		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

Additional information 1.

Inludes the reactions: ¹²⁸Te(³⁷Cl,5n γ), ¹³⁰Re(³⁵Cl,5n γ), ¹⁴⁶Nd(¹⁹F,5n γ), ¹⁵²Sm(¹⁴N,6n γ).

- XUNDL compilations: 2008Su08 and 2008Te07, compiled by S. Geraedts and B. Singh (McMaster); 2005La32 compiled by B. Singh (McMaster).
- 2008Su08, 2008Lu17: ¹⁴⁶Nd(¹⁹F,5n γ), E(¹⁹F)=102 MeV; beam provided by the HI-13 tandem accelerator at CIAE. Measured E γ , I γ , $\gamma\gamma$ -coin, DCO ratios using twelve HPGe detectors.

2008Te07: ¹²⁸Te(³⁷Cl,5n γ), E(³⁷Cl)=170 MeV beam provided by ATLAS facility at Argonne. Measured E γ , I γ , $\gamma\gamma$ using GAMMASPHERE array. Comparisons with cranked-shell model calculations.

2005La32: 130 Re(35 Cl,5n γ) E(35 Cl)=170 MeV. Measured E γ , I γ , $\gamma\gamma$ using Euroball detector array and an inner BGO ball.

1990TeZX: ¹²⁸Te(37 Cl,5n), E(37 Cl)=170 MeV. Unbacked targets were used. γ -ray coincidences were recorded using the TESSA 3 array of 16 escape-suppressed Ge detectors and the 50-element BGO inner ball. The four previously identified band sequences were extended to higher spins.

1989An08: ¹²⁸Te(³⁷Cl,5n), $E(^{37}Cl)=167$ MeV. Enriched (98% ¹²⁸Te) Pb-backed metallic target. Four coaxial Ge detectors and a multiplicity filter of 12 NaI(Tl) detectors. Measured $E\gamma$, $\gamma\gamma$, $\gamma\gamma(t)$, $\gamma(\theta)$.

- 1986Dr06: ¹⁵²Sm(¹⁴N,6n), E(¹⁴N)=80,96,107,120 MeV. Enriched (98% ¹⁵²Sm) targets. A variety of Ge and Ge(Li) detectors was used. Measured E γ , $\gamma\gamma$, $\gamma(t)$, $\gamma\gamma(t)$, $\gamma(t)$,
- 2001Kv02 discuss signature inversion in ¹⁶⁰Tm and ¹⁶²Tm using a two-quasiparticle-phonon model. For a discussion of the systematic features of signature inversion in the (π h_{11/2})(ν i_{13/2}) bands in nuclides in the mass region A≈160, see 2001Ri19. For other discussions, including theoretical calculations, see 1995Li40, 1997Zh13, 2000Xu01, 2001Zh16 and 2003Ya19.

The level scheme is from 2008Su08 and 2008Te07 (same group) who connected the first six bands to the g.s. (which in the previous papers were not connected – so called hanging bands).

¹⁶⁰Tm Levels

E(level) ^d	J^{π}	$T_{1/2}^{e}$	Comments
0.0	1-	9.4 min 3	J^{π} : adopted value.
42.0 10	(2 ⁻)	745 15	
10.9 15	(5)	/4.5 s 15	
150.8 16	(0)		
157.2 16	(6)		
169.2 16	(6)		
244.6 ^{&} 19	(7 ⁺)		A level previously adopted by 2005Re18 (from 1989An08) of energy 76.0+Y (with Y undetermined), with J=7 ⁺ , and decaying by a 76.0 γ could tentatively be associated with this level, which is also decaying by a close-lying 76.0 γ .
245.3 16	(7)		
262.1 16	(7)		
342.4 ^(@) 20	(8 ⁺)		A level previously adopted by 2005Re18 (from 1989An08) of energy 98.2+X (with X undetermined), with J=(8), $T_{1/2} \approx 200$ ns (from $\gamma\gamma(t)$ in 1986Dr06)), and decaying by a 98.2 γ could tentatively be associated with this level, which is also decaying by a close-lying 97.9 γ (however the feeding patterns of 98.2+X and this level are different).
390.9 16	(8 ⁻)		
444.4 [#] 17	(9 ⁻)		
484.5 <mark>&</mark> 21	(9+)		
523.6 [‡] 17	(10 ⁻)		
606.9 [#] 18	(11^{-})		
655.0 [@] 21	(10^{+})		
783.6 [‡] 18	(12 ⁻)		

