¹⁶⁰Yb ε decay (4.8 min) 1978Ad03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

Parent: ¹⁶⁰Yb: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=4.8 \text{ min } 2$; $Q(\varepsilon)=2140 \ 30$; $\%\varepsilon+\%\beta^+$ decay=100.0 ¹⁶⁰Yb-Q(ε): From 2021Wa16.

Additional information 1.

Source produced in 660-MeV proton spallation of Ta and Hf targets followed by mass separation. Measured E γ , I γ , E(ce), Ice, prompt and delayed $\gamma\gamma$, γ ce. Plastic, Ge(Li) detectors, magnetic lens β spectrometer.

¹⁶⁰Tm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	1-	9.4 min 3	$T_{1/2}$: adopted value; 9.2 min 4 from 1970De13 and 1970DeZF (this dataset).
42.10 5	2-	1.6 ns <i>3</i>	$T_{1/2}$: delayed γ ce (1978Ad03).
99.43 <i>4</i>	$1^{(-)}$		
140.33 4	$0^+, 1^+, 2^+$		
174.38 5	1^{+}	17 ns 1	$T_{1/2}$: delayed γ ce (1978Ad03).
215.84 4	1+	0.65 ns 15	$T_{1/2}$: deduced from centroid shift in delayed $\gamma\gamma$ (1978Ad03).
494.49 14	1+		
543.36 <i>13</i>	$(1,2,3)^+$		
547.38 11	1^{+}		
605.37 <i>13</i>	1^{+}		
797.96 21	1+		

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(1.34 \times 10^3 \ 3)$	797.96		1.29 21	5.69 8	1.29 21	εK=0.8253 2; εL=0.13401 21; εM+=0.04044 8
$(1.53 \times 10^3 \ 3)$	605.37	0.012 5	5.7 16	5.17 13	5.7 16	av Eβ=246 14; εK=0.8252 3; εL=0.13271 21; εM+=0.03999 8
$(1.59 \times 10^3 \ 3)$	547.38	0.014 3	4.3 5	5.32 6	4.3 5	av Eβ=272 14; εK=0.8247 4; εL=0.13230 23; εM+=0.03985 8
$(1.65 \times 10^3 \ 3)$	494.49	0.0087 20	1.93 24	5.70 6	1.94 24	av Eβ=295 14; εK=0.8239 6; εL=0.13190 24; εM+=0.03972 8
$(1.92 \times 10^3 \ 3)$	215.84	1.4 2	79 8	4.23 5	80 8	av Eβ=418 14; εK=0.8144 17; εL=0.1292 4; εM+=0.03886 12
$(1.97 \times 10^3 \ 3)$	174.38	0.1 1	73	5.31 <i>19</i>	73	av Eβ=436 14; εK=0.8121 19; εL=0.1287 4; εM+=0.03870 13
$(2.04 \times 10^3 \ 3)$	99.43	0.072 13	2.6 4	5.76 7	2.7 4	av E β =469 14; ε K=0.8072 22; ε L=0.1277 5; ε M+=0.03838 14
$(2.14 \times 10^3 \ 3)$	0.0	0.05 5	1.4 14	6.1 5	1.5 15	av Eβ=513 14; εK=0.799 3; εL=0.1262 5; εM+=0.03791 16

[†] Absolute intensity per 100 decays.

 $\gamma(^{160}\text{Tm})$

I γ normalization: Listed value was calculated by the evaluator assuming a g.s. $\varepsilon + \beta^+$ branch of 1.5% 15. This value was deduced from the requirement that log ft for the first-forbidden $\varepsilon + \beta^+$ transition to the g.s. be ≥ 5.9 , which implies that this intensity be $\leq 3\%$. 1978Ad03 report an upper limit of $\approx 25\%$ for this direct g.s. feeding, inferred from their measured K x ray intensity and the intensity balance in ¹⁶⁰Tm.

