		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

 $Q(\beta^{-})=-858.0\ 22;\ S(n)=6454.39\ 8;\ S(p)=7507.9\ 13;\ Q(\alpha)=343.4\ 13\ 2012Wa38$ Note: Current evaluation has used the following Q record \$-858.3\ 22\ 6454.39\ 8\ 7507.2\ 13\ 344.6\ 12\ 2009AuZZ,2003Au03. S(n): From (n,γ) studies, 1986Sc16 measure $S(n)=6454.47\ 9$, based on a value of 45.9984 keV for the $K\alpha_1$ x ray energy. Additional information 1.

¹⁶¹Dy Levels

Cross Reference (XREF) Flags

Additional information 2.

Rotational-band parameters are not given for the positive-parity bands. The intraband energy spacings have been sufficiently distorted by strong Coriolis-coupling effects that the usual parameterization does not provide a good representation of the band structure.

F(level) ^{†‡}	I ^{π#}	A 162 B 160 C 160 D 160	2 Dy(d,t), 162 Dy(3 He 0 Dy(d,p) 0 Dy(n, γ) E=th 0 Gd(α , $3n\gamma$)	,α) Ε F G H	¹⁶¹ Dy(γ,γ') ¹⁶¹ Ho ε decay Coulomb excitation ¹⁶¹ Tb $β^-$ decay	I J K L	161 Dy(³ He, ³ He' γ) 161 Dy(n,n' γ) 160 Gd(⁷ Li,t3n γ) 160 Gd(³⁷ Cl,X γ)				
0@	5/2+	stable	ABCDEFGHIJKL	μ =-0.4803 25; Q=+2.468 29 J ^{π} : J from 1956Co21 and 1958Pa11 by paramagnetic resonance and 1962Sp03 by atomic-beam, magnetic resonance. From the agreement of the calculated μ (1989Be04) with that for 5/2[642] but not with that of other possible K=5/2 states, it is concluded that this is the correct Nilsson-orbital assignment. Hence, π =+. From an evaluation of data on nuclear rms charge radii, 2004An14 report $^{1/2}=5.197$ fm 6. μ : from the evaluation by 1989Pa17. In the compilation by 2005St24, values of -0.480 3 and -0.481 5 are listed. Q: from the evaluation by 1989Pa17. In the compilation by 2005St24, values of -0.480 -0.481 5 are listed.							
25.65136 ^{<i>a</i>} 3	5/2-	29.1 ns <i>3</i>	ABCDEF H JK	μ =+0.594 3; Q=2.506 20 J ^π : J from Mossbauer studies summarized in 1976St23. π from E1 γ to 5/2 ⁺ ground state. T _{1/2} : weighted average of: 27.8 ns 15 (1969Ve05), 29.0 ns 14 (1975VaYX), and 28.6 ns 5 (1978AIZC), from ¹⁶¹ Ho ε decay; and 27 ns 2 (1957Ve17,1960Ve03), 28 ns 2 (1958Ha13), 29 ns 3 (1959Fa06), 29.4 ns 10 (1965Me08), 28.4 ns 12 (1969Be54), and 30.0 ns 5 (1977Pe20), from ¹⁶¹ Tb β ⁻ decay. The 0.2 ns uncertainty shown by 1978AIZC has been increased to reduce the normalized weight of this value in the average from 78% to 36%, so that this (unpublished) value will not dominate the average to this extent. μ : from the evaluation by 1989Ra17. This value is also listed in the compilation by 2005St24. Q: from the evaluation by 1989Ra17. In the compilation by 2005St24, +2 51 2 (the same value as for the g s) is listed							
43.8201 ^{&} 7	7/2+	0.83 ns 6	ABCDEFGHIJKL	$\mu = -0.14$ J ^{π} : M1 c	1 5; Q=+0.53 13 component in γ to 5/2 ⁺ tre.	, Coul	omb excited, and expected band				

Continued on next page (footnotes at end of table)

¹⁶¹Dy Levels (continued)

E(level) ^{†‡}	$J^{\pi #}$	T _{1/2}	XREF	Comments					
				 T_{1/2}: weighted average of 0.78 ns 6 (1967As03), from Coul. ex., and 0.99 ns 13 (1975VaYX) and 1.0 ns 2 (1978AIZC), from ¹⁶¹Ho ε decay. From B(E2), one computes T_{1/2}=0.78 ns 7. It should be noted that the values of 1975VaYX and 1978AIZC might be related and that the value of 1967As03 contributes 77% of the normalized weight. Other: 0.76 ns (1981GrZV), from ¹⁶¹Ho ε decay. μ: from the evaluation by 1989Ra17. The same value is listed in the compilation by 2005St24. Q: from the evaluation by 1989Ra17. The same value is listed in the compilation by 2005St24. 					
74.56668 ^{<i>d</i>} 5	3/2-	3.14 ns 4	ABCDEFGHI JK	$\mu = -0.403 \ 4; \ Q = 1.45 \ 6$ J ^{π} : resonance-averaged n capture gives J ^{π} =1/2 ⁻ ,3/2 ⁻ . E1 γ to 5/2 ⁺ rules out 1/2 ⁻ . T _{1/2} : weighted average of: 2.3 ns 7 (1957Ve17,1960Ve03), 3.0 ns 3 (1958Ha13), 3.1 ns 6 (1959Fa06), 2.95 ns 15 (1965Ay02), 3.36 ns 10 (1965Me08), 3.34 ns 18 (1969Be49), 3.08 ns 5 (1969Be54),					
				 and 3.16 ns 5 (1977Pe20), from ¹⁶¹Tb β⁻ decay. (in the average, the 0.05 ns uncertainty of 1965Me08 was increased, because the value is inconsistent with several other values as well as the average.). μ: from the evaluation by 1989Ra17. The same value is listed in the compilation by 2005St24. Q: from the evaluation by 1989Ra17. The compilation by 2005St24 lists this value, but with a positive sign 					
100.4033 [@] 2	9/2+	0.22 ns 3	ABCDEFGHI JKL	J ^{π} : from (E2) γ to 5/2 ⁺ , M1 γ to 7/2 ⁺ , Coulomb excited, and expected band structure. T _{1/2} : computed by the evaluator from B(E2) \uparrow =0.79 4 (from Coul. ex.) and the adopted properties of the deexciting γ 's. Other: 0.1 ns (1981GrZV), from ¹⁶¹ Ho ε decay.					
103.0623 ^b 7	7/2-	0.60 ns 4	BCD F H JK	J^{π} : E1 γ' s to $5/2^+$ and $7/2^+$ levels and expected band structure. T _{1/2} : weighted average of 0.55 ns 3 (1975VaYX) and 0.64 ns 3 (1978AIZC), from ¹⁶¹ Ho ε decay. Other: 0.61 ns (1981GrZV) from ¹⁶¹ Ho ε decay.					
131.7587 ^c 3	5/2-	0.145 ns 15	ABCDEF HIJK	J ^π : (E1) γ to 7/2 ⁺ level and M1 γ to 3/2 ⁻ . T _{1/2} : from (1969Be49), ¹⁶¹ Tb β ⁻ decay. Others: ≤3 ns (1958Ha13), ≤0.3 ns (1965Me08), ≤0.3 ns (1989Be04) from ¹⁶¹ Tb β ⁻ decay and 0.13 ns (1981GrZV), from ¹⁶¹ Ho ε decay.					
184.23 ^{&} 5	11/2+	156 ps 14	AB D FG JKL	J^{π} : M1+E2 γ to 9/2 ⁺ and expected band structure (Coulomb excited).					
201.0872 ^{<i>a</i>} 10	9/2-	0.17 ns	ABCD F JK	$T_{1/2}$: from 1988Os01, Coul. ex. J ^π : E1 γ to 7/2 ⁺ , (E1) γ to 9/2 ⁺ , and expected band structure. $T_{1/2}$: from 1981GrZV, ¹⁶¹ Ho ε decay. Other: ≤0.3 ns (1975VaYX,1978AIZC), ¹⁶¹ Ho ε decay.					
212.9520 ^d 8	7/2-	0.066 ns	ABCDEF HIJK	J^{π} : E1 γ 's to 5/2 ⁺ and 9/2 ⁺ levels.					
267.32 [@] 11	13/2+	100 ps 9	AB D G JKL	$J_{1/2}^{\pi}$. M1+E2 γ to $11/2^+$ and expected band structure (Coulomb excited).					
314.9397 ^C 9	9/2-		ABCD F JK	$T_{1/2}$: from 1988Os01, Coul. ex. J^{π} : γ 's to $5/2^{-}$ and $7/2^{-}$, and expected band structure.					
320.69 ^b 5	11/2-	0.125 ns	ABDF JK	J ^{π} : from expected band structure, γ 's to 7/2 ⁻ and 9/2 ⁻ levels, and L=(5) in (d,t). T _{1/2} : from 1981GrZV, ¹⁶¹ Ho ε decay.					

Continued on next page (footnotes at end of table)

¹⁶¹Dy Levels (continued)

