			T	ype	Author	History Citation	Literature Cutoff Date		
			Full Ev	aluation	N. Nica	NDS 176, 1 (2021)	1-May-2021		
$Q(\beta^{-}) = -214$ S(2n)=17740 Additional in For a discuss A \approx 160, 2001Kv(40 <i>30</i> ; 0 <i>40</i> , 9 nforma sion o see 20 02, 20	S(n)=7800 40 S(2p)=8690 40 ation 1. f the systemat 001Ri19 and 2 01Zh16, 2003	P; S(p)=30) (2021Wa ic features 011Ku12. Ya19, and	30 <i>30</i> ; Q(116). 5 of signati For other 2010Zh14	α)=2810 50 ure inversion discussion	0 2021Wa16 on in the $(\pi h_{11/2})(\nu i_{13})$ s, including theoretical	₍₂₎ bands in nuclides in the mass region calculations, see 1995Li40, 1997Zh13, 2000Xu01,		
						¹⁶⁰ Tm Levels			
					Cross	Reference (XREF) Fla	gs		
					A B C D	¹⁶⁰ Tm IT decay (74.5 s ¹⁶⁰ Yb ε decay (4.8 min (HI,xnγ) ¹²⁸ Te(³⁷ Cl,5nγ):tsd	s) 1)		
E(level) [†]	J^{π}	T _{1/2}	XREF				Comments		
0.0 ^{<i>f</i>}	1-	9.4 min <i>3</i>	AB		^t =100 6 <i>18</i> ; Q=+ ic beam (1 ¹ erage of 9.2 1989A127, 1989A127, 1989A127, ⁵⁰ Tm ⁻¹⁶⁹ T Mi31,19882 he value of of a beam .n02 report	0.582 44 971Ek01). π =- from F 2 min 4 (1970De13) ar resonance ionization m resonance ionization m rm)=-0.783 fm ² 4 (add Al04). Earlier work (19 f this quantity. Both stu- of mass-separated atom $^{1/2}=5.1504$ fm 5.	E1 γ from 1 ⁺ level at 215.84 keV. ad 9.5 min 4 (1975St12). hass spectroscopy. 2014StZZ report μ =+0.16 2. hass spectroscopy. 2016St14 list Q=+0.58 4. opted by 2013An02), -0.741 fm ² 4 286A132) by this collaboration reported -0.726 fm ² udies employed resonant photoionization, via ms. In an evaluation of nuclear rms charge radii, 5.		
42.11 ^{<i>f</i>} 5	2-	1.6 ns 3	ABC	$T_{1/2}$: from J^{π} : 42γ to this let	m delayed to g.s. is M vel is the 2	γ ce in ε decay (1978A) 11+E2. Level energy and z^{-} member of the g.s. b	Ad03). nd large B(E2) of this γ transition suggest that band.		
70 20	5	74.5 s <i>15</i>	A C	 2013An02 report <r<sup>+>1/2=5.1504 fm 55.</r<sup> T_{1/2}: from delayed γce in ε decay (1978Ad03). J^π: 42γ to g.s. is M1+E2. Level energy and large B(E2) of this γ transition suggest that this level is the 2⁻ member of the g.s. band. %ε+%β⁺=15 5; %IT=85 5 Additional information 2. The values for %ε+%β⁺ and %IT are those of 1983Si20, from analysis of the decay of the 264.1 γ in ¹⁶⁰Er (emitted following the decays of both this level and the ¹⁶⁰Tm g.s.). E(level): 70.9 15 (HI dataset) if presumably measured 28.85γ to 42 level would be confirmed. E(level): 70 20 estimated by 2005Re18 from the absence of K x rays and of a ce transition with E(ce)<35 keV that suggests that Eγ<50 keV for any transition in the IT decay. The isomer must lie above the 42 level since, if it were to lie below this level, the decay would have to take place to the g.s., and the implied B(E4)(W.u.) or B(M4)(W.u.) value would greatly exceed RUL. The most probable mode for the IT decay is to the 42 level. With the energy of the decxiting γ restricted to between ≈8 keV (L x rays are observed) and ≈50 keV, the energy of the isomer is estimated to lie somewhere between ≈50 and ≈90 keV. 1983Si20 conclude that the isomeric state is located within 100 keV above the g.s. 70.9 <i>I</i>5 if the presumably measured 28.85γ to 42 level in the HI dataset would be confirmed. J^π: log <i>ft</i>=6.4 (log <i>f</i>^{lu}<i>t</i>=8.2) to 4⁺ and log <i>ft</i>=6.5 (log <i>f</i>^{lu}<i>t</i>=8.2) to 6⁺. Since the side band populated in the heavy-ion reactions probably has K^π=5⁺, it is tempting to identify this state as the head of this band. If this is correct, then J^π would be 5⁺ for this state, 					