Eγ	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\&}$	$\alpha^{@}$	$I_{(\gamma+ce)}^{a}$	Comments
34.18 10	3.1 5	174.38	1+	140.33	0+,1+,2+	M1		11.69 20		%Iγ=1.33 21 α (L)=9.11 15; α (M)=2.03 4 α (N)=0.475 8: α (O)=0.0682 12: α (P)=0.00368 6
(41.46 7)	≈0.4	215.84	1+	174.38	1+	(M1+E2)	≥0.65	92 46	≈40	%Iγ=0.17 8 ce(L)/(γ+ce)=0.76 26; ce(M)/(γ+ce)=0.18 12 ce(N)/(γ+ce)=0.042 29; ce(O)/(γ+ce)=0.0048 34; ce(P)/(γ+ce)=1.02×10 ⁻⁵ 84 α(L)=70 36; $α$ (M)=17.1 87 α(N)=3.9 20; $α$ (O)=0.44 22; $α$ (P)=9.4×10 ⁻⁴ 62 E _γ : from level-energy difference. Mult., δ ,I _γ : 1978Ad03 have deduced I(γ+ce)≈40 based upon analysis of their coincidence results. From this and their measured I(ce(L1)) they deduced an E2 component of ≥30%. Lea(L)≤3 (1978Ad03)
42.02 10	7.3 6	42.10	2-	0.0	1-	M1+E2	0.31 3	17.1 20		$^{(1)}_{(1)}$ (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3
62.05 <i>10</i> *94.29 <i>7</i>	0.46 <i>15</i> 0.92 8	605.37	1+	543.36	(1,2,3)+	(M1,E2)		16.6 <i>45</i>		% I γ =0.20 7 α (K)=6.0 42; α (L)=8.2 66; α (M)=2.0 17 α (N)=0.45 37; α (O)=0.053 41; α (P)=3.8×10 ⁻⁴ 26 Mult.: if E1 intensity at 543 level cannot be balanced. % I γ =0.39 5
98.24 5	2.8 2	140.33	0+,1+,2+	42.10	2-	[E1]		0.350		% $I_{\gamma}=1.20 \ I3$ $\alpha(K)=0.289 \ 4; \ \alpha(L)=0.0470 \ 7; \ \alpha(M)=0.01048 \ I5$ $\alpha(N)=0.00240 \ 4; \ \alpha(O)=0.000318 \ 5;$ $\alpha(P)=1.287 \times 10^{-5} \ I8$
99.46 5	2.1 1	99.43	1 ⁽⁻⁾	0.0	1-	[M1]		3.15		% $I\gamma$ =0.90 9 α (K)=2.64 4; α (L)=0.400 6; α (M)=0.0891 13 α (N)=0.0208 3; α (O)=0.00300 5; α (P)=0.0001620 23
116.44 5	1.96 16	215.84	1+	99.43	1 ⁽⁻⁾	(E1)		0.223		%Iγ=0.84 <i>10</i>