(HI,xnγ) 2008Su08,1989An08,1986Dr06 (continued)

¹⁶⁰Tm Levels (continued)

E(level) ^d	J^{π}^{\dagger}
865.3 ^{&} 21	(11^{+})
936.5 [#] 19	(13 ⁻)
1094.1 [@] 21	(12^{+})
1182.2 [‡] <i>19</i>	(14 ⁻)
1358.6 ^{&} 21	(13^{+})
1406.1 [#] 19	(15 ⁻)
1632.0 [@] 21	(14^{+})
1696.2 [‡] 20	(16 ⁻)
1796.5 23	(14+)
1938.4 ^{x} 21	(15^{+})
1985.6 [#] 20 2054 8 23	(17^{-}) (15^{+})
2034.825 $2242.7^{@}21$	(15^{+})
$2302.8^{\ddagger} 20$	(18^{-})
2320.5 22	(16^+)
2499.0 <mark>b</mark> 21	(18-)
2570.4 ^{&} 21	(17^{+})
2616.6 22	(17^{+})
2647.2 [#] 20	(19^{-})
$2089.7^{\circ} 21$	(19)
2014.1 22	(10)
2909.7 21	(20^{-}) (18^{+})
2977.4 [‡] 21	(20 ⁻)
3051.5 ^{&} 22	(19 ⁺)
3160.8 ^{<i>a</i>} 20	(21 ⁻)
3314.1 ^{^w} 23	(20^{+})
3358.2 [#] 21	(21 ⁻)
3413.8° 21	(22 ⁻)
3596.8° 23	(21 ⁺)
$3688.4^+ 22$	(22^{-})
$39112^{@}24$	(23^{+})
$4029 0^{b} 22$	(22^{-})
4081.6 [#] 22	(23^{-})
4249.5 ^{&} 24	(23^+)
4382.3 ^{<i>a</i>} 22	(25 ⁻)
4411.3 [‡] 23	(24 ⁻)
4610.5 [@] 25	(24 ⁺)
4749.9 ^b 23	(26 ⁻)
4812.5 [#] 23	(25^{-})
4824.5 25	(25)
5006^{-3} 3 5138.2 ^{<i>a</i>} 25	(25^+) (27^-)
5155.4 [‡] 24	(26^{-})
5410 [@] 3	(26+)

$^{160}_{69}$ Tm₉₁-3

(HI,xnγ) 2008Su08,1989An08,1986Dr06 (continued)

¹⁶⁰Tm Levels (continued)

Comments

[†] Above 400 keV J^{π} values for bands A,a and B,b were deduced mainly by 1989An08 from considerations of band structure, alignments and crossing frequencies, and model-dependent arguments, and taken over by 2008Lu17 and 2008Su08. Below 400 keV, J^{π} values are from 2008Lu17 (and 2008Su08) that mention also the extra use of multipolarities based on DCO-ratio measurements (with no given values as evidence). J^{π} values for bands C and c are from 2008Lu17 while J^{π} values for band D are from 2008Su08.

[‡] Band(A): Yrast band, signature=0. Configuration=(π 7/2[523] + ν 5/2[642]). By analogy with the situation in ¹⁶²Tm, this is the most likely Nilsson-orbital composition. At higher spins, the classification according to spherical shell-model structure, namely $\pi h_{11/2} \otimes v_{13/2}$, as given by the authors, might be more appropriate.

[#] Band(a): Yrast band, signature=1. Configuration= $(\pi 7/2[523] + \nu 5/2[642])$. See comment on the signature-0 portion of this band.

^(a) Band(B): Side band 1, signature=0. Configuration= $(\pi 7/2[523] + \nu 3/2[521])$. In the spherical shell-model notation, the band can be described as $\pi h_{11/2} \otimes \nu h_{9/2}$.

& Band(b): Side band 1, signature=1. Configuration=(π 7/2[523] + ν 3/2[521]). See comment on the signature-0 portion of this band.