Continued on next page (footnotes at end of table)

¹⁶⁰Tm Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
99.43 4	1(-)		В	1990TeZX show a 161.8 level having $J^{\pi}=5^+$ on their proposed level scheme which could be this bandhead, but no information is given to support either the energy or the J^{π} assignment of this level. Note also that, if the $\varepsilon+\beta^+$ branching to the 3 ⁺ , 987 level in ¹⁶⁰ Er is nonzero, a 5 ⁺ assignment to this level is ruled out. T _{1/2} : γ (t), from IT decay (1983Si20). J^{π} : log <i>ft</i> =5.8 for the $\varepsilon+\beta^+$ transition from 0 ⁺ implies J=1 with $\Delta\pi$ =no more likely (but $\Delta\pi$ =yes not excluded). (E1) γ from 1 ⁺ implies $\pi=(-)$ and
123.5 8 140 33 <i>4</i>	$(6^{-},7)$ 0^{+} 1^{+} 2^{+}		C B	J=0,1,2. If π =+ is adopted then 99.5 γ would be E1 that would give negative ε + β ⁺ feeding to 99.4 level; therefore the evaluator has adopted π =(-) the argument from log <i>ft</i> . J ^{π} : γ from (8 ⁻) and γ to (5). I ^{π} : E1 transition to g s. Configuration=(π 1/2[411] – γ 5/2[642]) seems
110.55 7	0,1,2		D	reasonable, based on expected systematics of odd-neutron states. If this is correct, then J^{π} is most probably 2^+ .
149.9 7 156.3 8	(6 ⁻ ,7) (6)		C C	J^{π} : γ from (8 ⁻) and γ to (5). J^{π} : $\Delta J=1 \gamma$ to $J=5$ in (HI,xn γ).
168.4 8 174.38 6	(6) 1 ⁺	17 ns <i>1</i>	C B	J^{π} : $\Delta J=1$, γ to $J=5$ in (HI,xn γ). J^{π} : log $ft=5.3$ from 0 ⁺ . E1 transitions to 1 ⁻ and 2 ⁻ states. Thus: from delayed area (1978 Δ d03) in a decay
215.84 4	1+	0.65 ns 15	В	J^{π} : log ft =4.2 indicates allowed unhindered $\varepsilon + \beta^+$ transition from 0 ⁺ parent, giving uniquely J^{π} =1 ⁺ . This also establishes configuration=(π 7/2[523] – ν 5/2[523]) for this state. Two: from centroid shift in delayed $\gamma\gamma$ in ε decay (1978Ad03).
244.0 ^b 13	(7 ⁺) [#]		С	A level previously adopted by 2005Re18 (from 1989An08) of energy 76.0+Y (with Y undetermined), with J=7 ⁺ , and decaying by a 76.0 γ could tentatively be associated with this level, which is also decaying by a close-lying 76.0 γ .
244.4 8 261.2 7	(6 ⁻ ,7) (7)		C C	J^{π} : γ from (8 ⁻) and γ to (5). J^{π} : $\Delta J=2$, (Q) γ to $J=(5)$.
341.9 ^{<i>a</i>} 16	(8 ⁺) [#]		С	A level previously adopted by 2005Re18 (from 1989An08) of energy 98.2+X (with X undetermined), with J=(8), $T_{1/2} \approx 200$ ns (from $\gamma\gamma(t)$ in 1986Dr06)), and decaying by a 98.2 γ could tentatively be associated with this level, which is also decaying by a close-lying 97.9 γ (however the feeding patterns of 98.2+X and this level are different).
390.0 6	(8-)		С	J^{π} : $\Delta J=2$, (Q) γ to $J=(6)$; $\pi=(-)$ postulated by 2008Su08 in (HI,xn γ) dataset from nuclear structure arguments.
443.4 <mark>&</mark> 10	(9 ⁻) [‡]		С	J^{π} : (9,10) from γ to $J=(8^{-})$; (9 ⁻) postulated by 2008Su08 in (HI,xn γ) dataset.
483.9 ^b 18	$(9^+)^{\#}$		С	J^{π} : (9,10) from γ to $J=(8^+)$; (9 ⁺) postulated by 2008Su08 in (HI,xn γ).
494.49 15	1+		В	J^{π} : log $ft=5.7$ from 0 ⁺ parent.
522.7 [@] 10	(10 ⁻) [‡]		С	J^{π} : γ 's to (8 ⁻) and (9 ⁻) and band structure.
543.35 13	$(1,2,3)^{+}$		B	J^{n} : (M1,E2) γ to 1 ⁺ .
605 37 <i>13</i>	1 1 ⁺		B	J^{π} : log $ft=5.2$ from 0^+ parent
605.9° 11	$(11^{-})^{\ddagger}$		C C	I^{π} : γ' s to (9^{-}) and (10^{-}) and band structure
654.6^{a} 18	$(10^+)^{\#}$		c	J^{π} : γ' 's to (8 ⁺) and (9 ⁺) and band structure.
782.6 [@] 12 797.96 21	$(12^{-})^{\ddagger}$		CB	J^{π} : $\Delta J=2$, (Q) γ to (10 ⁻) and band structure. J^{π} : log $ft=5.7$ from 0 ⁺ parent.
864.8 ^b 19	(11 ⁺) [#]		С	J^{π} : γ' s to (9 ⁺) and (10 ⁺) and band structure.
935.5 ^{&} 13	$(13^{-})^{\ddagger}$		c	J^{π} : γ' s to (11 ⁻) and (12 ⁻) and band structure.
1093.7 ^{<i>a</i>} 19	$(12^+)^{\#}$		c	J^{π} : γ' s to (10 ⁺) and (11 ⁺) and band structure.
1181.1 [@] 14	$(14^{-})^{\ddagger}$		- C	J^{π} : γ' s to (12 ⁻) and (13 ⁻) and band structure.
	()		~	