E(level) ^{†‡}	$J^{\pi \#}$	T _{1/2}	XR	EF	Comments				
366.9749 ^e 9	1/2-		ABC F	НJ	J ^{π} : from L=1 in (d,t) and resonance-averaged n capture, $J^{\pi}=1/2^{-}, 3/2^{-}$. E2 γ to 5/2 ⁻ and expected band structure makes 3/2 ⁻ unlikely.				
406.89 ^{&} 13	15/2+	42 ps 5	D	G JKL	J^{π} : E2 γ to $11/2^+$ and expected band structure (Coulomb excited). $T_{1/2}$: from 1988Os01, Coul. ex.				
418.2337 ^e 13	3/2-		ABC	ΗJ	J^{π} : M1 γ 's to 3/2 ⁻ and 5/2 ⁻ levels, L=1 in (d,t).				
443.3 ^{<i>d</i>} 1	$11/2^{-}$		AB	JK	J^{π} : L=(5) in (d,t) and expected band structure.				
451.4320 ^e 9	5/2-		ABC F	НJ	J^{π} : M1 γ to 5/2 ⁻ , L=(3) in (d,t), and expected band structure.				
457.23 ^{<i>a</i>} 22	13/2-		D	JK	J^{π} : γ to 9/2 ⁻ has mult=Q and expected band structure.				
485.568 16	11/2-		AB	JK	J^{α} : from interpretation of (d,t) reaction data and expected band structure.				
507.72 [@] 9	17/2+	33 ps <i>3</i>	D	G JKL	J^{π} : E2 γ to 13/2 ⁺ and expected band structure (Coulomb excited). T _{1/2} : from 1988Os01, Coul. ex.				
512			AB						
521			Α						
534.2 3			В						
550.2535 ⁿ 15	3/2+		ABC E	GHIJK	J ^{π} : from resonance-averaged n capture, $J^{\pi}=1/2^+, 3/2^+$. M1 component in γ to $5/2^+$ eliminates $1/2^+$.				
					$T_{1/2}$: the B(E2) value is available from Coul. ex., but δ for the g.s. transition is not known, so the level half-life cannot be computed.				
567.9423 ^e 17	$7/2^{-}$		ABC	J	J^{π} : γ 's to $3/2^{-}$ and $9/2^{-}$, L=(3) in (d,t), and expected band structure.				
586.9 [°] 1	$13/2^{-}$			JK					
607.5814 ¹ 16	1/2+		ABC	IJ	J^{π} : L=0 in (d,t). Population in (³ He, ³ He') indicates the presence of an admixture of the K-2 γ vibration built on the ¹⁶¹ Dy g.s. (1987Ra16).				
609.8315 ^h 20	$5/2^{+}$		ABC		J^{π} : M1 γ to 7/2 ⁺ , γ 's to 3/2 ⁻ , 5/2 ⁻ , and 7/2 ⁻ .				
617.1 ^b 1	$15/2^{-}$			K					
628.234 ^e 8	9/2-		ABC		J^{π} : γ 's to $5/2^{-}$ and $9/2^{-}$, L=(5) in (d,t), and expected band structure.				
633.1673 ⁱ 16	$5/2^{+}$		ABC		J^{π} : M1 γ to 7/2 ⁺ , γ to 3/2 ⁻ and L=(2) in (d,t).				
641.6? ^{<i>f</i>} 1	$(13/2^{-})$			K					
642			A		E(level): The evaluator has assumed that this level is not the same as the 641 level.				
678.3226 ^j 21	3/2+		ABC	I	J ^{π} : from resonance-averaged n capture, $J^{\pi}=1/2^+, 3/2^+$. E1 γ to $5/2^-$ eliminates $1/2^+$.				
688.3 <i>3</i>			AB						
696.078 ^h 13	$7/2^{+}$		BC		J^{π} : γ 's to $5/2^+$, $9/2^+$, $5/2^-$, and $7/2^-$, and expected band structure.				
699.1395 ¹ 19	3/2+		A C	I	J ^{π} : resonance-averaged n capture indicates $J^{\pi}=1/2^+, 3/2^+$. E1 γ to $5/2^-$ eliminates $1/2^+$. Its strong population in (³ He, ³ He' γ) indicates that this state has a component of the K-2 γ vibration built on the ¹⁶¹ Dy g.s. 1987Ra16 assign this level as the $J^{\pi}=1/2^+$ member of this				
717.05.22			٨D		vidrauonal dand.				
717.03 22	10/2+	11.0 10	AD	~					
/1/.9 ^{cc} 1	19/2*	11.2 ps <i>12</i>	D	G KL	J^{2} : E2 γ to 15/2° and expected band structure (Coulomb excited). T _{1/2} : from 1988Os01, Coul. ex.				
730.913 ^J 3	5/2+		ABC	I	J ^{π} : M1,E2 γ to 7/2 ⁺ indicates π =+. γ 's to 3/2 ⁻ and 7/2 ⁻ require J=5/2. From its population in (³ He, ³ He'), 1987Ra16 assign this as the 5/2 ⁺ member of the K-2 γ vibration built on the 5/2[642] g.s. This level probably contains admixtures of all the proposed configurations.				
761.3 ^d 1	15/2-			K					

¹⁶¹Dy Levels (continued)

E(level) ^{†‡}	J [#]	T _{1/2}	XREF	Comments			
772.18 10	5/2+,7/2,9/2+		F	J^{π} : γ' s to $5/2^+$, $9/2^+$, and $7/2^-$ levels.			
772.7285 ¹ 21	1/2+		ABC I	J^{π} : L=0 in (d,t).			
777.1272 ^m 25	1/2-		BC	J^{π} : from resonance-averaged n capture, M1 component in the γ to $3/2^{-}$ and expected band structure.			
788.0 ^a 1	$17/2^{-}$		K				
790.648 ⁿ 12	5/2-		ABC F	J^{π} : E1 γ to 5/2 ⁺ , γ 's to 3/2 ⁻ and 7/2 ⁻ , and expected band			
800.51 9	3/2+		I	J ^{π} : from γ 's to $5/2^+$, $7/2^+$, and $5/2^-$ levels, $J^{\pi}=3/2^+$, $5/2$, $7/2$. From (³ He, ³ He' γ), 1987Ra16 assign this as the $3/2^+$ member of the K-2 γ -vibrational band built on the $5/2[642]$ g s.			
804.388 ^m 3	3/2-		ABC	J^{π} : resonance-averaged n capture indicates $J^{\pi}=1/2^{-},3/2^{-}$. M1 component in the γ to $5/2^{-}$ eliminates $1/2^{-}$.			
808 ^e	$(11/2^{-})$		В	J^{π} : from interpretation of (d,p) reaction data.			
819.0? <mark>8</mark> 1	$(15/2^{-})$		K				
825.55 [@] 14	21/2+	10.3 ps 10	D G KL	J^{π} : from (M1+E2) γ to 19/2 ⁺ and expected band structure (Coulomb excited). Two: from 1988Os01 Coul. ex			
825.7155 ⁱ 24	3/2+		ABC	J^{π} : resonance-averaged n capture indicates $J^{\pi}=1/2^+, 3/2^+$. L=2 in (d,t) eliminates $1/2^+$.			
849.260 ^{<i>l</i>} 4	5/2+		ABC	J ^{π} : from M1,E2 γ to 7/2 ⁺ level, γ to 3/2 ⁺ , and expected band structure.			
857.502 <i>j</i> 7	$(7/2)^+$		ABC	J ^{π} : from E1 γ to 7/2 ⁻ level, γ 's to 5/2 ⁻ and 5/2 ⁺ , and interpretation of (d,p) and (d,t) reaction data.			
858.7919 ⁰ 18	3/2-		ABC	J ^{π} : from resonance-averaged n capture and L=1 in (d,t). M1 component in γ to 5/2 ⁻ eliminates 1/2 ⁻ .			
867.869 ^m 5	5/2-		BC	J^{π} : from E2 γ 's to 7/2 ⁻ and 9/2 ⁻ levels, γ 's to 3/2 ⁻ and 5/2 ⁻ , and interpretation of (d,p) reaction data.			
873.091 ⁰ 3	1/2-		A C	J^{π} : from resonance-averaged n capture and expected band structure.			
878.49 ⁿ 4	7/2-		ABC	J^{π} : from γ 's to $5/2^-$, $7/2^+$, and $7/2^-$ and interpretation of (d,p) and (d,t) reaction data.			
899.01 ^k 6	9/2+		AB I	J ^{π} : γ 's to 5/2 ⁺ and 9/2 ⁺ indicate J ^{π} =5/2 ⁺ ,7/2,9/2 ⁺ . From its strong population in (³ He, ³ He'), 1987Ra16 assign this as the K+2 γ vibration built on the 5/2[642] g.s. Hence, J ^{π} =9/2 ⁺ .			
922.326 24	5/2-,7/2-		ABC	J^{π} : from γ 's to $3/2^-$, $5/2^+$, and $9/2^-$ and interpretation of (d,p) and (d,t) reaction data.			
941.2 ^c 1	$17/2^{-}$		K				
941.6 <i>4</i> 957.0 ⁰ 13	7/2-		A AB	J ^{π} : L=3 in (d,t). Assigned as the 7/2 ⁻ member of 1/2 ⁻ [530] in			
970.2 ⁰ 3	5/2-		A	(d,t). J ^{π} : assigned as the 5/2 ⁻ member of 1/2 ⁻ [530] in (d,t).			
972.09	10/2-		AD V				
983.0^{n} 10	$\frac{19}{2}$ $\frac{9}{2}$		AR K	I^{π} : from relative (d n) cross section and expected hand structure			
1004.7 6	$1/2^+$ $3/2^+$		ABC T	J^{π} : from resonance-averaged n capture.			
1017.02f 1	$(17/2^{-})$		v	s . moni resonance averagea n'euptaie.			
1026	(1//2)		AB T	XREF: A(1024.8)B(1027.3).			
1040			AB	XREF: A(1043)B(1038).			
1061.7 8	$1/2^+, 3/2^+$		ABC	J^{π} : from resonance-averaged n capture.			
1067.106 9	7/2		С	J^{π} : γ' s to $5/2^{-}$, $5/2^{+}$, $9/2^{+}$, and $9/2^{-}$ levels.			
1071.263 7	3/2-		С	J ^{π} : from resonance-averaged n capture, $J^{\pi}=1/2^{-}, 3/2^{-}$. γ to $5/2^{+}$ eliminates $1/2^{-}$.			
1098.224 9	3/2+		ABC	J ^{π} : from resonance-averaged n capture, $J^{\pi}=1/2^+, 3/2^+$. γ to $5/2^-$			

Continued on next page (footnotes at end of table)

¹⁶¹Dy Levels (continued)