^{*a*} Band(c): Side band 2, signature=1. $\pi g_{7/2} \otimes v h_{9/2} \otimes v i_{13/2}^2$, assigned to ¹⁶⁰Tm by 2008Lu17.

^b Band(C): Side band 2, signature=0. $\pi g_{7/2} \otimes v h_{9/2} \otimes v i_{13/2}^{2}$, assigned to ¹⁶⁰Tm by 2008Lu17.

^{*c*} Band(D): $\pi d_{3/2} \otimes v i_{13/2}$, $\alpha = 0$. Assigned to ¹⁶⁰Tm by 2008Su08 based on population intensity, the decoupled feature, highly alignment properties, delayed band crossing frequency, and systematic analyses. 10% of the intensity of band A.

^d From least-squares fit to $E\gamma'$ s, assuming an uncertainty of 1.0 keV.

^e From Adopted Levels.

$\gamma(^{160}\text{Tm})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Comments
28.85 [†]	70.9	(5)	42.0 (2-) E_{γ} : value given with two decimals but with no unc by 2008Lu17 and 2008Su08. Because of missing information it is not clear how this transition was measured, reason for which its existence is questioned by evaluator.
42.02	42.0	(2^{-})	$0.0 \ 1^{-}$	1
53.7	124.4	(6)	70.9 (5)	
53.7	444.4	(9-)	390.9 (8-	
75.6	244.6	(7^{+})	169.2 (6)	
79.3	523.6	(10^{-})	444.4 (9-	
79.8	150.8	(6)	70.9 (5)	

(HI,xnγ) 2008Su08,1989An08,1986Dr06 (continued)

γ ⁽¹⁶⁰Tm) (continued)</sup>

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
83.3	606.9	(11 ⁻)	523.6	(10 ⁻)		
86.3	157.2	(6)	70.9	(5)	(D)	Mult.: $\Delta J=1$, D transition quoted by 2008Su08 as obtained from DCO ratio value around 0.5.
97.8	169.2	(6)	70.9	(5)	(D)	Mult.: $\Delta J=1$, D transition quoted by 2008Su08 as obtained from DCO ratio value around 0.5.
97.9	342.4	(8^{+})	244.6	(7^{+})		
110.8	262.1	(7)	150.8	(6)		
128.9	390.9	(8-)	262.1	(7)	(D)	Mult.: $\Delta J=1$, D transition quoted by 2008Su08 as obtained by DCO (with no evidence).
132.4	523.6	(10 ⁻)	390.9	(8-)		
142.0	484.5	(9 ⁺)	342.4	(8^{+})		
145.5	390.9	(8-)	245.3	(7)		
152.6	936.5	(13 ⁻)	783.6	(12^{-})		
162.7	606.9	(11^{-})	444.4	(9 ⁻)		
170.6	655.0	(10^{+})	484.5	(9+)		
174.3	245.3	(7)	70.9	(5)		
176.6	783.6	(12^{-})	606.9	(11^{-})		
191.8	262.1	(7)	70.9	(5)	(Q)	Mult.: $\Delta J=2$, Q transition quoted by 2008Su08 as obtained by DCO (with no evidence).
197.4	2814.1	(18^{+})	2616.6	(17^{+})		
210.3	865.3	(11^{+})	655.0	(10^{+})		
220.0	2909.4	(20^{-})	2689.7	(19 ⁻)		
221.1	390.9	(8 ⁻)	169.2	(6)	(Q)	Mult.: $\Delta J=2$, Q transition quoted by 2008Su08 as obtained from DCO ratio value around 1.0.
223.8	1406.1	(15^{-})	1182.2	(14^{-})		
228.6	1094.1	(12^{+})	865.3	(11^{+})		
233.7	390.9	(8 ⁻)	157.2	(6)	(Q)	Mult.: $\Delta J=2$, Q transition quoted by 2008Su08 as obtained from DCO ratio value around 1.0.
234.4	234.4+x	(10^{+})	х	(8^{+})		
237.7	3051.5	(19^{+})	2814.1	(18^{+})		
240.5	390.9	(8 ⁻)	150.8	(6)		
243.6	2814.1	(18^{+})	2570.4	(17^{+})		
245.7	1182.2	(14^{-})	936.5	(13 ⁻)		
251.2	3160.8	(21^{-})	2909.4	(20^{-})		
253.2	3413.8	(22^{-})	3160.8	(21^{-})		
259.6	783.6	(12 ⁻)	523.6	(10 ⁻)	(Q)	Mult.: $\Delta J=2$, Q transition quoted by 2008Su08 as obtained by DCO (with no evidence).
262.9	3314.1	(20^{+})	3051.5	(19 ⁺)		
263.3	2909.4	(20^{-})	2647.2	(19 ⁻)		
264.3	1358.6	(13^{+})	1094.1	(12^{+})		
266.6	390.9	(8 ⁻)	124.4	(6)		
273.2	1632.0	(14^{+})	1358.6	(13^{+})		
282.7	3596.8	(21^{+})	3314.1	(20^{+})		
289.8	1696.2	(16 ⁻)	1406.1	(15^{-})		
289.8	1985.6	(17-)	1696.2	(16 ⁻)		
304.6	2242.7	(16^{+})	1938.4	(15^{+})		
305.9	4029.0	(24 ⁻)	3723.2	(23-)		
306.3	1938.4	(15^{+})	1632.0	(14^{+})		
309.3	3723.2	(23^{-})	3413.8	(22 ⁻)		
312.8	655.0	(10^{+})	342.4	(8^{+})		
314.4	3911.2	(22^{+})	3596.8	(21^{+})		
316.8	2302.8	(18 ⁻)	1985.6	(17^{-})		
327.7	2570.4	(17^{+})	2242.7	(16^{+})		
329.7	4411.3	(24 ⁻)	4081.6	(23 ⁻)		
329.8	2977.4	(20^{-})	2647.2	(19 ⁻)		
330.0	936.5	(13^{-})	606.9	(11^{-})		