Continued on next page (footnotes at end of table)

¹⁶⁰Tm Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
1358.2 ^b 20	$(13^+)^{\#}$	С	J^{π} : γ 's to (11 ⁺) and (12 ⁺) and band structure.
1405.0 ^{&} 15	(15 ⁻) [‡]	С	J^{π} : γ' s to (13 ⁻) and (14 ⁻) and band structure.
1631.6 ^a 21	(14 ⁺) [#]	С	J^{π} : γ 's to (12 ⁺) and (13 ⁺) and band structure.
1695.1 [@] 15	(16 ⁻) [‡]	С	J^{π} : γ 's to (14 ⁻) and (15 ⁻) and band structure.
1796.1 22	(14 ⁺)	С	J^{π} : γ to (13 ⁺); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
1938.0 ⁰ 21	$(15^+)^{\#}_{\#}$	С	J^{π} : γ 's to (13 ⁺) and (14 ⁺) and band structure.
1984.4 ^{A} 16	$(17^{-})^{+}$	C	J^{π} : γ 's to (15 ⁻) and (16 ⁻) and band structure.
2034.4 22	$(15^{+})^{\#}$	C	J^{*} : γ to (15 ⁺); postulated by 20088008 in (H1, xir γ) dataset (based on level scheme arguments).
2242.5 21 2301 6 ^{<i>a</i>} 16	$(10^{-})^{\ddagger}$	c	$J \cdot \gamma$ s to (14 ⁻) and (15 ⁻) and band structure.
2320.1 22	$(16^+)^+$	c	J^{π} : γ to (14 ⁺); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
2497.9 ^d 17	(18 ⁻)	С	J^{π} : γ to (16 ⁻); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
2570.1 ^b 22	$(17^+)^{\#}$	С	J^{π} : γ' s to (15 ⁺) and (16 ⁺) and band structure.
2616.2 22	(17 ⁺)	С	J^{π} : γ to (15 ⁺); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
2646.0 ^{&} 17	(19 ⁻) [‡]	С	J^{π} : γ 's to (17 ⁻) and (18 ⁻) and band structure.
2688.5 ^c 17	(19^{-})	C	J^{π} : γ to (17 ⁻); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
2813.8 ^d 22	(18 ⁺) [#]	C	J^{π} : γ 's to (16 ⁺) and (17 ⁺) and band structure.
2908.2 ^{<i>a</i>} 17	(20^{-}) (18^{+})	C	J^{n} : γ' s to (18 ⁻) and (19 ⁻) and band structure.
2909.422 2076.2 [@] 17	$(10^{-})^{\ddagger}$	C C	$J \cdot \gamma$ s to (10 ⁻) and (17 ⁻) and band structure.
$3051.1^{b}22$	$(10^+)^{\#}$	c	J^{π} : γ 's to (17 ⁺) and (18 ⁺) and band structure
3159.5 [°] 17	$(1)^{-})$	c	J^{π} : γ 's to (19 ⁻) and (20 ⁻) and band structure.
3313.7 ^a 23	$(20^+)^{\#}$	С	J^{π} : γ' s to (18 ⁺) and (19 ⁺) and band structure.
3357.0 ^{&} 18	(21 ⁻) [‡]	С	J^{π} : γ' s to (19 ⁻) and (20 ⁻) and band structure.
3412.6 ^d 18	(22 ⁻)	С	J^{π} : γ 's to (20 ⁻) and (21 ⁻) and band structure.
3596.4 <mark>b</mark> 23	(21 ⁺) [#]	С	J^{π} : γ 's to (19 ⁺) and (20 ⁺) and band structure.
3687.2 [@] 18	(22 ⁻) [‡]	С	J^{π} : γ 's to (20 ⁻) and (21 ⁻) and band structure.
3722.0 ^c 18	(23 ⁻)	С	J^{π} : γ 's to (21 ⁻) and (22 ⁻) and band structure.
3910.9 ^{<i>a</i>} 24	(22 ⁺) [#]	C	J^{π} : γ 's to (20 ⁺) and (21 ⁺) and band structure.
4027.8 ^{<i>a</i>} 19	(24 ⁻)	C	J^{π} : γ 's to (22 ⁻) and (23 ⁻) and band structure.
4080.4 ^{cc} 19	(23 ⁻)+	C	J^{π} : γ 's to (21 ⁻) and (22 ⁻) and band structure.
4249.2° 24	$(23^{+})''$	C	$J^{\prime\prime}$: γ' s to (21 ⁺) and (22 ⁺) and band structure.
4381.1 19	$(23^{-})^{\ddagger}$	C C	J. γ s to (2.5) and (2.4) and band structure.
$4610.2^{a}.25$	$(24^+)^{+}$	c	J^{π} : γ 's to (22 ⁺) and (23 ⁺) and band structure.
4748.6^{d} 20	(26^{-})	c	J^{π} : γ 's to (22 ⁻) and (25 ⁻) and band structure.
4811.3 & 20	$(25^{-})^{\ddagger}$	c	J^{π} : γ 's to (23 ⁻) and (23 ⁻) and band structure.
4823.3 22	(25 ⁻)	C	J^{π} : (Q) γ to (23 ⁻) and band structure.
5005 ^b 3	$(25^+)^{\#}$	С	J^{π} : γ to (23 ⁺); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
5137.0 ^c 22	(27 ⁻)	С	J^{π} : γ to (25 ⁻); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
5154.2 ^{^w} 21	$(26^{-})^{+}$	С	J^{π} : γ 's to (24 ⁻) and (25 ⁻) and band structure.
5410 ^{<i>a</i>} 3	(26 ⁺) [#]	С	J^{π} : γ to (24 ⁺); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
5580.3 [°] 21	(27 ⁻) ⁺	С	J^{n} : γ 's to (25 ⁻) and (26 ⁻) and band structure.
5847 [°] 3	(27 ⁺) [#]	С	J^{π} : γ to (25 ⁺); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
5945.3 ^w 22	(28 ⁻) ⁺	C	J^{n} : γ 's to (26 ⁻) and (27 ⁻) and band structure.
6408.7 [°] 23	(29 ⁻)+	С	J^{π} : γ to (27 ⁻); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).

