7; \ \alpha(O)=6.68\times10^{-5} \ 10; \ \alpha(P)=3.72\times10^{-6} \ 6 \ Mult: \ \alpha(K)(exp)=0.051 \ 14 \ (1980\Delta b18)$
400.8 2	71 8	590.06	7/2+	189.42	9/2+	M1	0.0619	$\alpha(\mathbf{K})=0.0522 \ 8; \ \alpha(\mathbf{L})=0.00760 \ 11; \ \alpha(\mathbf{M})=0.001681 \ 24; \ \alpha(\mathbf{N}+)=0.000452 \ 7 \\ \alpha(\mathbf{N})=0.000392 \ 6; \ \alpha(\mathbf{O})=5.68\times10^{-5} \ 8; \ \alpha(\mathbf{P})=3.17\times10^{-6} \ 5 \\ \mathbf{M}_{\mathbf{M}}\mathbf{t}_{\mathbf{L}} \ c_{\mathbf{M}}\mathbf{C}_{\mathbf{M}}\mathbf{c}_{M$
403.5 2	17 <i>3</i>	463.11	3/2+	59.501	5/2-	[E1]	0.00909	$\alpha(K)(exp)=0.050\ 15\ (1360A018).$ $\alpha(K)=0.00770\ 11;\ \alpha(L)=0.001091\ 16;\ \alpha(M)=0.000240\ 4;\ \alpha(N+)=6.39\times10^{-5}\ 9$ $\alpha(N)=5.56\times10^{-5}\ 8;\ \alpha(O)=7.88\times10^{-6}\ 11;\ \alpha(P)=4.07\times10^{-7}\ 6$
^x 407.6 4	21 7							
^x 419.6 5	26 7							
x425.6 5	23 5							
^x 433.2 4	36 6							, ,
436.8 6	15 5	496.28	5/2+	59.501	5/2-	[E1]	0.00757	$\alpha(K)=0.00641 \ 10; \ \alpha(L)=0.000905 \ 13; \ \alpha(M)=0.000199 \ 3; \ \alpha(N+)=5.30\times10^{-5} \ 8 \ \alpha(N)=4.61\times10^{-5} \ 7; \ \alpha(O)=6.55\times10^{-6} \ 10; \ \alpha(P)=3.41\times10^{-7} \ 5$
^x 447.1 4	15							
x454.3 4	42 8					E1	0.00692	α (K)=0.00587 9; α (L)=0.000826 12; α (M)=0.000182 3; α (N+)=4.84×10 ⁻⁵ 7 α (N)=4.21×10 ⁻⁵ 6; α (O)=5.99×10 ⁻⁶ 9; α (P)=3.12×10 ⁻⁷ 5
458.3 6	18 7	724.84	$(3/2^{-})$	266.44	$7/2^{-}$			
463.6 <i>4</i>	41 5	463.11	3/2+	0.	3/2-	E1	0.00661	α (K)=0.00561 8; α (L)=0.000788 12; α (M)=0.0001734 25; α (N+)=4.62×10 ⁻⁵ 7 α (N)=4.02×10 ⁻⁵ 6; α (O)=5.71×10 ⁻⁶ 8; α (P)=2.99×10 ⁻⁷ 5
^x 476.0 5	84							
^x 483.3 4	43 5							
^x 489.5 5	61 6							
496.3 5	10 4	496.28	5/2+	0.	3/2-	[E1]	0.00568	α (K)=0.00482 7; α (L)=0.000674 10; α (M)=0.0001483 21; α (N+)=3.95×10 ⁻⁵ 6 α (N)=3.44×10 ⁻⁵ 5; α (O)=4.90×10 ⁻⁶ 7; α (P)=2.58×10 ⁻⁷ 4
^x 503.8 4	38 6							
^x 507.2 8	33 4							
^x 523.6 4	817							
^x 540.0 5	24 5							
^x 549.6 4	35 5							
552.9 <i>5</i>	21 5	724.84	$(3/2^{-})$	172.06	$5/2^{-}$			
^x 560.2 4	57 6							