 \mathbf{b}

 $^{160}_{69}\mathrm{Tm}_{91}$ -2

					160 Yb ε	decay (4.8	3 min)	1978Ad03 (continued)
γ ⁽¹⁶⁰ Tm) (continued)								
E_{γ}	I_{γ} #a	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	α [@]	Comments
132.23 5	14.0 7	174.38	1+	42.10	2-	E1	0.1593	$\alpha(K)=0.185 \ 3; \ \alpha(L)=0.0294 \ 5; \ \alpha(M)=0.00654 \ 10$ $\alpha(N)=0.001504 \ 22; \ \alpha(O)=0.000201 \ 3; \ \alpha(P)=8.45\times10^{-6} \ 12$ $\%I\gamma=6.0 \ 6$ $\alpha(K)=0.1328 \ 19; \ \alpha(L)=0.0207 \ 3; \ \alpha(M)=0.00461 \ 7$ $\alpha(N)=0.001061 \ 15; \ \alpha(O)=0.0001430 \ 20; \ \alpha(P)=6.16\times10^{-6} \ 9$
140.35 5	22.2 10	140.33	0+,1+,2+	0.0	1-	E1	0.1360	I _{cc(K)} <1.8 (1978Ad03). %Iy=9.5 9 α (K)=0.1135 16; α (L)=0.01759 25; α (M)=0.00391 6 α (N)=0.000901 13; α (O)=0.0001219 18; α (P)=5.31×10 ⁻⁶ 8 I _{cc} (K)<2.5 (1978Ad03).
^x 155.76 7 173.74 6	1.7 2 100 4	215.84	1+	42.10	2-	E1	0.0775	$\%_{1}\gamma=0.73 II$ $\%_{1}\gamma=43 4$ $\alpha(K)=0.0649 I0; \alpha(L)=0.00985 I4; \alpha(M)=0.00219 3$ $\alpha(N)=0.000505 7; \alpha(Q)=6.90\times10^{-5} I0; \alpha(P)=3.12\times10^{-6} 5$
174.40 10	13.2 15	174.38	1+	0.0	1-	E1	0.0767	$\alpha(1) = 0.0000000000000000000000000000000000$
215.78 6	48 2	215.84	1+	0.0	1-	E1	0.0441	$\alpha(N)=0.000500^{-7}, \alpha(O)=0.84\times10^{-7}10, \alpha(T)=5.09\times10^{-5}3^{-7}$ %I $\gamma=20.5$ 18 $\alpha(K)=0.0370$ 6; $\alpha(L)=0.00553$ 8; $\alpha(M)=0.001226$ 18 $\alpha(N)=0.000284$ 4; $\alpha(O)=3.91\times10^{-5}$ 6; $\alpha(P)=1.83\times10^{-6}$ 3 I _{ce(K)} <1.5 (1978Ad03).
^x 278.0 [‡] 3	1.0 2							%Iy=0.43 10
320.00 15	3.4 3	494.49	1+	174.38	1+			%Iy=1.45 <i>18</i>
327.60 15	5.6 4	543.36	$(1,2,3)^+$	215.84	1^+			$\%$ I γ =2.4 3
334.0 3	1.1 2	494.49	1	140.55	0,1,2,			$\%1\gamma = 0.4710$
*356.9 * 5	0.74 20							$\%1\gamma = 0.32$ 9
*366.2# 3 373.00.10	1.05 25	547 38	1+	17/ 38	1+			$\frac{9}{12} = 0.45 \ 12$
x386.30 20	3.0.3	547.50	1	174.50	1			$\% I_{\gamma} = 1.28 I_{\gamma}$
389.45 15	5.2 3	605.37	1+	215.84	1^{+}			%Iy=2.22 4
^x 395.16 25	1.61 23							%Iy=0.69 <i>12</i>
^x 429.0 [‡] 4	1.2 3							%Iy=0.51 14
^x 465.2 [‡] 4	1.4 3							%Iy=0.60 14
⁴ 563.1 3	1.8 4	707.06	1+	215.04	1+			$\frac{1}{2} \frac{1}{2} \frac{1}$
$382.12\ 20$	5.0 4 1.50.25	/9/.90	1	213.84	1			$\frac{901}{100} = 1.2022$
388.7 3	1.50 35							$\%1\gamma = 0.04 \ 10$

[†] From relative I γ and Ice values, normalized so that α (L1)+ α (L2)=8.8 for the 42 γ . [‡] Assignment to ¹⁶⁰Yb decay uncertain.

 $\boldsymbol{\omega}$

 $^{160}_{69}\mathrm{Tm}_{91}$ -3

 $^{160}_{69}\mathrm{Tm}_{91}$ -3

 160 Yb ε decay (4.8 min) 1978Ad03 (continued)

 γ (¹⁶⁰Tm) (continued)

[#] I(K α_1 x ray)=129 9, relative to I $\gamma(173.7\gamma)$ =100. [@] Additional information 2. [&] Additional information 3. ^a For absolute intensity per 100 decays, multiply by 0.43 4. ^x γ ray not placed in level scheme.