Continued on next page (footnotes at end of table)

¹⁶⁰Tm Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
6797.1 [@] 24	(30 ⁻) [‡]	С	J ^{π} : γ to (28 ⁻); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
7302 ^{&} 3	(31 ⁻) [‡]	С	J^{π} : γ to (29 ⁻); postulated by 2008Su08 in (HI,xn γ) dataset (based on level scheme arguments).
x ^e	(8^{+})	С	Additional information 3.
234.4+x ^e 10	(10^{+})	С	
599.0+x ^e 15	(12^{+})	С	
1067.8+x ^e 18	(14^{+})	С	
1624.4+x ^e 20	(16^{+})	С	
2268.7+x ^e 23	(18^{+})	С	
2973.4+x ^e 25	(20^{+})	С	
y ^g	J	С	Additional information 4.
680.0+y ^g 10	J+2	D	
1412.0+y ^g 15	J+4	D	
2196.0+y ^g 18	J+6	D	
3032.0+y ^g 20	J+8	D	
3916.0+y ^g 23	J+10	D	
4856.0+y ^g 25	J+12	D	
5847+y ^g 3	J+14	D	
$6896 + v^8 3$	I+16	D	

[†] From a least-squares fit of the γ -ray energies. Where no uncertainties are available for the E γ values, a value of 1 keV was assigned for this calculation.