E(level) ^{†‡}	$J^{\pi \#}$	T _{1/2}	Х	REF		Comments
1111.0.4						eliminates 1/2 ⁺ .
1111.2 <i>4</i> 1117.34 ^{&} <i>1</i> 2	23/2+	3.5 ps 4	AB D	G	KL	XREF: L(1119). J ^{π} : M1+E2 γ to 21/2 ⁺ and expected band structure (Coulomb excited). T _{1/2} : from 1988Os01, Coul. ex.
1125.4 <i>3</i> 1136.1 <i>4</i> 1141.9 <i>5</i> 1146.8 <i>7</i>			AB A BC AB			
1154.2 11	(1/2 ⁻ ,3/2 ⁻)		A C			J^{π} : from L=1 in (d,t). From resonance-averaged n capture, π is positive.
1160.0 ^d 1 1163.0 5	19/2-		AB		K	
1178.326 20	5/2,7/2-		A C			J^{π} : from γ 's to $3/2^-$, $5/2^-$, $7/2^+$, and $7/2^-$ levels. Probable feeding from n-capture state suggests $J^{\pi}=5/2^+$.
1186.683 <i>11</i> 1186.7 ^{<i>a</i>} <i>1</i> 1198.0	5/2 ⁻ 21/2 ⁻		C	I	K	J^{π} : γ 's to $1/2^-, 7/2^+$, and $7/2^-$.
1204.6 6 1206.933 <i>10</i> 1210.9 <i>5</i>	5/2-		A C B			J^{π} : γ 's to $1/2^{-}$ and $9/2^{-}$ levels.
1220.73 [@] 15	25/2+	3.0 ps 6	D	G	KL	XREF: L(1222). J^{π} : E2 γ to 21/2 ⁺ and expected band structure (Coulomb excited). T _{1/2} : from 1988Os01, Coul. ex.
1234.4 ⁸ 1 1240 2	(19/2 ⁻)		R		K	1/2.
12702 1268.967P 4 1279.16 128756	1/2-		C AB AR			$J^{\pi} {:}\ from resonance-averaged n capture and expected band structure.$
1302.920^p 12	3/2-		ABC			J ^{π} : from resonance-averaged n capture, $J^{\pi}=1/2^{-}, 3/2^{-}$. γ to $5/2^{+}$ eliminates $1/2^{-}$.
1313 1357.936 <i>16</i>	1/2 ⁻ ,3/2 ⁻		A ABC			XREF: A(1359.7)B(1359.7). J ^{π} : from averaged-resonance n capture and interpretation of (d,p)
1363 ^{<i>p</i>}	5/2-		В			J^{π} : from interpretation of (d,p) reaction data.
1365.2° <i>1</i> 1379.342 <i>21</i>	21/2 ⁻ 3/2 ⁻		ABC		K	J ^{π} : from resonance-averaged n capture, $J^{\pi}=1/2^{-}, 3/2^{-}$. γ to $5/2^{+}$ eliminates $1/2^{-}$.
1401.112 <i>12</i> 1416 ^r	5/2,7/2 ⁺ 7/2 ⁺		A C A			J^{π} : from γ 's to $3/2^+$, $5/2^+$, $5/2^-$, $7/2^+$, and $7/2^-$ levels. J^{π} : from interpretation of (d,p) reaction data.
1416.5 ^b 1 1436	23/2-		А		K	
1446 ^{<i>p</i>} 1460	7/2-		B A			J^{π} : from interpretation of (d,p) reaction data.
1470.3 ^{<i>f</i>} <i>I</i> 1477 1493 1516 1535 1562	(21/2 ⁻)		B A B B B		K	Additional information 3.
1598			AB			XREF: A(1601)B(1594).
1599.94 ^{&} 14	27/2+		D	G	KL	XREF: L(1602). J^{π} : from γ 's to 23/2 ⁺ and 25/2 ⁺ , and expected band structure

¹⁶¹Dy Levels (continued)

E(level) ^{†‡}	$J^{\pi \#}$	XRE	F	Comments
				(Coulomb excited).
1626.2^{d} <i>1</i> 1646.1^{a} <i>1</i>	23/2 ⁻ 25/2 ⁻	15	K K	
1648	20/21	AB		XREF: A(1650)B(1645).
1690.81 17	29/21	D	KL	XREF: L(1693). $I^{\pi_{1}}$ from $\Omega \propto to 25/2^{+}$ and expected hand structure
1712		В		γ . From χ γ to $25/2^{-1}$ and expected band substate.
1724.1 ⁸ 1	$(23/2^{-})$		K	
1743		A		
1780		A A		
1821		AB		XREF: A(1818)B(1825).
1838.4 ^c 1	$25/2^{-}$		K	
1859		Α		
18/1		A		
1892	27/2-	л	ĸ	
1921	21/2	AB	K	XREF: A(1920)B(1923).
1946		В		
1977 ⁹	3/2-	В		J^{π} : from interpretation of (d,p) reaction data.
1994.1? ^J 1	$(25/2^{-})$	_	K	
1996 20309	5/2-	В		I^{π} : from interpretation of (d, \mathbf{n}) reaction data
2039 ¹ 2113 ⁹	$(7/2^{-})$	B		J^{π} : from interpretation of (d,p) reaction data.
2138.3 ^d 2	27/2-		K	
2156.8 ^{<i>a</i>} 1	29/2-		K	
2159.45 ^{&} 17	31/2+	D	KL	XREF: L(2161).
2215				J^{π} : from D γ to 29/2 ⁺ level and expected band structure.
2213		A		
2233.34 [@] 19	33/2+	D	KL	XREF: L(2234).
	1			J^{π} : from D γ to 31/2 ⁺ and expected band structure.
2237	3/2,5/2,7/2	E		J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s.
2250	3/2, 5/2, 7/2	E	v	J [*] : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s.
2332.9 [°] 1	$(27/2^{-})$ 29/2 ⁻		K	
2346	3/2,5/2,7/2	Е		J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s.
2413.3 ^b 2	31/2-		K	
2576.1^{f} 2	(29/2 ⁻)		K	
2665.7 ^d 2	31/2-		K	
2704.2 ^{<i>a</i>} 2	33/2-		K	π , mitching in (1.1) with line 1, the mitching from $5/2^+$ -
2740 2748	3/2,5/2,7/2	E		J^{*} : excitation in (γ, γ') via dipole transition from $5/2^{+}$ g.s.
2753	3/2,5/2,7/2	Ē		J^{π} : excitation in (γ, γ') via dipole transition from $5/2^{-1}$ g.s.
2775	3/2,5/2,7/2-	E		J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s. γ to $3/2^-$ eliminates $J^{\pi}=7/2^+$.
2788.3 ^{&} 2 2812	35/2 ⁺ 3/2,5/2.7/2 ⁻	E	KL	XREF: L(2790). J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s. γ to $3/2^-$ eliminates
				$J^{\pi} = 7/2^+$.
2820	3/2+,5/2,7/2	E		J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s. γ to $7/2^+$ eliminates $3/2^-$.
2838	3/2,5/2,7/2-	Е		J ^{π} : excitation in (γ , γ') via dipole transition from 5/2 ⁺ g.s. γ to 3/2 ⁻ eliminates

Continued on next page (footnotes at end of table)

¹⁶¹Dy Levels (continued)

E(level) ^{†‡}	$J^{\pi \#}$	XREF	Comments
			7/2+.
2839.4 [@] 2	$37/2^{+}$	KL	XREF: L(2841).
2849	3/2,5/2,7/2	Е	J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s.
2849.4 [°] 2	33/2-	K	
2864	3/2,5/2,7/2-	Ε	J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s. γ to $3/2^-$ eliminates $7/2^+$.
2905	5/2+,7/2+	Ε	J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s. Gammas to $9/2^+$ and $3/2^-$ eliminate J=3/2, $5/2^-$ and $7/2$.
2955.1 ^b 2	35/2-	K	
2994	3/2,5/2,7/2	Е	J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s.
3113	3/2,5/2,7/2	E	J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s.
3155	3/2,5/2,7/2	E	J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s.
3272.1 ^{<i>a</i>} 2	37/2-	K	
3479.7 <mark>&</mark> 2	39/2+	K	
3504 [@]	41/2+	KL	XREF: L(3506).
3529.0 ^b 2	39/2-	К	
3644	3/2,5/2,7/2	Е	J^{π} : excitation in (γ, γ') via dipole transition from $5/2^+$ g.s.
3867.0 ^a 2	41/2-	K	
4223 [@]	45/2+	KL	XREF: L(4225).
4226.6 <mark>&</mark> 2	$43/2^{+}$	К	
4505.4 ^a 2	45/2-	K	
4989? [@]	49/2+	L	XREF: L(4991).
5026.2 ^{&} 3	$47/2^{+}$	К	
5190.9 ^a 2	49/2-	K	
5799? [@]	53/2+	L	XREF: L(5801).

[†] From least-squares fit to the γ energies where they are available; otherwise from the particle reactions. For the high-spin states, see the comment in the ¹⁶⁰Gd(⁷Li,t3n γ) data set.

[‡] Levels observed only from primary γ 's in thermal n capture have been omitted here; see the (n,γ) data set for details.

- [#] In addition to the usual arguments involving γ branching, γ multipolarities and the existence of rotational bands, etc, the assigning of J^{π} values has been aided by the availability of resonance-averaged neutron-capture data, Coul.-ex. data and single-nucleon transfer data. These latter data have been particularly useful in making Nilsson-orbital assignments. Both the relative intensities of the particle peaks, as well as their magnitudes, were used in these configuration assignments; it is to be understood that these considerations were used in this process, and generally no further mention is made in the J^{π} arguments in specific cases. For those levels seen only in the high-spin studies, the J^{π} values are based on the usual considerations in such work and are not discussed further here.
- ^(a) Band(A): 5/2[642] band, $\alpha = +1/2$ branch.
- [&] Band(a): 5/2[642] band, $\alpha = -1/2$ branch.
- ^{*a*} Band(B): 5/2[523] band, $\alpha = +1/2$ branch. A=11.314 keV, B=-7.28 eV, A₅=+0.106 eV, from energies of the $5/2^{-}$ through $11/2^{-}$ levels.
- ^b Band(b): 5/2[523] band, $\alpha = -1/2$ branch. See the comment for the other branch.
- ^c Band(C): 3/2[521] band, $\alpha = +1/2$ branch. A=11.492 keV, A₃=-8.88 eV, from energies of the $3/2^-$ through $7/2^-$ members.
- ^d Band(c): 3/2[521] band, $\alpha = -1/2$ branch. See the comment for the other branch.
- ^e Band(D): 1/2[521] band. A=12.04 keV, B=-22 eV, a=+0.43.
- ^{*f*} Band(E): 11/2[505] band, $\alpha = +1/2$ branch.
- ^g Band(e): 11/2[505] band, $\alpha = -1/2$ branch.
- ^h Band(F): 3/2[402] band, with 3/2[651] admixture.
- ^{*i*} Band(G): $\Delta N=2-\text{mixed } 1/2[660]+1/2[400]$ band. This band may also contain an admixture of the K-2 γ -vibrational band built

¹⁶¹Dy Levels (continued)

- on the ¹⁶¹Dy g.s. (5/2[642]). ^{*j*} Band(H): 3/2[651] band, with 3/2[402] admixture.
- ^{*k*} Band(I): probable K+2 γ vibr built on 5/2[642].
- ¹ Band(J): $\Delta N=2-\text{mixed } 1/2[400]$ and 1/2[660] band. This band may also contain an admixture of the K-2 γ -vibrational band built on the ¹⁶¹Dy g.s. (5/2[642]). ^{*m*} Band(K): $K^{\pi}=1/2^{-}$, K-2 γ -vibr built on 3/2[521]. A=10.892 keV, a=-0.166.
- ⁿ Band(L): 5/2[512] band. A=12.6 keV.
- ^o Band(M): 1/2[530] band. A=8.76 keV, a=-1.54.
- ^p Band(N): 1/2[510] band.
- ^q Band(O): 3/2[512] band. A=12.4 keV.
- ^r Band(P): 7/2[404] bandhead.