Continued on next page (footnotes at end of table)

(HI,xnγ) 2008Su08,1989An08,1986Dr06 (continued)

γ ⁽¹⁶⁰Tm) (continued)</sup>

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
330.1	3688.4	(22^{-})	3358.2	(21^{-})
338.5	4249.5	(23^{+})	3911.2	(22^{+})
339.2	2909.7	(18^+)	2570.4	(17+)
342.5	5155.4	(26^{-})	4812.5	(25-)
344.3	2647.2	(19^{-})	2302.8	(18^{-})
353.5	4382.3	(25-)	4029.0	(24^{-})
361.3	4610.5	(24^+)	4249.5	(23^{+})
364.4	5946.5	(28-)	5581.5	(27^{-})
364.6	599.0+x	(12^+)	234.4+x	(10^{+})
367.4	4749.9	(26^{-})	4382.3	(25-)
380.6	3358.2	(21^{-})	2977.4	(20^{-})
380.8	865.3	(11^+)	484.5	(9+)
393.5	4081.6	(23^{-})	3688.4	(22^{-})
398.4	1182.2	(14^{-})	783.6	(12^{-})
401.0	4812.5	(25^{-})	4411.3	(24^{-})
409.4	2909.4	(20^{-})	2499.0	(18^{-})
425.0	5581.5	(27^{-})	5155.4	(26^{-})
		(_,)		(_~)
435.3	3051.5	(19 ⁺)	2616.6	(17^{+})
437.9	1796.5	(14^{+})	1358.6	(13^{+})
439.2	1094.1	(12^{+})	655.0	(10^{+})
468.8	1067.8+x	(14^{+})	599.0+x	(12^{+})
469.6	1406.1	(15^{-})	936.5	(13 ⁻)
471.3	3160.8	(21^{-})	2689.7	(19 ⁻)
480.6	3051.5	(19^{+})	2570.4	(17^{+})
493.5	1358.6	(13^{+})	865.3	(11^{+})
499.6	3314.1	(20^{+})	2814.1	(18^{+})
504.2	3413.8	(22^{-})	2909.4	(20^{-})
513.5	3160.8	(21^{-})	2647.2	(19 ⁻)
513.9	1696.2	(16 ⁻)	1182.2	(14 ⁻)
538.1	1632.0	(14^+)	1094.1	(12^+)
545.4	3596.8	(21^{+})	3051.5	(19 ⁺)
556.6	1624.4+x	(16^+)	1067.8+x	(14^{+})
562.4	3723.2	(23^{-})	3160.8	(21^{-})
5/1.7	2814.1	(18 ⁺)	2242.7	(16 ⁺)
579.8	1985.6	(17)	1406.1	(15)
579.9	1938.4	(15^{+})	1358.6	(13^{+})
589.3	2909.7	(18^+)	2320.5	(16')
597.1	3911.2	(22^+)	3314.1	(20^{+})
606.1	2909.4	(20)	2302.8	(18)
610.7	2302.8	(18)	1690.2	(10)
610.7	2242.7	(10^{-1})	1632.0	(14°)
615.4	4029.0	(24)	3413.8	(22)
644.2	2370.4	$(1/^{+})$	1938.4	(15^{+})
652 0	2208.7+X	(10)	1024.4+X	(10)
650 0	4249.3	(25)	22222	(21)
662.2	4382.3	(23)	3/23.2	(23)
667.2	2047.2	(19)	1965.0	(17)
675.0	2909.7	(10)	2242.7	(10)
678 5	2711.4 2616.6	(20)	2302.8	(10)
070.J 688 5	2010.0	$(1/^{+})$	1936.4	(13^{+})
606.2	2520.5	(10)	1358.6	(14)
600 A	2004.0	(13) (24^{+})	3011.2	(13)
704 5	2689.7	(2+) (10 ⁻)	1085.6	(22)
704.7	2009.7 2973 $4\pm v$	(20^{+})	1765.0 2268 7±v	(17)
,01.7		(20)	2200./ IA	(10)