- [‡] Spin assignment based on considerations of band structure, theoretical predictions and studies of yrast bands in other doubly-odd deformed nuclei.
- [#] Spin assignment based on band-structure and nuclear-model considerations. Measured g-factors for some of the intraband transitions provide evidence for the listed configuration and, hence, that π =+.
- ^(a) Band(A): Yrast band, signature=0. Configuration= $(\pi 7/2[523] + \nu 5/2[642])$. By analogy with the situation in ¹⁶²Tm, this is the most likely Nilsson-orbital composition. At higher spins, the classification according to spherical shell-model structure, namely $\pi h_{11/2} \otimes v i_{13/2}$, as given by the authors, might be more appropriate.
- & Band(a): Yrast band, signature=1. Configuration= $(\pi 7/2[523] + \nu 5/2[642])$. See comment on the signature-0 portion of this band.
- ^{*a*} Band(B): Side band 1, signature=0. Configuration= $(\pi 7/2[523] + \nu 3/2[521])$. In the spherical shell-model notation, the band can be described as $\pi h_{11/2} \otimes \nu h_{9/2}$.
- ^b Band(b): Side band 1, signature=1. Configuration= $(\pi 7/2[523] + \nu 3/2[521])$. See comment on the signature-0 portion of this band.
- ^{*c*} Band(c): Side band 2, signature=1. $\pi g_{7/2} \otimes v h_{9/2} \otimes v i_{13/2}^2$.
- ^d Band(C): Side band 2, signature=0. $\pi g_{7/2} \otimes v h_{9/2} \otimes v i_{13/2}^2$.
- ^{*e*} Band(D): Side band 3, signature=0. $\pi d_{3/2} \otimes v i_{13/2}$. 10% of the intensity of band A. Tentative J^{π} values assigned by 2008Su08 in (HI,xn γ) dataset based on theory arguments and systematics.
- ^{*f*} Band(E): $K^{\pi}=1^{-}$ band. Configuration=(π 1/2[411] ν 3/2[521]). No band parameters are listed, since only two members of the band are known and a sizeable A₂ term may be present.
- ^{*g*} Band(F): Triaxial SD band. Population intensity $\approx 1\%$ of the channel populating ¹⁶⁰Tm. Comparisons with model calculations gives deformation parameters: $\varepsilon_2 \approx 0.39$ and $\gamma \approx 20^\circ$. Proposed configuration=[$\pi 6(21), \nu(22)5$], implying $\pi [h_{11/2}^6, (h_{9/2}f_{7/2})^2, (i_{13/2})^1]$; and $\nu [(N_{osc}=4)^2, (h_{11/2})^2, (i_{13/2})^5]$.

 $\gamma(^{160}\text{Tm})$

The adopted γ -ray properties, where more than simply an E γ value is given, have been taken from the ¹⁶⁰Yb ε decay. Other E γ values are from the heavy-ion-induced reaction studies.

S

The (Q) values adopted in the table based on DCO (2008Su08) can be considered (E2) for fast transitions from (HI, $xn\gamma$) reactions. However because no evidence of the DCO measurements was provided by authors the evaluator conservatively kept the (Q) assignment.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α &	Comments
42.11	2-	42.02 [@] 10	100	0.0	1-	M1+E2	0.31 3	17.1 20	$\alpha(L)=13.2 \ 16; \ \alpha(M)=3.1 \ 4$ $\alpha(N)=0.71 \ 9; \ \alpha(O)=0.088 \ 10; \ \alpha(P)=0.00185 \ 4$ $P(M)_{1}(W_{12})=0.0004 \ 21; \ P(P_{2})(W_{12})=2.5\times 10^{2} \ 8$
70	5	28.85 ^{<i>a</i>}	100	42.11	2-				E_{γ} : value given with two decimals but with no unc in (HI,xn γ) dataset (2008Lu17 and 2008Su08). Because of missing information it is not clear how this transition was measured, reason for which its existence is questioned by evaluator.
99.43	$1^{(-)}$	99.46 [@] 5	100	0.0	1 ⁻	[M1]		3.15	α (K)=2.64 4; α (L)=0.400 6; α (M)=0.0891 13 α (N)=0.0208 3; α (O)=0.00300 5; α (P)=0.0001620 23
140.33	$(0^{+}, 7)^{+}$ $0^{+}, 1^{+}, 2^{+}$	98.24 [@] 5	12.6 9	42.11	2-	[E1]		0.350	α (K)=0.289 4; α (L)=0.0470 7; α (M)=0.01048 15 α (N)=0.00240 4; α (O)=0.000318 5; α (P)=1.287×10 ⁻⁵ 18
140.0		140.35 [@] 5	100 5	0.0	1 ⁻	E1		0.1360	$ \alpha({\rm K}) {=} 0.1135 \ 16; \ \alpha({\rm L}) {=} 0.01759 \ 25; \ \alpha({\rm M}) {=} 0.00391 \ 6 \\ \alpha({\rm N}) {=} 0.000901 \ 13; \ \alpha({\rm O}) {=} 0.0001219 \ 18; \ \alpha({\rm P}) {=} 5.31 {\times} 10^{-6} \ 8 $
149.9	(6 ⁻ ,7)	79.8	100	70 70	5				
156.3 168.4	(6) (6)	86.3 97.8	100	70 70	5 5	(D) (D)			Mult.: $\Delta J=1$, (D) transition in (HI,xn γ) (2008Su08, DCO). Mult.: $\Delta J=1$, (D) transition in (HI,xn γ) (2008Su08, DCO).
174.38	1+	34.18 [@] 10	22 4	140.33	0+,1+,2+	M1		11.69 20	B(M1)(W.u.)=0.0014 4 α (L)=9.11 15; α (M)=2.03 4 α (N)=0.475 8; α (O)=0.0682 12; α (P)=0.00368 6
		132.23 [@] 5	100 5	42.11	2-	E1		0.1593	α (K)=0.1328 <i>19</i> ; α (L)=0.0207 <i>3</i> ; α (M)=0.00461 <i>7</i> α (N)=0.001061 <i>15</i> ; α (O)=0.0001430 <i>20</i> ; α (P)=6.16×10 ⁻⁶ <i>9</i> B(E1)(W.u.)=1.18×10 ⁻⁶ <i>16</i>
		174.40 [@] 10	94 11	0.0	1-	E1		0.0767	α (K)=0.0643 9; α (L)=0.00975 14; α (M)=0.00217 3 α (N)=0.000500 7; α (O)=6.84×10 ⁻⁵ 10; α (P)=3.09×10 ⁻⁶ 5 B(E1)(W,u)=4.8×10 ⁻⁷ 9
215.84	1+	(41.46)	≈0.4	174.38	1+	(M1+E2)	≥0.65	92 46	B(M1)(W.u.)≤0.0014; B(E2)(W.u.)≤540 α (L)=70 36; α (M)=17.1 87 α (N)=3.9 20; α (O)=0.44 22; α (P)=9.4×10 ⁻⁴ 62 B(E2)(W.u.): upper limit calculated if pure E2 γ (α =137.5 20); ≥ 23 if calculated with δ ≥ 0.65.
		116.44 [@] 5	1.96 <i>16</i>	99.43	1(-)	(E1)		0.223	$B(E1)(W.u.)=2.2\times10^{-6} 6$