9

		$\frac{161}{2}$ Tm ε decay 1975Ad08,1980Ab18 (continued)												
						<u>)</u>	(¹⁶¹ Er) (contin	ued)						
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π			
^x 574.6 4	47 5					^x 1117.5 7	15 6							
577.0 5	11 4	843.16	$(5/2^{-})$	266.44	$7/2^{-}$	^x 1156.3 5	40 4							
581.0 5	15 5	724.84	$(3/2^{-})$	143.89	$7/2^{-}$	^x 1185.1 6	12 3							
593.7 <i>5</i>	28 8	843.16	$(5/2^{-})$	249.77	9/2-	1215.0 7	10 6	1481.20?	$(5/2,7/2^{-})$	266.44	7/2-			
^x 608.9 4	27 8					^x 1223.0 4	34 4							
^x 618.3 4	25 8					1235.7 4	40 4	1960.25	$(7/2^{-})$	724.84	$(3/2^{-})$			
^x 622.3 4	43 14					^x 1250.1 5	≤17							
^x 644.7 4	28 9					1268.3 5	15 7	1481.20?	$(5/2,7/2^{-})$	212.91	5/2+			
*654.2 4	38.9		(2.12-)			x12/1.5 5	43.8							
665.2 5	18 6	724.84	$(3/2^{-})$	59.501	5/2-	x1276.2 6	25.8							
670.6 5	20 7	843.16	$(5/2^{-})$	172.06	5/2-	*1305.3.6	≤41	1 401 000		152.04	<i>5 1</i> 0-			
*680.3 5	22 7					1308.5.5	42.6	1481.20?	(5/2,7/2)	172.06	5/2			
*696.6.5	28 10	0.42.16	(5/0-)	142.00	7/0-	x1317.0 8	12.0							
699.0 S	25 11	843.16	(5/2)	143.89	1/2	*1322.1 5	25.0	1401 000	(5/0,7/0=)	142.00	7/0-			
× 702.0 0	15 /					1337.8 5	18 9	1481.20?	(5/2, 7/2)	143.89	$\frac{1}{2}$			
X716.9 4	10 4					1341.3 J X1251 5 6	24 /	2000.89?	(3/2, 7/2)	/24.04	(3/2)			
724.8.5	22 4 57 7	774 84	$(2/2^{-})$	0	2/2-	x1255 1 5	≤11 27.6							
x752.1.4	35 5	724.04	(3/2)	0.	5/2	x1384.2.6	27.0							
x762 A A	38.5					1422.1.5	<18	1481 202	$(5/2 \ 7/2^{-})$	50 501	5/2-			
x776.0.4	35 5					$x_{1422.15}$	<8	1401.20:	(3/2, 7/2)	39.301	5/2			
x781 2 5	22 5					x1437 3 6	<u>~</u> 0 18 5							
784.1.5	42 6	843 16	$(5/2^{-})$	59 501	$5/2^{-}$	x1461 1 5	55.6							
x799.0.5	<15	015.10	(3/2)	57.501	5/2	1481 5 7	12.6	1481 202	$(5/2, 7/2^{-})$	0	3/2-			
x812.3.6	<20					x1514.6 4	72.7	1101.20.	(3/2,7/2)	0.	5/2			
^x 840.1 5	45.5					^x 1519.1.5	36.7							
842.9 5	20 5	843.16	$(5/2^{-})$	0.	$3/2^{-}$	x1537.0 8	15 6							
^x 858.0 5	35 8				,	^x 1540.0 8	15 6							
^x 889.6 5	33 8					x1552.0 8	15 7							
891.0 5	16 7	1481.20?	$(5/2,7/2^{-})$	590.06	$7/2^{+}$	^x 1555.3 8	15 7							
^x 901.7 5	≤41					^x 1565.8 8	15 5							
^x 912.2 5	16 4					1569.9 5	43 5	1960.25	$(7/2^{-})$	390.20	9/2-			
^x 916.5 5	18 4					^x 1578.2 5	10 6							
^x 935.8 5	22 5					^x 1581.3 5	19 6							
^x 949.2 6	18 6					^x 1591.2 8	84							
^x 964.1 4	28 4					^x 1597.7 5	17 6							
^x 970.4 5	26 4					^x 1600.4 5	12 6							
984.5 <i>5</i>	29 7	1481.20?	$(5/2,7/2^{-})$	496.28	$5/2^{+}$	^x 1611.4 4	46 <i>6</i>							
^x 997.5 7	≤25					^x 1628.5 5	21 6							
^x 1003.2 4	69 8					^x 1633.1 5	34 6							
^1057.6 5	20 5					*1639.5 8	10 4							
^x 1089.1 4	35 4					1648.1 <i>3</i>	195×10 ¹ 18	2044.6	9/2+	396.44	$11/2^{-}$			
^x 1098.8 4	27 3					x1663.6 5	56 11	10/0			- 12			
×1112.0 8	10 4					1693.5 4	42 5	1960.25	$(7/2^{-})$	266.44	1/2-			

