¹⁶⁰**Dy**(α ,3n γ) 1970Hj02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Additional information 1. 1970Hj02: ¹⁶⁰Dy(α ,3n γ) on enriched (68.5%) target with 38-MeV α . γ 's measured at four angles; determined excitation functions and $\gamma(t)$ for $\gamma's$ from 143-keV level. 41 $\gamma's$ placed in bands with $J^{\pi's}$ to $29/2^+$, $21/2^-$, $17/2^-$ and $11/2^-$. 1969Ha12: E_{γ} , I_{γ} , angular distributions for 5 γ 's; see 1970Hj02 by the same authors.

1969HjZZ: Laboratory annual report; see 1970Hj02 for the same results.

1973BeWC: Conference paper summary. Dy(α ,xn γ) and measured γ singles, $\gamma\gamma$ coincidences, $\gamma(t)$, and $\gamma(\theta)$, but only data are

 E_{γ} for 6 γ 's in positive-parity band.

1974BeXW: In laboratory annual report; same results as 1973BeWC.

¹⁶¹Er Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@	Comments
0 <mark>&</mark>	3/2-		
59.5 ^a	5/2-		
143.8 <mark>&</mark>	$7/2^{-}$		
172.5? <mark>b</mark>	$5/2^{-}$		Existence of this level is known from the ε -decay studies.
189.3 ^C	9/2+	70 ns 20	$T_{1/2}$: from 1970Hj02, γ (t).
249.8 ^a	9/2-		
266.2? ^b	7/2-		Existence of this level is known from the ε -decay studies.
267.5 [°]	$13/2^{+}$		
296.5 ^d	$11/2^{+}$		
388.7 <mark>&</mark>	$11/2^{-}$		
389.7? <mark>b</mark>	9/2-		Existence of this level is known from the ε -decay studies.
396.6 ^e	$11/2^{-}$		·
466.0 ^C	$17/2^{+}$		
508.7 <mark>d</mark>	$15/2^{+}$		
531.1 ^a	$13/2^{-}$		
578.6 ^ƒ	$13/2^{-}$		
748.9? <mark>&</mark>	$15/2^{-}$		E(level): Subsequent studies place the $15/2^{-}$ band member elsewhere in the level scheme.
782.6 ^e	$15/2^{-}$		
783.5 [°]	$21/2^{+}$		
848.8 ^d	$19/2^{+}$		
923.8? ^a	$17/2^{-}$		E(level): Subsequent studies place the $17/2^{-}$ band member elsewhere in the level scheme.
1007.4 ¹	$17/2^{-}$		
1208.6 ^C	$25/2^+$		
1248.6 ^e	19/2-		
1308.4? ^d	$23/2^{+}$		E(level): Subsequent studies place the $23/2^+$ band member elsewhere in the level scheme.
1509.6? ^f	$21/2^{-}$		
1727.2? ^C	$29/2^{+}$		

[†] Level energies computed from a least-squares fit to the listed γ energies, assuming equal weights for all of the γ 's. No uncertainties are listed for the computed level energies.

[‡] From ¹⁶¹Er Adopted Levels. For the higher-spin states, they are based on the customary considerations of rotational-band structure in such studies and the deduced mults. [#] Value is from in-beam studies only. See ¹⁶¹Er Adopted Levels for results from other studies.

[@] Most observed levels have lifetimes of <10 ns (1970Hj02); these limits are not given with the individual levels.

Continued on next page (footnotes at end of table)

¹⁶⁰**Dy**(α ,3**n** γ) 1970Hj02 (continued)

¹⁶¹Er Levels (continued)

- [&] Band(A): $K^{\pi}=3/2^{-}$, 3/2[521], band; $\alpha=-1/2$. ^{*a*} Band(a): $K^{\pi}=3/2^{-}$, 3/2[521], band; $\alpha=+1/2$. ^{*b*} Band(B): $K^{\pi}=5/2^{-}$, 5/2[523], band. ^{*c*} Band(C): Coriolis-mixed + π band, $\alpha=+1/2$.

- ^d Band(c): Coriolis-mixed $+\pi$ band, $\alpha = -1/2$.
- ^{*e*} Band(D): $K^{\pi}=11/2^{-}$, 11/2[505], band, $\alpha = -1/2$. ^{*f*} Band(d): $K^{\pi}=11/2^{-}$, 11/2[505], band, $\alpha = +1/2$.