From ENSDF

					A	dopted Lev	els, Gamm	nas (continued)
γ ⁽¹⁶⁰ Tm) (continued)								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [#]	α &	Comments
215.04		172 7 1@ (100.4	40.11			0.0555	$\alpha(K)=0.185 \ 3; \ \alpha(L)=0.0294 \ 5; \ \alpha(M)=0.00654 \ 10$ $\alpha(N)=0.001504 \ 22; \ \alpha(O)=0.000201 \ 3; \ \alpha(P)=8.45\times10^{-6} \ 12$
215.84	1'	1/3./4° 6	100 4	42.11	2	EI	0.0775	B(E1)(W.u.)=3.4×10 ⁻⁵ 9 α (K)=0.0649 10; α (L)=0.00985 14; α (M)=0.00219 3 α (N)=0.000505 7; α (O)=6.90×10 ⁻⁵ 10; α (P)=3.12×10 ⁻⁶ 5
		215.78 [@] 6	48.0 20	0.0	1-	E1	0.0441	B(E1)(W.u.)=8.5×10 ⁻⁶ 22 α (K)=0.0370 6; α (L)=0.00553 8; α (M)=0.001226 18 α (N)=0.00284 4: α (Q)=3.91×10 ⁻⁵ 6: α (P)=1.83×10 ⁻⁶ 3
244.0	(7^+)	75.6	100	168.4	(6)			
244.4 261.2	$(6^{-},7)$	174.3	100	70 149 9	$5(6^-7)$			
201.2	(/)	191.8		70	5	(Q)		Mult.: $\Delta J=2$, (Q) transition in (HI,xn γ) (2008Su08, DCO).
341.9 390.0	(8^+) (8^-)	97.9 128 9	100	244.0 261.2	(7^+) (7)	(D)		Mult \cdot AI=1 (D) transition in (HI xny) (2008Su08 DCO)
570.0	(0)	145.5		244.4	$(6^{-},7)$	(D)		$\operatorname{Hutt.:} \Delta J = 1, (D) \operatorname{Hallsholt} \operatorname{Hi} (\operatorname{Hi}, \operatorname{Ki}) (20000000, DC0).$
		221.1		168.4	(6)	(Q)		Mult.: $\Delta J=2$, (Q) transition in (HI,xn γ) (2008Su08, DCO).
		235.7 240.5		130.5	(6) $(6^{-},7)$	(Q)		Mult.: $\Delta J=2$, (Q) transition in (H1,Xiry) (2008Su08, DCO).
		266.6		123.5	(6 ⁻ ,7)			
443.4 483.9	(9^{-}) (9^{+})	53.7 142.0	100 100	390.0 341.9	(8^{-}) (8^{+})			
494.49	1+	320.00 [@] 15	100 9	174.38	1 ⁺			
		354.6 [@] 3	32 6	140.33	$0^+, 1^+, 2^+$			
522.7	(10 ⁻)	79.3		443.4	(9^{-})			
543 35	$(1 2 3)^+$	$327.60^{@}$ 15	100	215.84	(8) 1 ⁺			
547.38	1+	373.00 ^{<i>@</i>} 10	100	174.38	1+			
605.37	1+	62.05 [@] 10	93	543.35	(1,2,3)+	(M1,E2)	16.6 45	$\alpha(K)=6.0\ 42;\ \alpha(L)=8.2\ 66;\ \alpha(M)=2.0\ 17$ $\alpha(N)=0.45\ 37;\ \alpha(O)=0.053\ 41;\ \alpha(P)=3.8\times10^{-4}\ 26$ Mult : based on intensity balance at 543 level
		389.45 [@] 15	100	215.84	1+			man, based on mensity bulance at 5+5 level.
605.9	(11 ⁻)	83.3		522.7	(10 ⁻)			
654.6	(10^{+})	162.7 170.6		443.4	(9^{-}) (9^{+})			
0.4.0	(10)	312.8		341.9	(8+)			
782.6	(12 ⁻)	176.6 259.6		605.9 522.7	(11 ⁻) (10 ⁻)	(Q)		Mult.: $\Delta J=2$, (Q) transition in (HI,xn γ) (2008Su08, DCO).
797.96	1^+	582.12 ^{^w} 20	100	215.84	1^+			
004.8	(11°)	380.8		483.9	(10^{-})			
935.5	(13 ⁻)	152.6		782.6	(12-)			