						Adopt	ed Levels, G	ammas (co	ontinued)	
							$\gamma(^{16}$	51Dy)		
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	I_{γ} #	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α &	$I_{(\gamma+ce)}$	Comments
25.65136	5/2-	25.65135 <i>3</i>	100	0	5/2+	E1		2.29		B(E1)(W.u.)=0.0001414 20 L1/L2=1.39 2; L1/L3=1.00 2; B(E1)(W.u.)=1.39×10 ⁻⁴
										 ⁴ E_γ: from the evaluation by 2000He14 (¹⁶¹Tb β⁻ decay). δ: from ¹⁶¹Tb β- decay: δ <0.032 (1971St38); δ < 0.010 (1966Gi02). L1/L2,L1/L3: L subshell ratios from 1961Gr01 as quoted by 1974Tu05. From Compton polarimetry in ¹⁶¹Tb β⁻ decay, 1999Ts02 measure -(3.8 8)×10⁻³ for the parity-odd circular polarization of this γ.
43.8201	7/2+	18.15 5		25.65136	5/2-	E1		5.93 10	2.3×10 ² 8	B(E1)(W.u.)=0.0014 6 Mult.: from 1984Vy01, ¹⁶¹ Ho ε decay.
		43.821 1	100	0	5/2+	M1+E2	0.216 8	7.6 3		$I_{(\gamma+ce)}$. computed from data from The ε decay. I_{γ} : from $I(\gamma+ce)(18)$ and α , $I\gamma=34$. $B(M1)(W.u.)=0.028$ 4; $B(E2)(W.u.)=3.3\times10^2$ 5 δ : computed by the evaluator using the following data: $\delta^2=0.046$ 4, from ¹⁶¹ Ho ε decay (1984Vy01); $\delta^2=0.048$ 19, from ¹⁶¹ Ho ε decay (1965Ab04); and $\%$ E2=4.7 9, from ¹⁶⁰ Dy(n, γ) (1986Sc16). Other:
74.56668	3/2-	48.91533 5	100.0 24	25.65136	5/2-	M1+E2	-0.056 1	3.19		 1961Gr01 report %E2=4, from ¹⁶¹Tb β⁻ decay. B(M1)(W.u.)=0.0115 5; B(E2)(W.u.)=7.4 4 E_γ: from the evaluation by 2000He14 (¹⁶¹Tb β⁻ decay). Mult.: penetration parameter λ=+2.5 23 (1982Bh07,1985Bh08). These authors derived δ²=0.0036 2 in their analysis. δ: adopted by the evaluator from %E2=0.310 5, from L- and M-subshell data in ¹⁶¹Tb β⁻ decay (1966Gi02). The uncertainty given by these authors was doubled by the evaluator in computing the uncertainty in this δ value. The sign is from γ(θ) (1983Ri15). Others: %E2=0.4 2 (1958Ha13), ≈0.4 (1961Gr01), δ²=0.0036 2 (1982Bh07,1985Bh08), and δ=-0.067 42, all from ¹⁶¹Tb β⁻ decay; %E2=0.30 15 (1984Vy01), from ¹⁶¹Ho ε decay; and %E2=0.50 24 (1986Sc16), from ¹⁶⁰Dy(n,γ). Also, %E2=5.0 2 (1971Be24).
		74.56669 6	59.9 12	0	5/2+	E1		0.672		B(E1)(W.u.)=2.03×10 ⁻⁵ 7 E _y : from the evaluation by 2000He14 (¹⁶¹ Tb β^- decay). $\delta: 0.00 3$, computed by the evaluator from -0.006 20 (1983Bi15) 0.06 + 3-6 (1966Su03) and +0.08 10

	Adopted Levels, Gammas (continued)											
	γ ⁽¹⁶¹ Dy) (continued)											
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α &	Comments			
	_								B(E1)(W.u.)=2.03×10 ⁻⁵ 7 E _γ : from the evaluation by 2000He14 (¹⁶¹ Tb β ⁻ decay). δ: 0.00 3, computed by the evaluator from -0.006 20 (1983Ri15), 0.06 +3-6 (1966Su03), and +0.08 10 (1971Kr19), all from ¹⁶¹ Tb β ⁻ decay.			
100.4033	9/2+	56.64 3	100	43.8201	7/2+	M1+E2	0.22 3	12.91 25	B(M1)(W.u.)=0.035 5; B(E2)(W.u.)= $2.6 \times 10^2 8$ Mult.: from 1984Vy01, ¹⁶¹ Ho ε decay. δ : computed by the evaluator from the L-subshell ratios reported by 1984Vy01, ¹⁶¹ Ho ε decay. These authors report %E2=4.5 +25-12, which implies a δ value somewhat different from that chosen here			
		100.413 9	29 4	0	5/2+	(E2)		2.67	B(E2)(W.u.)=94 19 Mult δ : from 1984Vv01 ¹⁶¹ Ho ε decay			
103.0623	7/2-	59.235 2	17 3	43.8201	7/2+	E1		1.220	B(E1)(W.u.)= 5.5×10^{-5} 11 Additional information 4. &: from $\alpha(\theta)$ in $\frac{161}{7}$ H θ^{-1} decay, 1083Pi15 give $\delta = -0.1 \pm 5$.			
		77.414 <i>I</i>	56 5	25.65136	5/2-	M1+E2	-1.050 8	6.16	B(M1)(W.u.)=0.0037 5; B(E2)(W.u.)= $3.4 \times 10^2 5$ δ : computed from the weighted average of the following δ^2 values, both from the ¹⁶¹ Ho ε decay: 1.106 21 (1984Vy01); and 1.094 36 (1987BaZB). The sign is from $\gamma(\theta)$ from the ¹⁶¹ Tb β^- decay. Other related data: from Tb β^- decay, %E2=47 (1961Gr01) and δ = $-1.1 + 3-16$ (1983Ri15); from ¹⁶¹ Ho ε decay: δ^2 =1.1 7 (1965Ab04). From Compton polarimetry in ¹⁶¹ Tb β^- decay, 1999Ts02 measure -(7.0 15)×10 ⁻⁵ for the parity-odd circular polarization of this γ .			
		103.062 1	100	0	5/2+	E1		0.285	B(E1)(W.u.)= $6.1 \times 10^{-5} 6$ Mult.: from: 1965Ab04 and 1984Vy01, ¹⁶¹ Ho ε decay; and 1986Sc16 ¹⁶⁰ Dy(n γ)			
131.7587	5/2-	28.701 <i>12</i>	2.0 1	103.0623	7/2-	M1+E2	0.036 +8-10	15.5 5	B(M1)(W.u.)=0.0091 <i>16</i> ; B(E2)(W.u.)=7 4 I _{\gamma} : from ¹⁶¹ Tb decay; the value from (n, γ) is 0.06 6. Mult.: from α data from ¹⁶¹ Tb β^- decay (1961Gr01) and ¹⁶¹ Ho ε decay (1984Vy01). δ : computed by the evaluator from the L-subshell ratios reported by 1984Vy01 from ¹⁶¹ Ho ε decay. These authors report %E2=0.25 +15-11, which implies a δ value somewhat different from that chosen here.			
		57.1917 <i>3</i>	100 12	74.56668	3/2-	M1+E2	-0.187 16	12.39 <i>19</i>	B(M1)(W.u.)=0.056 <i>11</i> ; B(E2)(W.u.)= $3.0 \times 10^2 8$ E _{γ} : from the evaluation by 1999He10 (¹⁶¹ Tb β^- decay).			

Т

						Adopted 1	Levels, Gam	mas (contin	nued)			
γ ⁽¹⁶¹ Dy) (continued)												
E _i (level)	\mathbf{J}_i^π	$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α &	Comments			
					Ť				Mult.: penetration parameter $\lambda = -5.5$ (1965Su04, 1966Su03, and 1983Hn01) from $\lambda = -7.6-8$ (1965Su04, 1966Su03) and $\lambda = -4.0$ 42 (1983Hn01). Values of $\delta = -0.22$ and $\delta = -0.20$, respectively, were used in these authors' analyses. δ : computed by the evaluator from a weighted average of δ^2 values deduced from the following: $\delta^2 = 0.038$ 11, from ¹⁶¹ Ho ε decay (1984Vy01); $\delta^2 = 0.048$ 06, from ¹⁶¹ Tb β^- decay (1965Su04); and %E2=2.8 4, from ¹⁶⁰ Dy(n, γ) (1986Sc16). The sign is from $\gamma\gamma(\theta)$ (1965Su04) and $\gamma(\theta)$ (1983Ri15), both from ¹⁶¹ Tb β^- decay			
131.7587	5/2-	87.942 <i>1</i>	10.2 2	43.8201	$7/2^{+}$	(E1)		0.435	$B(E1)(W.u.)=1.7 \times 10^{-5} 3$			
									I _{γ} : from ¹⁶¹ Tb decay; other values are 12.4 29, from ¹⁶⁰ Dy(n, γ), and 22 11, from ¹⁶¹ Ho ε decay.			
		106 108 7	4 36 14	25 65136	5/2-	M1+E2	-0.85.35	2.09.5	Mult.: from ¹⁶¹ Ho decay (1984Vy01). B(M1)(W u)=0.00023.9: B(E2)(W u)=7.4			
		100.100 1	1.50 17	25.05150	572	1111 1 122	0.05 55	2.07 5	Mult.: from ¹⁶¹ Tb β^- decay (1961Gr01). From ¹⁶¹ Ho ε decay, 1984Vy01 give mult=(M1).			
									β : from $\gamma(\theta)$ in ⁽³⁾ 16 β decay (1983R115). 1961Gr01 quote %E2≈40, from ¹⁶¹ Tb β ⁻ decay.			
		131.8 <i>1</i>	2 2	0	5/2+	[E1]		0.1475	$B(E1)(W.u.)=1.0\times10^{-6} 10$			
									I_{γ} : values are 2.14 from ¹⁶¹ Ho decay and 0.01 from ¹⁶¹ Tb decay.			
184.23	11/2+	83.83 5	100	100.4033	9/2+	M1+E2	-0.25 7	4.05 8	B(M1)(W.u.)=0.036 4; B(E2)(W.u.)= 1.6×10^2 9 Mult.: from ¹⁶¹ Ho ε decay, 1984Vy01 report mult=(M1). δ: from 1988Os01, Coul. ex.			
		140.40 10	66 10	43.8201	$7/2^{+}$	[E2]		0.795	B(E2)(W.u.)=135 25			
201.0872	9/2-	69.29 5		131.7587	5/2-	(E2)		11.19	161			
		98.028 <i>3</i>	31 2	103.0623	7/2-	M1+E2	0.9 2	2.71 6	δ: from 1984Vy01, ¹⁰¹ Ho ε decay. From ¹⁰⁰ Dy(n, γ), 1986Sc16 report %E2=11 4, which yields a significantly different δ value.			
		100.707 10	15 10	100.4033	9/2+	(E1)		0.303	Mult.: from 1984Vy01, 161 Ho ε decay.			
		157.267 1	100 10	43.8201	7/2+	E1		0.0919	Mult.: from 1965Ab04 and 1984Vy01, 161 Ho ε decay. δ : <0.18, 1965Ab04, 161 Ho ε decay.			
		175.433 2	84.6 16	25.65136	5/2-	E2		0.368	Mult.: from 1965Ab04 and 1984Vy01, 161 Ho ε decay.			
	$7/2^{-}$	81.196 <i>1</i>	100 12	131.7587	5/2-	M1+E2	0.18 3	4.41	Mult., δ : from 1984Vy01, ¹⁰¹ Ho ε decay. From ¹⁰⁰ Dy(n, γ), 1986Sc16 report mult=M1.			
212.9520						$(\mathbf{N}\mathbf{I}1)$		1 0 2	Mult from 1094 Vr01 DILLa a dagay			
212.9520		109.83 4		103.0623	7/2-	(M1)		1.05	Mult.: Ifoli 1984 v y01, 161 r H0 ε decay.			