 $^{161}_{68}\mathrm{Er}_{93}$ -10

					¹⁰¹ Tm	ε decay 1	975Ad08,	1980Ab18 (continued)		
						$\gamma(^{16}$	¹ Er) (cont	inued)			
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
^x 1706.1 4	35 4					1894.1 4	71 8	2066.89?	$(5/2,7/2^{-})$	172.06	5/2-
^x 1718.0 8	≤12					x1900.7 8	≤ 8				,
^x 1721.6 5	15 4					^x 1902.7 5	18 6				
^x 1735.3 6	18 4					^x 1909.6 5	27 8				
1743.8 5	17 5	1960.25	$(7/2^{-})$	217.34	$7/2^{+}$	^x 1913.0 7	≤13				
1748.0 5	21 6	1960.25	$(7/2^{-})$	212.91	$5/2^{+}$	1922.8 5	≤10	2066.89?	$(5/2,7/2^{-})$	143.89	$7/2^{-}$
^x 1753.0 8	≤ 8					^x 1926.5 6	≤7				
^x 1757.9 5	24 5					^x 1934.9 7	8 <i>3</i>				
^x 1766.1 5	21 6					^x 1941.2 5	15 5				
1769.5 6	18 <i>6</i>	1960.25	$(7/2^{-})$	189.42	9/2+	^x 1952.5 6	92				
1788.0 <i>3</i>	172 15	1960.25	$(7/2^{-})$	172.06	5/2-	^x 1958.2 5	11 4				
1796.0 8	≤5	2063.09?	$(5/2^+, 7/2)$	266.44	$7/2^{-}$	^x 1984.9 5	13 4				
1800.0 5	15 3	2066.89?	$(5/2,7/2^{-})$	266.44	7/2-	2007.1 6	11 4	2066.89?	$(5/2,7/2^{-})$	59.501	5/2-
^x 1816.3 4	20 4					^x 2010.7 5	19 5				
^x 1827.2 4	77 8					^x 2043.9 6	≤8				
^x 1830.7 5	18 9					*2062.2 5	15 4				
^x 1834.0 4	47 6					2067.1 9	≤6	2066.89?	$(5/2,7/2^{-})$	0.	3/2-
1845.7 4	64 7	2063.09?	$(5/2^+, 7/2)$	217.34	7/2+	*2095.2.4	20.6				
1850.0 ^{&} 3	165 ^{&} 15	2063.09?	$(5/2^+, 7/2)$	212.91	$5/2^{+}$	^x 2115.0 7	94				
1850.0 ^{&} 3	165 ^{&} 15	2066.89?	$(5/2,7/2^{-})$	217.34	$7/2^{+}$	^x 2129.5 7	94				
1854.7 4	82 8	2066.89?	$(5/2,7/2^{-})$	212.91	$5/2^+$	^x 2139.0 9	≤6				
^x 1861.6 4	28 4					^x 2154.4 4	23 5				
^x 1867.4 4	35 4					x2174.4 8	≤7				
1873.4 7	10 5	2063.09?	$(5/2^+, 7/2)$	189.42	$9/2^{+}$	^x 2190.8 7	≤7				
^x 1875.9 5	33 4				-	x2223.5 8	≤7				
^x 1887.8 5	≤12					^x 2374.0 10	≤ 8				
1891.9 5	40 10	2063.09?	$(5/2^+, 7/2)$	172.06	$5/2^{-}$						

161----

 † Values are from 1975Ad08. (Values in 1980Ab18 are identical.).

[‡] Values from 1975Ad08 and 1980Ab18 are quoted as photons per 10^4 decays, based on the requirement that the sum of the γ +ce intensities to the g.s. be 100%. Because of the likely incompleteness of the decay scheme, the evaluator regards this normalization is approximate. In any event, the listed values can be regarded as relative ones.

.......

[#] From 1975Ad08 and 1980Ab18 and based on L subshell ratios, K/L ratios, and α (K)exp. Normalization of the ce and γ data is based on α (K)(143)=0.42 for a pure E2 transition.

^(a) Uncertainties are based on uncertainties in δ estimated by evaluator for the purpose of this calculation. These $\Delta\delta$ are not reported here.

[&] Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

 $^{161}_{68}\mathrm{Er}_{93}$

¹⁶¹Tm ε decay 1975Ad08,1980Ab18 (continued)

		Band(G): Bandhead of 3/2[532]				Band(I): Probable K^{π} =9/2 ⁺ bandhead	
				Band(H): Bandhead of 5/2[512]		<u>9/2</u> +	2044.6
				(5/2-)	843.16		
Band(F): 3/2(402) band with an admixture of 3/2[651]		(3/2-)	724.84				
7/2+	590.06						

5/2+ 496.28

3/2+ 463.11

¹⁶¹₆₈Er₉₃