6

From ENSDF

н

 γ (¹⁶⁰Tm) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I _γ ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}
935.5	(13^{-})	330.0		605.9 (11^{-})
1093.7	(12^+)	228.6		864.8 (11+)
	()	439.2		654.6 (10^{+}
1181.1	(14^{-})	245.7		935.5 (13-)
		398.4		782.6 (12^{-})
1358.2	(13^{+})	264.3		1093.7 ($12^{+})$
		493.5		864.8 (11+)
1405.0	(15^{-})	223.8		1181.1 (14-)
		469.6		935.5 (13-)
1631.6	(14^{+})	273.2		1358.2 (13+)
		538.1		1093.7 (12+)
1695.1	(16 ⁻)	289.8		1405.0 (15-)
		513.9		1181.1 (14-)
1796.1	(14^{+})	437.9	100	1358.2 (13+)
1938.0	(15^{+})	306.3		1631.6 (14 ⁺)
		579.9		1358.2 (13+)
1984.4	(17^{-})	289.8		1695.1 (16 ⁻)
		579.8		1405.0 (15-)
2054.4	(15^{+})	696.2	100	1358.2 (13+)
2242.3	(16^{+})	304.6		1938.0 (15+)
		610.7		1631.6 (14+)
2301.6	(18^{-})	316.8		1984.4 (17-)
		606.7		1695.1 (16 ⁻)
2320.1	(16^{+})	688.5	100	1631.6 ($14^{+})$
2497.9	(18 ⁻)	801.9	100	1695.1 (16-)
2570.1	(17^{+})	327.7		2242.3 (16+)
	(1 = +)	631.4	100	1938.0 (15+)
2616.2	(17^{+})	678.5	100	1938.0 (15 ⁺)
2646.0	(19 ⁻)	344.3		2301.6 (18-)
a (a a f	(10-)	662.2	100	1984.4 (17)
2688.5	(19)	704.5	100	1984.4 (17)
2813.8	(18')	197.4		2616.2 (1/')
		243.6		25/0.1 (1/')
2000 2	(20-)	5/1./		2242.3 (16')
2908.2	(20)	220.0		2088.5 (19)
		203.3		2040.0 (19)
		409.4		2497.9 (18)
2000.4	(10+)	220.2		2501.0 (10)
2909.4	(10)	590.2		2370.1 (1/)
		209.3 667 2		2520.1 (10)
2076 2	(20^{-1})	320 0		2646.0	10)
2970.2	(20)	529.0 675 0		2040.0 (17 /
		075.0		2301.0 (10)

