106 Cd(58 Ni,2p2n γ) 2001Ke09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

Additional information 1. ¹⁰⁶Cd(⁵⁸Ni,2p2n):E(⁵⁸Ni)=286, 291 and 298 MeV. Self-supporting ¹⁰⁶Cd target 550 μ g/cm² thick. γ rays studied using the JUROSPHERE array, consisting of escape-suppressed HPGe detectors from the Eurogam phase 1 and TESSA arrays. The recoiling reaction products were analyzed using a gas-filled recoil separator and a position-sensitive Si strip detector. Assignment of γ 's to 160 W was made via time correlation with α particles from 160 W decay and from observation of tungsten x rays in the tagged spectra. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin and inferred γ multipolarities from the ratio of $I\gamma$ values at different angles.

160W	Level
------	-------

E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0#	0^{+}	2228.3 [#] 4	8+	3523.2? [#] 5	(12^{+})
609.9 [#] 2	2^{+}	2899.0? [#] 5	(10^{+})	4022.0? [@] 6	(13 ⁻)
1264.6 [#] 3	4^{+}	2946.4 5	10^{+}	4218.8? [#] 6	(14^{+})
1880.8 [#] 4	6+	3168.5 [@] 5	$11^{(-)}$	4735.1? [@] 7	(15 ⁻)
				4861.1? [#] 6	(16^{+})

^{\dagger} From a least-squares fit to the listed E γ values.

[‡] Values as reported by 2001Ke09. They are based on γ -ray multipolarities and a presumed general increase of spin with increasing excitation energy.

[#] Band(A): sequence of positive-parity yrast states.

[@] Band(B): sequence of probable negative-parity states.

 $\gamma(^{160}\rm W)$

The quantity, R, is defined by 2001Ke09 as the ratio of I γ values at 157.6° to those at 79 and 101°.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	Comments
222.1 2	25 3	3168.5	11(-)	2946.4 10+	(E1)	R=0.88 7. Mult.: stretched D γ from asymmetry ratio, (E1) based on theoretical arguments implying unique parity orbitals $\nu i_{13/2}$ and $\pi h_{11/2}$ and systematics of even-even nuclei in this mass region having a similar decay pattern: 11 ⁻ level at about 3 MeV exitation energy decaying to 10 ⁺ level of the g.s. band by E1 transition. For example for ¹⁵⁶ Er, ¹⁵⁸ Er, ¹⁵⁸ Yb, ¹⁵⁸ Hf, ¹⁶⁰ Hf, ¹⁶² W and ¹⁶⁴ W nuclei having this pattern no 11 ⁺ level was found, except for ¹⁵⁶ Er where this level is placed at more than 600 keV above 11 ⁻ level.
x 295.9 2 347.5 2 x 407.4 2 x 460.2 2 x 493.6 2 x 543.8 3 x 572.6 2	6 2 70 3 10 2 7 2 8 2 9 2 12 2	2228.3	8+	1880.8 6+	E2	R=1.11 <i>6</i> .
609.9 2 616.2 2	100 2 92 3	609.9 1880.8	2 ⁺ 6 ⁺	$\begin{array}{ccc} 0.0 & 0^+ \\ 1264.6 & 4^+ \end{array}$	E2 E2	R=1.02 7. R=1.20 7.

Continued on next page (footnotes at end of table)

				10	106 Cd(58 Ni,2p2n γ)		2001Ke09 (continued)	
$\gamma(^{160}W)$ (continued)								
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.‡	Comments	
624.2 [#] 2	42 3	3523.2?	(12 ⁺)	2899.0?	(10 ⁺)		Unresolved doublet. This placement is estimated to account for $\approx 90\%$ of the total intensity.	
642.3 [#] 3	26 <i>3</i>	4861.1?	(16 ⁺)	4218.8?	(14^{+})		Unresolved doublet. Listed value is that for the composite peak.	
654.7 2	97 <i>2</i>	1264.6	4^{+}	609.9	2+	E2	R=1.19 5.	
670.7 [#] 2	39 <i>3</i>	2899.0?	(10^{+})	2228.3	8+	E2	R=1.03 9.	
^x 680.6 2	13 2							
695.6 [#] 2	28 <i>3</i>	4218.8?	(14^{+})	3523.2?	(12^{+})	E2	R=1.23 12.	
713.1 [#] 4	17 <i>3</i>	4735.1?	(15^{-})	4022.0?	(13^{-})	E2	R=1.17 19.	
718.1 2	39 <i>3</i>	2946.4	10^{+}	2228.3	8+	E2	R=1.24 11.	
853.5 [#] 3	22 2	4022.0?	(13-)	3168.5	$11^{(-)}$	E2	R=1.04 <i>13</i> .	

[†] 2001Ke09 refer to "relative intensities of γ rays" and "transition intensities" in referring to the γ 's. The evaluator has assumed that the values listed in Table 1 of 2001Ke09 are in fact γ -ray intensities rather than transition intensities (which would include a contribution from internal conversion). This contribution is nominally 1% or less for most of the γ 's. The maximum contribution is $\approx 5\%$ and $\approx 6\%$, respectively, for the 222 and 347 γ 's.

[‡] Values inferred from the ratio, R. Values near 1.2 are assigned as stretched quadrupole transitions, most likely E2. The lone

value, R=0.88, is that expected for a stretched dipole, which from systematics of near-lying nuclides, is tentatively taken to be E1. [#] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{160}_{74}W_{86}$

¹⁰⁶Cd(⁵⁸Ni,2p2nγ) 2001Ke09

 $^{160}_{74}\rm{W}_{86}$