E_{γ} : E_{γ} deviates by >3 σ from the fit giving reduced $\chi^2 = 1.8$, compared to critical
χ^2 =1.6. Uncertainty of 1 keV is assigned which gives χ^2 =1.3.
E_{γ} : 453.3 in figure 1 of 2008Su08 seems a type error.

Comments

Continued on next page (footnotes at end of table)

$(HI,xn\gamma)$ 2008Su08,1989An08,1986Dr06 (continued)

$\gamma(^{160}\text{Tm})$ (continued)

Eγ	E _i (level)	\mathbf{J}_i^{π}	$E_f J_j^r$	$\frac{\tau}{f}$ Mult.	Comments
711.0	3358.2	(21^{-})	2647.2 (19)	
711.2	3688.4	(22^{-})	2977.4 (20))	
721.0	4749.9	(26^{-})	4029.0 (24	-)	
722.8	4411.3	(24^{-})	3688.4 (22	2-)	
723.3	4081.6	(23^{-})	3358.2 (21	-)	
731.2	4812.5	(25 ⁻)	4081.6 (23	5-)	
742.9	4824.5	(25 ⁻)	4081.6 (23	(Q)	Mult.: ΔJ=2, Q transition quoted by 2008Su08 evidence) and intensity balance ratio.
743.9	5155.4	(26^{-})	4411.3 (24	-)	, , , , , , , , , , , , , , , , , , ,
755.9	5138.2	(27^{-})	4382.3 (25	(⁻)	
756.2	5006	(25^{+})	4249.5 (23	⁺)	
769.4	5581.5	(27^{-})	4812.5 (25	(⁻)	
791.8	5946.5	(28^{-})	5155.4 (26	i ⁻)	
799.5	5410	(26^{+})	4610.5 (24	+)	
801.9	2499.0	(18^{-})	1696.2 (16	i ⁻)	
828.4	6410	(29 ⁻)	5581.5 (27	'-)	
841.8	5848	(27^{+})	5006 (25	⁽⁺⁾	
851.8	6798	(30 ⁻)	5946.5 (28	5-)	
893.4	7303	(31-)	6410 (29) [_])	

2008Su08 as obtained by DCO (with no tio.

 † Placement of transition in the level scheme is uncertain.

Level Scheme

¹⁶⁰₆₉Tm₉₁

Level Scheme (continued)

¹⁶⁰₆₉Tm₉₁

8

Level Scheme (continued)

¹⁶⁰₆₉Tm₉₁

(HI,xnγ) 2008Su08,1989An08,1986Dr06 Legend Level Scheme (continued) γ Decay (Uncertain) ► ^{⊥ &} 157.2 150.8 124.4 70.9 £

74.5 s 15

9.4 min 3

42.0 0.0

10

¹⁶⁰₆₉Tm₉₁

¹⁶⁰₆₉Tm₉₁