-

γ (¹⁶⁰Tm) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} [‡]	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
3051.1	(19 ⁺)	237.7		2813.8	(18^+)		E + 453.3 in forma 1 of 2008Su08 seems a type error
		480.6		2570.1	(17^{+})		L_{γ} . 455.5 in figure 1 of 20085006 seems a type error.
3159.5	(21 ⁻)	251.2		2908.2	(20 ⁻)		
		471.3		2688.5	(19 ⁻)		
		513.5		2646.0	(19 ⁻)		
3313.7	(20^{+})	262.9		3051.1	(19 ⁺)		
2257.0	(01 - 1)	499.6		2813.8	(18^+)		
3357.0	(21)	380.6		2976.2	(20)		
3412.6	(22^{-})	253.2		2040.0	(19) (21^{-})		
5412.0	(22)	504.2		2908.2	(21^{-})		
3596.4	(21^{+})	282.7		3313.7	(20^+)		
		545.4		3051.1	(19 ⁺)		
3687.2	(22^{-})	330.1		3357.0	(21 ⁻)		
		711.2		2976.2	(20 ⁻)		
3722.0	(23 ⁻)	309.3		3412.6	(22 ⁻)		
2010.0	(22+)	562.4		3159.5	(21^{-})		
3910.9	(22^{+})	507 1		3596.4	(21^{+})		
4027.8	(24^{-})	305.0		3722.0	(20^{-})		
4027.0	(24)	615.4		3412.6	(23^{-})		
4080.4	(23^{-})	393.5		3687.2	(22^{-})		
		723.3		3357.0	(21^{-})		
4249.2	(23^{+})	338.5		3910.9	(22^{+})		
		652.8		3596.4	(21^{+})		
4381.1	(25 ⁻)	353.5		4027.8	(24 ⁻)		
4410.0	(2 , 4 - 1)	658.8		3722.0	(23^{-})		
4410.2	(24)	329.7		4080.4	(23)		
4610.2	(24^{+})	722.8		3087.2	(22)		
4010.2	(24)	699.0		3910.9	(23^{+})		
4748.6	(26^{-})	367.4		4381.1	(22^{-})		
	(-)	721.0		4027.8	(24 ⁻)		
4811.3	(25^{-})	401.0		4410.2	(24 ⁻)		
		731.2		4080.4	(23 ⁻)		
4823.3	(25 ⁻)	742.9	100	4080.4	(23 ⁻)	(Q)	Mult.: $\Delta J=2$, (Q) transition in (HI,xn γ) (2008Su08, DCO).
5005	(25^+)	756.2	100	4249.2	(23^{+})		
5157.0	(27)	122.9	100	4581.1	(25)		
5154.2	(20)	542.5 743 0		4011.3	(23) (24^{-})		
5410	(26^{+})	799.5	100	4610.2	(24^+)		
5580.3	(27^{-})	425.0		5154.2	(26 ⁻)		
	. /				. /		

 ∞

¹⁶⁰₆₉Tm₉₁-8

γ (¹⁶⁰Tm) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
5580.3	(27^{-})	769.4		4811.3	(25^{-})	2268.7+x	(18^{+})	644.3	100	1624.4+x	(16^{+})
5847	(27^{+})	841.8	100	5005	(25+)	2973.4+x	(20^{+})	704.7	100	2268.7+x	(18^{+})
5945.3	(28^{-})	364.4		5580.3	(27^{-})	680.0+y	J+2	680	100	У	J
		791.8		5154.2	(26 ⁻)	1412.0+y	J+4	732	100	680.0+y	J+2
6408.7	(29 ⁻)	828.4	100	5580.3	(27^{-})	2196.0+y	J+6	784	100	1412.0+y	J+4
6797.1	(30^{-})	851.8	100	5945.3	(28^{-})	3032.0+y	J+8	836	100	2196.0+y	J+6
7302	(31 ⁻)	893.4	100	6408.7	(29 ⁻)	3916.0+y	J+10	884	100	3032.0+y	J+8
234.4+x	(10^{+})	234.4	100	х	(8^{+})	4856.0+y	J+12	940	100	3916.0+y	J+10
599.0+x	(12^{+})	364.6	100	234.4+x	(10^{+})	5847+y	J+14	991	100	4856.0+y	J+12
1067.8+x	(14^{+})	468.8	100	599.0+x	(12^{+})	6896+y	J+16	1049	100	5847+y	J+14
1624.4+x	(16^{+})	556.6	100	1067.8+x	(14^{+})						

[†] From from (HI,xn γ) dataset, unless mentioned otherwise. [‡] From ¹⁶⁰Yb ε decay, unless mentioned otherwise. [#] From ce data in ¹⁶⁰Yb ε decay, unless mentioned otherwise. [@] From ¹⁶⁰Yb ε decay.

[&] Additional information 5. ^{*a*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

0.0 9.4 min 3

 $^{160}_{69}\text{Tm}_{91}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁰₆₉Tm₉₁

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁰₆₉Tm₉₁

Legend

6

Level Scheme (continued)

Intensities: Relative photon branching from each level

Coincidence

¹⁶⁰₆₉Tm₉₁

Legend

Adopted Levels, Gammas

Level Scheme (continued)

 $^{160}_{69}\text{Tm}_{91}$

¹⁶⁰₆₉Tm₉₁

Band(E): $K^{\pi}=1^{-}$ band

2-		42.11
1-	42	0.0

¹⁶⁰₆₉Tm₉₁