 $^{161}_{66}\mathrm{Dy}_{95}$ -12

L.

γ ⁽¹⁶¹Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α &	Comments
212.9520	7/2-	187.3 2	3.0 4	25.65136	5/2-	M1,E2		0.35 6	Mult.: from 1984Vy01, 161 Ho ε decay.
	,	212.80 15		0	$5/2^{+}$	E1		0.0413	Mult.: from 1984Vy01, 161 Ho ε decay.
267.32	$13/2^{+}$	83.2 <i>3</i>	75 10	184.23	$11/2^+$	M1+E2	-0.14 2	4.09 8	B(M1)(W.u.)=0.054 11; B(E2)(W.u.)=7.E+1 3
		167.0.2	100	100 4022	0/2+	EO		0 425 7	Mult.: mult=(M1) from 1984Vy01, ¹⁶¹ Ho ε decay. δ value of 1988Os01 (Coulomb excitation) implies a mixture. M2 possibility eliminated by RUL. δ : from 1988Os01 (Coul. ex.). P(F2)(Wu) = 150.22
		107.0 5	100	100.4035	9/2	E2		0.435 /	Mult.: mult=Q from ¹⁶⁰ Gd(α ,3n γ) (1972Hj01). M2 eliminated by RUL.
314.9397	9/2-	101.990 <i>1</i>	100 20	212.9520	$7/2^{-}$				
		183.179 <i>1</i>	58 4	131.7587	5/2-	E2			Mult.: from ¹⁶⁰ Dy(n, γ), 1986Sc16 list E1,(E2). J^{π} values imply E2.
320.69	11/2-	107.74 ^b 5	40	212.9520	7/2-				Mult.: assigned as D by 1972Hj01, ¹⁶⁰ Gd(α ,3n γ), but the placement requires $\Delta J=2$.
		119.61 5	100 30	201.0872	9/2-	M1,E2			Additional information 5.
									δ: from ¹⁶¹ Ho ε decay, 1981GrZV list $δ$ =1.04, but 1984Vy01 (presumed by the evaluator to supersede this work) do not show this value.
		217.60 10	12	103.0623	7/2-	E2			I _{γ} : from ¹⁶¹ Ho ε decay. In ¹⁶⁰ Gd(α ,3n γ), I γ (217)/I γ (119)=6.8, compared to the value of 0.12 given here.
									Mult.: 1984Vy01, in ¹⁶¹ Ho ε decay, list M1,E2. J^{π} assignments require E2.
366.9749	$1/2^{-}$	292.409 1	100 5	74.56668	$3/2^{-}$	M1			Mult.: from 1986Sc16, 160 Dy(n, γ).
		341.320 2	5.6 5	25.65136	5/2-	E2			Mult.: from 1986Sc16, 160 Dy(n, γ).
406.89	15/2+	139.5 <i>3</i>	71 10	267.32	13/2+	[M1+E2]	-0.27 3	0.920 15	$B(M1)(W.u.)=0.051 \ 11; B(E2)(W.u.)=9.E+1 \ 3$ $\delta: \text{ from } 1988Os01 \ \text{Coul ex}$
		222.8.3	100	184.23	$11/2^{+}$	E2		0.1655	$B(E2)(W.u.)=1.9\times10^2 3$
					,				Mult.: mult=Q, from 160 Gd(α ,3n γ) (1972Hj01). M2 eliminated by RUL.
418.2337	3/2-	286.476 2	100	131.7587	5/2-	M1+E2	-0.096 20		Mult.: from 1986Sc16, 160 Dy(n, γ). δ : from $\gamma(\theta)$ in 161 Th β^- decay (1983Ri15).
		315.175 <i>3</i>	3.2 2	103.0623	$7/2^{-}$				
		343.664 2	95 8	74.56668	3/2-	M1			Mult.: from 160 Dy(n, γ),(1986Sc16).
									$ δ: -0.073 84, \text{ from } γ(θ) \text{ in } {}^{161}\text{Tb } β^- \text{ decay } (1983\text{Ri15}). $
		392.63 4	15 2	25.65136	5/2-				
443.3	$11/2^{-}$	128.3 1	88 10	314.9397	$9/2^{-}$				
451 4320	5/2-	230.3 1 84.86 <mark>b</mark> 5	100 11	212.9520	1/2 1/2 ⁻				Additional information 6
431.4320	J/Z	04.00 J	15 5	500.7749	1/2				Auditional information 0.

γ ⁽¹⁶¹Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α &	Comments
451.4320	5/2-	238.481 2 319.673 <i>1</i> 348.371 3	67 <i>3</i> 100 <i>6</i> 17.2 <i>20</i>	212.9520 131.7587 103.0623	7/2 ⁻ 5/2 ⁻ 7/2 ⁻	M1			Mult.: from 1986Sc16, 160 Dy(n, γ).
		376.869 <i>5</i> 425.784 <i>4</i>	19.6 <i>15</i> 8.9 <i>12</i>	74.56668 25.65136	3/2 ⁻ 5/2 ⁻	M1,E2			Mult.: from 1986Sc16, 160 Dy(n, γ).
457.23	13/2-	136.37 <i>30</i> 256.3 <i>3</i>	<30 100	320.69 201.0872	11/2 ⁻ 9/2 ⁻	0			Mult.: from 1972Hi01, 160 Gd(α .3n γ).
507.72	17/2+	101.1 3	21.4 8	406.89	$15/2^+$	M1+E2	-0.05 2	2.32	$B(M1)(W.u.)=0.075 \ 8; B(E2)(W.u.)=9 \ 8 \ \delta; from 1980 c01 \ Coul \ ex$
		240.7 3	100	267.32	$13/2^+$	E2		0.1288	B(E2)(W.u.)=222 21
									Mult.: mult=Q, from ¹⁰⁰ Gd(α ,3n γ) (1972Hj01). M2 is eliminated by RUL.
550.2535	3/2+	418.494 <i>3</i>	22.0 15	131.7587	5/2-	[E1]			δ : -0.007 45, from ¹⁶¹ Tb β^- decay (1983Ri15).
		475.687 2	50 4	74.56668	3/2-	[E1]			δ: -0.004 17, from ¹⁶¹ Tb $β$ ⁻ decay (1983Ri15).
		506.68 16	2.3 2	43.8201	7/2+	E2			Mult.: from ¹⁶⁰ Dy(n, γ), 1986Sc16 list M1,E2. J^{π} assignments require E2.
		550.251 3	100 5	0	5/2+	M1+E2			δ: reported values: %E2=43 19, from 160Dy(n,γ) (1986Sc16); δ=-0.040 35 or -3.8 +4-7, from 161Tb β- decay (1983Bi15).
567.9423	$7/2^{-}$	149.723 8	6.3 14	418.2337	$3/2^{-}$				
		253.004 3	46 <i>3</i>	314.9397	9/2-	M1,E2			Mult.: from 1986Sc16, 160 Dy(n, γ).
		354.989 2	100 8	212.9520	$7/2^{-}$,			
		366.845 8	29 5	201.0872	9/2-				
		464.879 19	36 5	103.0623	$7/2^{-}$				
		541.6 4	45 <i>3</i> 8	25.65136	5/2-				
586.9	$13/2^{-}$	143.5 <i>1</i>	57 8	443.3	$11/2^{-}$				
		272.0 1	100 10	314.9397	9/2-				160 -
607.5814	1/2+	533.012 6	16.5 14	74.56668	3/2-	E1			Mult.: assigned as E1,E2 by 1986Sc16, ¹⁰⁰ Dy(n,γ). From J^{π} values, mult=E1.
		607.579 2	100 6	0	$5/2^{+}$	E2			Mult.: from 1986Sc16, 160 Dy(n, γ).
609.8315	$5/2^{+}$	396.881 4	20.0 11	212.9520	7/2-				
		478.083 6	21 3	131.7587	$5/2^{-}$				
		535.260 4	38.4 18	74.56668	3/2-				1(0)
		566.011 4	100 6	43.8201	7/2+	M1+E2	1.2 + 7 - 4		Mult., δ : from 1986Sc16, ¹⁰⁰ Dy(n, γ).
		609.828 6	40 3	0	5/2+	E2			Mult.: assigned as E2,(E1) by 1986Sc16, ¹⁰⁰ Dy(n, γ). J^{π} values imply $\Delta \pi$ =no.
617.1	$15/2^{-}$	159.8 <i>1</i>		457.23	$13/2^{-}$				
		296.5 1	100 12	320.69	11/2-				
(20, 22,4	0/2-	349.8 <i>I</i>	58 8	267.32	$\frac{13}{2^+}$				
628.234	9/2	1/6.800 8 313.306 <i>20</i>	100 29 50 18	451.4320 314.9397	5/2 9/2 ⁻				