$\gamma(^{161}{\rm Er})$

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	Comments
45.6		189.3	9/2+	143.8	7/2-		
59.5	10 4	59.5	5/2-	0	3/2-		
78.1 [‡] 2	18.2	267.5	$13/2^{+}$	189.3	9/2+		
84.4	39.8	143.8	$7/2^{-}$	59.5	5/2-		
94.3 ^a	2.0	266.2?	$7/2^{-}$	172.5?	$5/2^{-}$		
99.7	5.7	396.6	$11/2^{-}$	296.5	$11/2^{+}$		
106.1	4.9	249.8	9/2-	143.8	7/2-		
107.3	1.2	296.5	$11/2^{+}$	189.3	9/2+		
112.7 ^a	1.2	172.5?	5/2-	59.5	5/2-		
121.5 ^a	4.0	266.2?	7/2-	143.8	7/2-		
123.5 ⁴	2.0	389.7?	9/2-	266.2?	7/2-		
129.0	4.0	396.6	11/2-	267.5	13/2+		
139.3	3.2	388.7	11/2	249.8	9/2		
142.5	2.4	531.1	13/2	388.7	11/2		
143.8	13.8	143.8	1/2	240.8	3/2		
140.8	0.9	390.0	11/2 5/2-	249.8	9/2 2/2-		
1/3.0	2.4	1/2.5 /	$\frac{3}{2}$	206.6	$\frac{3}{2}$	D	$\Lambda = 0.74.12$
102.1	14.2	240.8	$\frac{15}{2}$	50.0	11/2 5/2-	D	$A_2 = -0.74 \ I_2$
190.5	1.1	249.0	9/2	59.5	5/2		
198.6* 2	100	466.0	17/2*	267.5	13/2*	Q	
204.1	13.5	/82.6	15/2	5/8.6	13/2	D	$A_2 = -0.68 \ 21$
207.9	8.1	396.6	$\frac{11}{2}$	189.3	$9/2^{+}$	$\langle \mathbf{O} \rangle$	Multi from $\Lambda = 0.27 \ 17 \ (1070 \text{H}; 02)$ but for a trial track
212.0	21.0	508.7	15/2	290.5	$\frac{11}{2}$	(Q)	Mult.: from $A_2=0.37$ 17 (1970Hj02), but for a triplet peak.
224.0	11.4	1007.4	17/2	/82.0	13/2	D	$A_2 = -0.29$ o
241.2	9.3°	508.7	15/2+	267.5	13/2+	(D)	Mult.: from A2= -0.69 15 (19/0H _J 02), but for a doublet peak.
241.2 X	6.9 ^{&}	1248.6	19/2-	1007.4	$17/2^{-}$	(D)	Mult.: from A2= -0.69 15 (1970Hj02), but for a doublet peak.
244.7	14.6	388.7	$11/2^{-}$	143.8	$7/2^{-}$		
252.7	2.8	396.6	$11/2^{-}$	143.8	7/2-		
259.5 ⁴	3.2	1509.6?	$21/2^{-}$	1248.6	19/2-	D	$A_2 = -0.8360$
281.2	15.8	531.1	$13/2^{-}$	249.8	9/2-	Q	A ₂ =0.43 7
317.54 2	81.8	783.5	$21/2^{+}$	466.0	$17/2^{+}$	Q	A ₂ =0.37 3
340.0	27.1	848.8	$19/2^{+}$	508.7	$15/2^{+}$	Q	A ₂ =0.48 6
360.2 ^{<i>a</i>}	10.9	748.9?	$15/2^{-}$	388.7	$11/2^{-}$	Q	A ₂ =0.47 20
382.8	10.5	848.8	$19/2^{+}$	466.0	$17/2^{+}$	D	$A_2 = -0.23\ 20$
385.9	4.5	782.6	15/2-	396.6	11/2-	(Q)	$A_2 = 0.12\ 20$
392.3 ^u	4.5	923.8?	17/2-	531.1	$13/2^{-}$	(Q)	A ₂ =0.80 50
425.1 2	51.1	1208.6	$25/2^+$	783.5	$21/2^+$	Q	A ₂ =0.38 4
428.1 ^{<i>a</i>}	9.3	1007.4	$17/2^{-}$	578.6	$13/2^{-}$		
459.7 ^a	9.7	1308.4?	$23/2^{+}$	848.8	$19/2^{+}$	Q	A ₂ =0.42 14
466.9 ^{<i>a</i>}	3.7	1248.6	19/2-	782.6	$15/2^{-}$		
502.4 ^a	8.1	1509.6?	$21/2^{-}$	1007.4	$17/2^{-}$		

¹⁶⁰**Dy**(α ,3**n** γ) 1970Hj02 (continued)

$\gamma(^{161}\text{Er})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	Comments
518.5 ^{‡a} 4 523.2 ^a	24.3 5.7	1727.2? 1308.4?	29/2 ⁺ 23/2 ⁺	1208.6 783.5	25/2 ⁺ 21/2 ⁺	Q	A ₂ =0.25 7

[†] From 1970Hj02, unless noted otherwise. No uncertainties are reported, except for five γ 's reported by 1969Ha12. 1970Hj02 refer to the study by 1969Hj01 in which, under similar conditions, ΔE_{γ} values of 0.5 keV are given.

[‡] Value from 1969Ha12. [#] From 1970Hj02, at $E(\alpha)$ =38 MeV. In many cases these values are from decomposition of complex peaks where the other component is from another reaction.

[@] From the $\gamma(\theta)$ results of 1970Hj02. Assignment is Q if A₂ is positive and A₄ is negative, and D (dipole) if A₂ is negative. Mult=Q is regarded as indicating E2 rather than M2.

[&] Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

¹⁶¹₆₈Er₉₃

4

¹⁶⁰**Dy**(*α*,3nγ) 1970Hj02

¹⁶⁰**Dy**(*α*,3nγ) **1970Hj02** (continued)