γ ⁽¹⁶¹Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α &	Comments
633.1673	5/2+	420.27 <i>3</i> 532.750 <i>10</i> 558.601 <i>9</i>	2.0 <i>4</i> 16.3 <i>17</i> 11.2 <i>10</i>	212.9520 100.4033 74.56668	7/2 ⁻ 9/2 ⁺ 3/2 ⁻				
641.62	$(12/2^{-})$	589.343 2 156 0 1	100 <i>6</i>	43.8201	$7/2^+$	M1+E2	1.4 +8-4		Mult., δ : from 1986Sc16, ¹⁶⁰ Dy(n, γ).
678 3226	(13/2)	546 564 3	51.3	485.50	$\frac{11}{2}$	F1			Mult : from $10868 c_{16} \frac{160}{100} D_{V}(n_{2})$
078.3220	5/2	540.504 5 603 76 3	100 7	74 56668	3/2-	E1			Mult.: from $1986Sc16$, $Dy(n, y)$.
		678 224 2	100 7	74.50008	5/2	M1			Mult.: from $19865 c_{16} = 160 Dy(n, y)$.
606 078	7/2+	078.324.5	99 0 20 5	451 4320	5/2	IVI I			Mult.: Irolli 1980SC10, $Dy(ll,\gamma)$.
090.078	112	244.02 4 183 11 1	20.5	212 0520	5/2 7/2-				
		595 64 <i>4</i>	24 5	100 4033	$9/2^+$				
		696 080 16	100.9	0	$5/2^+$				
699,1395	$3/2^{+}$	247.55^{a} 6	<5	451,4320	$5/2^{-}$				
.,,	-1-	567.382.3	63.3	131.7587	$5/2^{-}$	E1			Mult.: from 1986Sc16, 160 Dv(n, γ).
		624.571.3	100 7	74.56668	$3/2^{-}$	E1			Mult.: from 1986Sc16, 160 Dv(n. γ).
		699 135 5	90.9	0	5/2+	M1			Mult : from 1986Sc16, 160 Dy(n γ)
717.9	$19/2^{+}$	210.3.3	63	507.72	$17/2^+$	(M1+E2)	-0.274	0.289.5	$B(M1)(W.u.) = (0.066 \ 8); B(E2)(W.u.) = (54 \ 16)$
	·								I _γ : from ¹⁶⁰ Gd(α ,3nγ). From Coul. ex., I _γ =25.8 <i>14</i> . Mult.: from 1972Hj01, ¹⁶⁰ Gd(α ,3nγ), mult=D. M1,E2 implied by level scheme. The δ value of 1988Os01 requires an admixture. δ : from 1988Os01, Coul. ex.
		311.6 3	100	406.89	15/2+	E2		0.0575	B(E2)(W.u.)=177 <i>19</i> Mult.: from 1972Hj01, ¹⁶⁰ Gd(α,3nγ), mult=Q. From RUL, M2 is eliminated.
730.913	5/2+	517.962 4	56 7	212.9520	$7/2^{-}$				
		599.144 9	60 5	131.7587	$5/2^{-}$				
		627.78 <i>5</i>	13 3	103.0623	7/2-				
		656.360 10	100 7	74.56668	3/2-				171
		687.085 7	90 4	43.8201	7/2+	M1,E2			Mult.: from: 1973BuZR,1984Vy01, ¹⁰¹ Ho ε decay; 1986Sc16 report mult=M1 (from ¹⁶⁰ Dy(n, γ)).
		730.91 <i>3</i>	33 7	0	$5/2^{+}$				
761.3	15/2-	174.5 <i>1</i>	27 4	586.9	$13/2^{-}$				
		318.2 <i>I</i>	100 10	443.3	$11/2^{-}$				
772.18	5/2+,7/2,9/2+	669.0 <mark>b</mark> 3	18 8	103.0623	$7/2^{-}$				
		672.5 <i>3</i>	26 9	100.4033	9/2+				
		772.10 10	100 6	0	5/2+				
772.7285	1/2+	354.488 <i>15</i> 405.753 <i>2</i>	17 <i>4</i> 13.6 <i>13</i>	418.2337 366.9749	$3/2^{-}$ $1/2^{-}$				

γ ⁽¹⁶¹Dy) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α <mark>&</mark>	Comments
772.7285	1/2+	772.726 6	100 8	0	5/2+	E2			Mult.: mult=E2,(E1), from 1986Sc16, ¹⁶⁰ Dy(n, γ). The J^{π} values imply E2.
777.1272	$1/2^{-}$	169.546 5	1.03 25	607.5814	$1/2^{+}$				
		325.741 16	0.64 15	451.4320	$5/2^{-}$				
		645.30 6	5.4 15	131.7587	$5/2^{-}$				
		702.561 3	100 9	74.56668	$3/2^{-}$	M1+E2	0.9 5		Mult., δ : from 1986Sc16, ¹⁶⁰ Dy(n, γ).
788.0	$17/2^{-}$	330.8 1	100 10	457.23	$13/2^{-}$				
		381.0 <i>I</i>	38 6	406.89	$15/2^{+}$				
790.648	$5/2^{-}$	577.9 2	3.0 11	212.9520	$7/2^{-}$				
		658.95 10	14.0 16	131.7587	5/2-				
		687.614 24	32 5	103.0623	$7/2^{-}$				
		716.09 8	22 2	74.56668	3/2-				
		746.89 ^a 6	≤35	43.8201	$7/2^{+}$				
		764.984 16	100 7	25.65136	$5/2^{-}$	E2+M1			Mult.: from $1986Sc16$, 160 Dv(n, γ).
		790.61 3	81 7	0	$5/2^+$	E1			Additional information 7.
800.51	$3/2^{+}$	669.1 2		131.7587	5/2-				
	,	756.6 1		43.8201	$7/2^+$				
		800.4 5		0	$5/2^+$				
804.388	$3/2^{-}$	171.221 6	2.5 4	633.1673	$5/2^+$				
		196.815 6	2.5 4	607.5814	$1/2^+$				
		672.625 4	100 6	131.7587	$5/2^{-}$	M1+E2	1.0 4		Mult., δ : from 1986Sc16, ¹⁶⁰ Dy(n, γ).
		729.815 6	88.5	74.56668	$3/2^{-}$	M1+E2	1.2 + 8 - 4		Mult δ : from 1986Sc16, ¹⁶⁰ Dy(n. γ).
		778.70 4	21.6 24	25.65136	5/2-				
819.0?	$(15/2^{-})$	177.3 1	100 12	641.6?	$(13/2^{-})$				
		333.5 1	27 5	485.56	$11/2^{-1}$				
825.55	$21/2^{+}$	107.6 3	6.1 14	717.9	$19/2^{+}$	(M1+E2)	-0.05 2	1.94 4	$B(M1)(W.u.)=(0.085\ 22); B(E2)(W.u.)=(9\ 8)$
	,				- /				Mult.: D from 1972Hj01, 160 Gd(α ,3n γ), and M1,E2 from
									level scheme. M1+E2 implied by the δ value.
									δ : from 1988Os01, Coul. ex.
		318.1 <i>3</i>	100	507.72	$17/2^{+}$	[E2]		0.0548	$B(E2)(W.u.)=2.6\times10^2 3$
825.7155	$3/2^{+}$	192.548 <i>3</i>	7.76	633.1673	$5/2^{+}$	M1			Mult.: from 1986Sc16, 160 Dv(n, γ).
	- 1	215.899 11	3.3 4	609.8315	$5/2^{+}$				
		374.276 6	10 3	451.4320	5/2-				
		458.737 5	20.8 27	366.9749	$1/2^{-}$				
		751.18.3	42.4	74.56668	3/2-	E1			Mult.: from 1986Sc16, 160 Dv(n, γ), mult=E2,E1. The J^{π}
					-/-				values imply E1.
		781 926 12	78 7	43 8201	$7/2^{+}$	E2			Mult : from 1986Sc16 160 Dv(n γ) mult=E2 (E1) The I^{π}
		/01./20 12	/0/	10.0201	,,_	22			values imply E2.
		825 705 10	100.5	0	$5/2^{+}$	F2			Mult : from 1986Sc16 160 Dv(n γ)
849 260	5/2+	150 121 6	4811	600 1305	3/2+	14			$\mathcal{F}_{\mathcal{Y}}(\mathfrak{l},\mathfrak{f}).$
079.200	5/2	239 428 11	458	609 8315	5/2+				
		239.720 11	1 .5 0	009.0515	5/2				

γ ⁽¹⁶¹Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult. [@]	$\delta^{@}$	Comments
849.260	5/2+	299.006 5	7.2 8	550.2535	$3/2^{+}$			
	-	805.437 15	100 6	43.8201	7/2+	M1,E2		Mult.: from 1986Sc16, 160 Dy(n, γ).
857.502	$(7/2)^+$	247.55 ^a 6	≤12	609.8315	$5/2^{+}$			
		406.071 7	11 3	451.4320	5/2-			1/0
		644.66 8	100 20	212.9520	$7/2^{-}$	E1		Mult.: from 1986Sc16, 160 Dy(n, γ).
050 5010	2/2-	831.83 3	96.6	25.65136	5/2-			
858.7919	3/2-	180.527 22	2.24	678.3226	3/2+			
		223.021 2	23.5 13	033.10/3 607 5814	$\frac{3}{2^+}$			
		407 365 3	17.6.20	451 4320	$\frac{1}{2}$			
		727 035 6	100 4	131 7587	5/2-	M1+F2	$15 \pm 12 = 5$	Mult δ : from 1986Sc16 ¹⁶⁰ Dy(n γ)
		784 24 3	41 4	74 56668	3/2-	M1 F2	1.5 +12 5	Mult: from 1986Sc16, 160 Dy(n,y).
867.869	$5/2^{-}$	416.442 13	13.7 15	451.4320	$5/2^{-}$	111,12		Whith non $1/000000, Dy(n, y)$.
	-/-	449.635 11	13.9 15	418.2337	$3/2^{-}$			
		654.924 9	93 7	212.9520	7/2-	E2		Mult.: from 1986Sc16, 160 Dy(n, γ).
		736.097 8	100 10	131.7587	5/2-	E2		Additional information 8.
								Mult.: from 1986Sc16, 160 Dy(n, γ).
		793.346 17	90 15	74.56668	$3/2^{-}$			
873.091	$1/2^{-}$	194.784 7	2.0 3	678.3226	3/2+			
		265.504 4	5.9 5	607.5814	1/2+			160-
		454.857 5	8.4 6	418.2337	3/2-	M1,(E2)		Mult.: from 1986Sc16, 100 Dy(n, γ).
		506.131 8	10.8 14	366.9749	$1/2^{-}$	M1,E2		Mult.: from 1986Sc16, 100 Dy(n, γ).
		798.508 7	100 9	74.56668	3/2-	M1,(E2)		Mult.: from 1986Sc16, 100 Dy(n, γ).
979 40	7/2-	847.59 ^{cc} 17	≤ 9.2	25.65136	5/2 7/2-			
0/0.49	1/2	746.89^{a}	< 90 5	131 7587	1/2 5/2 ⁻			
		834 86 8	≤ 90 64 9	43 8201	$\frac{3}{2}$			
		852.73 8	100 14	25.65136	$5/2^{-}$			
899.01	$9/2^{+}$	798.6 1		100.4033	$9/2^{+}$			
		855.2 <i>1</i>		43.8201	7/2+			
		899.0 <i>1</i>		0	$5/2^{+}$			
922.326	5/2-,7/2-	721.34 8	40 8	201.0872	9/2-			
		847.59 ⁴ 17	≤53 100 I (74.56668	$3/2^{-}$			
041.2	17/2-	922.03 11	100 14	0	5/2 '			
941.2	1//2	354 2 1	28 J 100 I0	701.5 586.9	$\frac{13}{2}$			
985.6	$19/2^{-}$	368.5 1	100 11	617.1	$15/2^{-}$			
20210		477.7 1	58 8	507.72	$17/2^+$			
1017.0?	$(17/2^{-})$	197.8 <i>1</i>	100 12	819.0?	$(15/2^{-})$			
		375.5 1	40 8	641.6?	$(13/2^{-})$			

					Adop	ted Levels,	Gammas (c	ontinued)	
						γ (¹⁶¹ Dy) (continued)	
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$\delta^{@}$	α &	Comments
1067.106	7/2	199.242 9 371.00 4 854.11 4 866.32 18 935.29 8 966.4 ^a 3 1066.94 10	$ \begin{array}{r} 41 \ 3 \\ 5.9 \ 24 \\ 62 \ 10 \\ 48 \ 17 \\ 100 \ 14 \\ \leq 55 \\ 59 \ 10 \\ \end{array} $	867.869 696.078 212.9520 201.0872 131.7587 100.4033 0	5/2 ⁻ 7/2 ⁺ 7/2 ⁻ 9/2 ⁻ 5/2 ⁻ 9/2 ⁺ 5/2 ⁺				
1071.263	3/2-	340.354 <i>13</i> 438.053 <i>22</i> 461.437 8 520.87 7 704.30 <i>10</i>	10.9 <i>18</i> 14 <i>3</i> 55 <i>5</i> 100 <i>23</i> 59 <i>14</i>	730.913 633.1673 609.8315 550.2535 366.9749	$5/2^+$ $5/2^+$ $5/2^+$ $3/2^+$ $1/2^-$				
1098.224	3/2+	230.39 <i>3</i> 465.00 <i>3</i> 646.791 <i>11</i> 680.00 <i>3</i> 731.251 <i>20</i> 966.4 ^{<i>a</i>} <i>3</i> 1098.13 <i>14</i>	$7.5 25$ $46 8$ $63 4$ $26 4$ $48 6$ ≤ 31 $100 15$	867.869 633.1673 451.4320 418.2337 366.9749 131.7587 0	5/2 ⁻ 5/2 ⁺ 5/2 ⁻ 3/2 ⁻ 1/2 ⁻ 5/2 ⁻ 5/2 ⁺				
1117.34	23/2+	292.1 3	20 5	825.55	21/2+	M1+E2	-0.23 7	0.1187 24	B(M1)(W.u.)=0.038 11; B(E2)(W.u.)=12 8 Mult.: D from 1972Hj01, 160 Gd(α ,3n γ). D+Q required by δ value. M2 eliminated by RUL. δ: from 1988Os01, Coul. ex.
		399.6 <i>3</i>	100	717.9	19/2+	E2		0.0278	B(E2)(W.u.)= $2.4 \times 10^2 \ 3$ Mult.: mult=Q from 1972Hj01, ¹⁶⁰ Gd(α ,3n γ). M2 eliminated by RUL.
1160.0	19/2-	218.7 <i>1</i> 398.4 <i>1</i>	19 <i>4</i> 100 <i>9</i>	941.2 761.3	17/2 ⁻ 15/2 ⁻				
1178.326	5/2,7/2-	373.930 20 965.52 12 1134.66 22 1153.3 3	5.4 7 57 14 100 18 82 25	804.388 212.9520 43.8201 25.65136	3/2 ⁻ 7/2 ⁻ 7/2 ⁺ 5/2 ⁻				
1186.683	5/2-	313.602 20 360.966 15 553.535 ⁴ 23 618.64 4 1142.92 21 1161.33 22	$ \begin{array}{c} 10.8 \ 27 \\ 11.2 \ 15 \\ \leq 17.3 \\ 29 \ 4 \\ 100 \ 15 \\ 77 \ 15 \end{array} $	873.091 825.7155 633.1673 567.9423 43.8201 25.65136	$1/2^{-}$ $3/2^{+}$ $5/2^{+}$ $7/2^{-}$ $7/2^{+}$ $5/2^{-}$				
1186.7	21/2-	398.7 <i>1</i> 468.8 <i>1</i>	100 8 32 4	788.0 717.9	$17/2^{-}$ $19/2^{+}$				
1206.933	5/2-	135.669 7	3.5 8	1071.263	3/2-	(E2,M1)			

From ENSDF

I.

$\gamma(^{161}\text{Dy})$ (continued) Mult.@ $E_{\gamma}^{\dagger\ddagger}$ $I_{\gamma}^{\#}$ $\delta^{@}$ α**&** \mathbf{E}_{f} J_{r}^{π} Comments 840.02 17 186 366.9749 $1/2^{-}$ 1006.1 3 23 9 201.0872 $9/2^{-}$ Mult.: assigned as E2,E1 by 1986Sc16, 160 Dy(n, γ). J^{π} 1132.8 4 100 12 74.56668 3/2values imply $\Delta \pi = \text{no.}$ 1181.44 22 78 14 25.65136 5/2-B(M1)(W.u.)=0.104 21; B(E2)(W.u.)=4 +9-4 103.6 3 1.7 1117.34 $23/2^{+}$ [M1+E2] -0.03 3 2.16 4 $B(E2)(W.u.)=3.4\times10^2$ 7 825.55 $21/2^{+}$ 0.0285 395.9 3 100 E2 Mult.: mult=Q from 1972Hi01, 160 Gd(α ,3n γ). M2 is eliminated by RUL. 100 15 217.4 I 1017.0? $(17/2^{-})$ 415.3 *1* 68 11 819.0? $(15/2^{-})$ 410.171 3 75 8 858.7919 3/2-443.28 3 10.2 17 825.7155 $3/2^{+}$ Mult.: from 1986Sc16, 160 Dy(n, γ). 491.856 7 100 6 777.1272 $1/2^{-}$ M1 901.85 19 94 34 366.9749 $1/2^{-}$ 235.81 3 3.0 16 1067.106 7/2 444.168 23 5.1 13 858.7919 $3/2^{-}$ 530.176 15 772.7285 $1/2^{+}$ 20 5 74.56668 3/2-1227.94 21 100 15

 J^{π}

 $5/2^{-}$

 $25/2^+$

 $(19/2^{-})$

 $1/2^{-}$

 $3/2^{-}$

 $1/2^{-}, 3/2^{-}$

 $21/2^{-}$

1302.7 6

580.83 3

939.66 3

1225.9 3

1283.48 6

1332.85 24

205.2 1

424.1 *1*

602.235 22

811.44 13

927.58 12

1011.8 3

1165.8 3

1379.5 4

1247.46 10

478.778 23

551.848 23

850.863 14

949.9 3

1268.5 6

1297.6 3

553.535^a 23

61 15

<3.3

3.8 5

24.6 22

25 7

100 16

46 11

16 3

100 10

19*3*

32 6

48 12

52 14

100 12

82 20

14.4 24

6.3 7

100 9

12 4

69 26

51 13

16.4 24

0

804.388

777.1272

418.2337

131.7587

1160.0

941.2

777.1272

567.9423

451.4320

366.9749

212.9520

131.7587

922.326

849.260

550.2535

451.4320

131.7587

103.0623 7/2-

0

74.56668 3/2-

25.65136 5/2-

 $5/2^{+}$

 $3/2^{-}$

 $1/2^{-}$

 $3/2^{-}$

 $5/2^{-}$

19/2⁻ 17/2⁻

 $1/2^{-}$

 $7/2^{-}$

 $5/2^{-}$

 $1/2^{-}$

 $7/2^{-}$

 $5/2^{-}$

 $5/2^{+}$

 $5/2^{+}$

 $3/2^{+}$

 $5/2^{-}$

 $5/2^{-}$

 $5/2^{-}, 7/2^{-}$

M1,(E2)

 $\frac{E_i(\text{level})}{1206.933}$

1220.73

1234.4

1268.967

1302.920

1357.936

1365.2

1379.342 3/2-

1401.112 5/2,7/2+

From ENSDF

Mult.: from 1986Sc16, ¹⁶⁰Dy(n,γ).

γ ⁽¹⁶¹Dy) (continued)</sup>

E _i (level)	\mathbf{J}_i^π	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	${ m J}_f^\pi$	Mult.@	Comments
1401.112	$5/2,7/2^+$	1356.4 4	57 13	43.8201	$7/2^{+}$		
	-,_,.,_	1375.3 5	56 16	25.65136	5 5/2-		
		1401.5 4	61 14	0	$5/2^+$		
1416.5	23/2-	230.0 1		1186.7	$21/2^{-}$		
		430.9 1	100 13	985.6	$19/2^{-}$		
		590.9 <i>1</i>	62 9	825.55	$21/2^{+}$		
1470.3	$(21/2^{-})$	235.9 1	100 14	1234.4	$(19/2^{-})$		
		453.4 <i>1</i>	86 17	1017.0?	$(17/2^{-})$		
1599.94	$27/2^{+}$	380.0 <i>3</i>	42	1220.73	$25/2^+$		Mult.: the A ₂ value from 1972Hj01, 160 Gd(α ,3n γ), suggests a stretched E2, but the
							placement requires $\Delta J=1$.
		482.9 <i>3</i>	100	1117.34	$23/2^{+}$		
1626.2	$23/2^{-}$	260.7 1		1365.2	$21/2^{-}$		
		466.2 1	400 70	1160.0	19/2-		
1646.1	25/2-	459.4 1	100 10	1186.7	$21/2^{-}$		
1 (00.01	20/2+	528.7 1	40 6	1117.34	$\frac{23}{2^+}$		
1690.81	29/2	91.93	2.8	1599.94	27/2*	0	N. 1. 6 10701/101 160 CH . 0
1704.1	(22/2-)	470.73	100	1220.73	25/2*	Q	Mult.: from $19/2H_{J}01$, $^{100}Gd(\alpha, 3n\gamma)$.
1/24.1	(23/2)	253.7 1	/3/15	14/0.3	(21/2)		
1020 4	25/2-	489.71	100 18	1234.4	(19/2)		
1838.4	23/2	211.9 1		1020.2	$\frac{23}{2}$		
		4/3.5 I 721 1 I		1303.2	21/2 23/2+		
1807 3	27/2-	121.1 1	100 12	1/16 5	23/2		
1097.5	21/2	676 5 1	69 10	1220.73	25/2		
1994 12	$(25/2^{-})$	270.4.1	83 21	1724 1	$(23/2^{-})$		
1771.11	(25/2)	523.8.1	100 21	1470.3	$(23/2^{-})$ $(21/2^{-})$		
2138.3	$27/2^{-}$	512.1 1	100 -1	1626.2	$\frac{23}{2}^{-1}$		
2156.8	29/2-	510.5 <i>I</i>		1646.1	$\frac{25}{2}$		
	,	556.8 <i>1</i>		1599.94	$27/2^+$		
2159.45	$31/2^{+}$	468.9 <i>3</i>	42	1690.81	$29/2^{+}$	D	Mult.: from 1972Hj01, 160 Gd(α ,3n γ).
		559.4 <i>3</i>	100	1599.94	$27/2^{+}$	0	Mult.: from 1972Hi01, 160 Gd(α ,3n γ).
2233.34	33/2+	72.7 3	17	2159.45	$31/2^{+}$	D	Mult.: from 1972Hj01, 160 Gd(α ,3n γ).
	/	541.2.3	100	1690.81	$29/2^{+}$	0	Mult.: from 1972Hi01, 160 Gd(α .3n γ).
2237	3/2,5/2,7/2	2237	100	0	$5/2^{+}$	C C	
2250	3/2,5/2,7/2	2224	51 <i>13</i>	25.65136	5/2-		
		2250	100	0	5/2+		
2280.2	$(27/2^{-})$	285.5 1	65 20	1994.1?	$(25/2^{-})$		
		555.8 <i>1</i>	100 25	1724.1	$(23/2^{-})$		
2332.9	29/2-	494.5 1		1838.4	$25/2^{-}$		
		733.0 1		1599.94	$27/2^{+}$		
2346	3/2,5/2,7/2	2346	100	0	5/2+		

γ ⁽¹⁶¹Dy) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	${ m J}_f^\pi$	Comments
2413.3	31/2-	516.0 <i>1</i> 722.8 <i>1</i>		1897.3 1690.81	27/2 ⁻ 29/2 ⁺	
2576.1	(29/2 ⁻)	294.9 <i>1</i> 583.0 <i>1</i>	71 <i>21</i> 100 <i>28</i>	2280.2 1994.1?	$(27/2^{-})$ $(25/2^{-})$	E_{γ} : poor energy fit. E_{γ} : poor energy fit.
2665.7	31/2-	527.4 <i>1</i>	100	2138.3	$27/2^{-}$	
2704.2	33/2-	544.9 <i>1</i> 547.3 <i>1</i>		2159.45 2156.8	31/2 ⁺ 29/2 ⁻	
2740	3/2,5/2,7/2	2740	100	0	$5/2^{+}$	
2748	3/2,5/2,7/2	2748	100	0	5/2+	
2753	3/2,5/2,7/2	2753	100	0	$5/2^{+}$	
2775	3/2,5/2,7/2-	2700	32 9	74.56668	$3/2^{-}$	
		2775	100	0	$5/2^{+}$	
2788.3	$35/2^+$	628.8 <i>1</i>	100	2159.45	$31/2^{+}$	
2812	3/2,5/2,7/2-	2737	100	74.56668	$3/2^{-}$	
		2812	80 20	0	$5/2^{+}$	
2820	3/2+,5/2,7/2	2776	39 7	43.8201	7/2+	
		2820	100	0	$5/2^+$	
2838	3/2,5/2,7/2-	2763	100	74.56668	$3/2^{-}$	
		2838	53 11	0	$5/2^{+}$	
2839.4	$37/2^{+}$	606.1 <i>I</i>	100	2233.34	$\frac{33}{2^+}$	
2849	3/2,5/2,7/2	2849	100	0	$5/2^{+}$	
2849.4	33/2-	516.5 <i>1</i>	100	2332.9	$29/2^{-}$	
2864	3/2,5/2,7/2-	2789	29 7	74.56668	$3/2^{-}$	
		2864	100	0	$5/2^{+}$	
2905	$5/2^+, 7/2^+$	1950	100	957.0	$7/2^{-}$	
		2805	74 21	100.4033	$9/2^+$	
		2830	58 16	74.56668	$3/2^{-}$	
2955.1	35/2-	542.1 <i>1</i> 721.5 <i>1</i>		2413.3 2233.34	$31/2^{-}$ $33/2^{+}$	
2994	3/2,5/2,7/2	2994	100	0	$5/2^{+}$	
3113	3/2,5/2,7/2	2981	100	131.7587	$5/2^{-}$	
		3113	84 20	0	$5/2^+$	
3155	3/2,5/2,7/2	3155	100	0	$5/2^{+}$	
3272.1	37/2-	567.9 <i>1</i>	100	2704.2	33/2-	
3479.7	$39/2^+$	691.4 <i>1</i>	100	2788.3	$35/2^+$	
3504	$41/2^{+}$	665	100	2839.4	$37/2^+$	
3529.0	39/2-	573.9 <i>1</i>		2955.1	35/2-	
		689.6 <i>1</i>		2839.4	37/2+	
3644	3/2,5/2,7/2	3644	100	0	$5/2^{+}$	
3867.0	41/2-	594.9 <i>1</i>	100	3272.1	37/2-	
4223	45/2+	718.4	100	3504	$41/2^{+}$	
4226.6	43/2+	746.9 <i>1</i>	100	3479.7	39/2+	

$\gamma(^{161}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}
4505.4	45/2-	638.4 <i>1</i>	100	3867.0	41/2-
4989?	$49/2^{+}$	766 <mark>b</mark>	100	4223	$45/2^{+}$
5026.2	$47/2^{+}$	799.6 <i>1</i>	100	4226.6	$43/2^{+}$
5190.9	$49/2^{-}$	685.3 <i>1</i>	100	4505.4	$45/2^{-}$
5799?	$53/2^+$	810 ^b	100	4989?	$49/2^{+}$

[†] Values are taken from the decay mode or reaction type giving the most precise value. Most of the values are from the (n,γ) reaction. For these latter values, a systematic uncertainty of 10 ppm must be added to the listed uncertainty to obtain the total uncertainty.

[‡] The primary γ 's from thermal neutron capture are not included here. See that data set for this information. For the primary γ 's from the averaged-resonance n capture, see the original papers.

[#] Values are normalized to 100 for one γ from each level and take into account the results from all decay modes.

^(e) Assignments are based on all available data including ce data, especially L subshell ratios, following ¹⁶¹Ho ε decay and ¹⁶¹Tb β^- decay, $\alpha(K)$ exp or $\alpha(L)$ exp data from these decays as well as (n,γ) and Coul. ex., x/γ ratio following ¹⁶¹Tb β^- decay, $\gamma(\theta)$ from oriented nuclei for ¹⁶¹Tb β^- decay and following the in-beam studies, $\gamma\gamma(\theta, H)$ for ¹⁶¹Tb β^- decay, and $\gamma\gamma(\theta)$ from ¹⁶¹Tb β^- decay.

& Given only for cases where values are needed to compute reduced transition probabilities.

^a Multiply placed.

^b Placement of transition in the level scheme is uncertain.

From ENSDF

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) - ⁸¹0 100 <u>53/2</u>⁺ _____5799 + 085.3 100 1 29,00 49/2 5190.9 Ś 47/2+ 5026.2 کې ا 49/2+ _4<u>989</u> 638, 4 -8 45/2 4505.4 8 43/2+ 4226.6 45/2+ 4223 e. 9 <u>41/2</u>-<u>3/2,5/2,7/2</u> 364 3867.0 ______0__ 3644 . -& ŝ 39/2 3529.0 ŝ 41/2 3504 ð 9 39/2+ 3479.7 Ś 3 37/2 3272.1 8 3/2,5/2,7/2 3155 2004 3/2,5/2,7/2 2830-74 2805-38 1950-74 1950-74 3113 2.3 -\$.5 3/2,5/2,7/2 2994 * .8 35/2⁻ 5/2⁺,7/2⁺ 3/2,5/2,7/2⁻ -25 60--25 60-2955.1 -8 2905 680 Ś 2864 -<u>60</u>--S -20 33/2 2849.4 , 2₆₃₆, -@:e 6 ¥ 3/2,5/2,7/2 ¥ 2820 2849 -°-& $\frac{37/2^+}{3/2,5/2,7/2^-}$ È 2839.4 3 E 2838 . 90;-2820 -§ 3/2,5/2,7/2-2812 85 8 35/2⁺ 3/2,5/2,7/2⁻ 2788.3 2240 8 2775 3/2,5/2,7/2 2.4.2 2753 ¥. ŝ 3/2,5/2,7/2 2748 3/2,5/2,7/2 2740 33/2-¥ 2704.2 T 31/2 2665.7 × ¥ <u>31/2</u> 29/2 2413.3 ¥ • 2332.9 ¥. 2233.34 33/2+ 31/2+ 2159.45 29/2 2156.8 27/2 2138.3 957.0 7/2-5/2 131.7587 0.145 ns 15 9/2+ 100.4033 0.22 ns 3 **•** 3/2 74.56668 3.14 ns 4 ¥ ¥ ¥. ¥ ¥ $\frac{5/2}{7/2}$ 43.8201 0.83 ns 6 ¥ 0 stable

 $^{161}_{66} Dy_{95}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{161}_{66} Dy_{95}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶¹₆₆Dy₉₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{161}_{\ 66}Dy_{95}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶¹₆₆Dy₉₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{161}_{66} Dy_{95}$

¹⁶¹₆₆Dy₉₅

¹⁶¹₆₆Dy₉₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{161}_{66} Dy_{95}$

 $^{161}_{66} Dy_{95}$

¹⁶¹₆₆Dy₉₅

Band(O): 3/2[512] band

(7/2⁻) 2113

5/2- 2039

3/2- 1977

Band(P): 7/2[404] bandhead

7/2+ 1416

¹⁶¹₆₆Dy₉₅