Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

 $Q(\beta^{-})=1836.0 \ 11; \ S(n)=6375.21 \ 13; \ S(p)=6563.6 \ 8; \ Q(\alpha)=-179 \ 3$ 2021Wa16 S(2n)=14508.2 7, S(2p)=15144.0 23 (2021Wa16).

Additional information 1.

1987Be51 have given a description, within a rotor-plus-two-quasiparticle model, of the nuclear states in several doubly odd nuclides, one of which is ¹⁶⁰Tb. Their results point to considerable configuration mixing among some of the low-lying bands in ¹⁶⁰Tb. They also suggest configuration assignments that are different in some cases from those given here from 1974Ke01. 2007Bu29 provide very strong confirmations of the interpretations of 1974Ke01.

¹⁶⁰Tb Levels

NOTE: in most instances, especially above ≈ 600 keV, the association of a (d,p) peak with a given (n,γ) state is based solely on the near agreement of their reported energies.

				Cross Reference (XREF) Flags
				A 159 Tb(n, γ) E=th B 159 Tb(d,p) C 160 Gd(p,n γ) D 161 Dy(t, α)
E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
0.0 ^{<i>a</i>}	3-	72.3 d 2	ABC	$\frac{\%\beta^{-}=100}{\mu=+1.790}$ 7; Q=+3.85 5 T _{1/2} : weighted average of: 72.5 d 6 (1999Po32), 72.1 d 3 (1963Ho15), 73.0 d 6 (1957Th11), 72.3 d 5 (1954Ke35), 71 d I (1950Bu19), 73.5 d I0 (1946Bo25). Others: 2020Ka01, 1956Sm03, 1950Co17, 1948Kr07, 1948Co09, 1947In07. The result 96.67 d +16-12 (2020Ka01) is not included in the weighted average because according to Fig. 1 the uncertainty of the decay constant should be about 15% (parameter B on the figure), therefore the correct result would be rather 97 d +16-12, which makes it an outlier. J ^π : J=3, from atomic beam (1961Ca07). From configuration=(π 3/2[411] + ν 3/2[521]), π= Configuration is that expected from the Σ=1 coupling of the orbitals seen in the adjacent odd-A nuclides and is supported by the μ value of the g.s. and the analysis (by 1977Ke14) of the magnetic properties of the ΔJ=1 transitions within the g.s. band. μ: from 2014StZZ. These also list values of +1.702 8 and 1.5 6 for μ. Q: from 2016St14 and 2014StZZ; 2014StZZ also lists Q=3.56 10.
63.6856 ^d 20	1-	60 ns 5	AbC	XREF: b(63). $T_{1/2}$: from $\gamma\gamma(t)$ in (n,γ) , $(p,n\gamma)$ (1978Sc10). J^{π} : from $\gamma(\theta)$ following n-capture by polarized Tb nuclei. E2 transition to g.s. Head of $K^{\pi}=1^{-}$ band.
64.1096 ^b 20	4 ⁺ @	≤2 ns	AbCD	XREF: b(63). $T_{1/2}$: from $\gamma\gamma(t)$ in (n,γ) , $(p,n\gamma)$ (1978Sc10). J^{π} : head of a $K^{\pi}=4^+$ band; with this configuration assignment, state should be only weakly excited in (d,p), as observed.
78.8665 ^{<i>a</i>} 15	4-		Ab	XREF: b(79). J^{π} : $\Delta \pi$ =no component in transition to g.s. indicates π = Level energy consistent with that expected for the 4 ⁻ member of the g.s. band. Large cross section in (d,p) agrees well with that predicted for the state with this configuration.
79.0925 ^e 24	(0)-		Ab	XREF: b(79).

160Tb Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XF	EF	Comments
					J^{π} : only observed decay mode is to 1 ⁻ level at 63.6 keV, consistent with $J^{\pi}=0^-$. Fed by M1 transition from 1 ⁻ level at 133. Expected head of a $K^{\pi}=0^-$ band.
105.5760 ^{<i>d</i>} 22	2-		AB		XREF: B(101). J^{π} : from $\gamma(\theta)$ following n-capture by polarized Tb nuclei. (d,p) cross section agrees well with theoretical prediction for the 2 ⁻ member of band with this configuration. M1 transition (to 1 ⁻ bandhead) is the only observed decay mode, and is reasonably interpreted as an intraband transition.
126.483 ^b 6	5+		A	D	XREF: D(129). J^{π} : M1 transition to 4 ⁺ state, 5 ⁺ from $d\sigma/d\Omega$ in (t, α) (doublet level). Rotational parameter, and hence energy-level spacing, consistent with values expected in this region.
133.2213 ^e 25	(1)-		Ab		XREF: b(136). J^{π} : cross section of the 136-keV (d,p) peak (assumed to populate both the 133 and 139.5 levels, and possibly the 138.7 level also) agrees well with that expected for the sum of the (d,p) cross sections to the 1 ⁻ and 2 ⁻ members of a 0 ⁻ band with this configuration. M1 transition to the 79 state as the sole mode of decay of this level supports: a J^{π} =1 ⁻ assignment to this state; a 0 ⁻ assignment to the 79 level; and the assumption that both states are members of the same band (the M1 transition being an intraband one).
138.7350 ^{<i>f</i>} 23	1+&	5.7 ns 5	Ab	CD	XREF: b(136)D(129). $T_{1/2}$: from $\gamma\gamma(t)$ in (n,γ) , $(p,n\gamma)$ (1978Sc10). J^{π} : E1 transition to $(0)^{-}$ state, 1 ⁺ from $d\sigma/d\Omega$ in (t,α) (doublet level); head of $K^{\pi}=1^{+}$ band.
139.4741 ^e 24	(2)-		Ab		XREF: b(136). J^{π} : cross section of the 136-keV (d,p) peak (assumed to populate both the 133 and 139.5 levels, and possibly the 138.7 level also) agrees well with the theoretical predictions for 1 ⁻ and 2 ⁻ members of the band with this proposed configuration. (See also, the comment on the 133 level). The 75 γ to the 1 ⁻ state is (M1,E2).
156.4446 ^d 24	3-		A		J^{π} : value as reported by 1970Bo32 from study of n-capture by polarized nuclei. Energy reasonable for 3 ⁻ band member, with the two deexciting gammas, the only ones observed, being intraband transitions to the two lower-lying band members.
167.7535 25	2+ [@]		A	D	J^{π} : also, strong M1 γ to 1 ⁺ ; level energy reasonable for assignment as 2 ⁺ member of the $K^{\pi}=1^+$ band.
168.7? 12 176.833 ^{<i>a</i>} 3	5-		A AB		J^{π} : (d,p) cross section in good agreement with that expected for the 5 ⁻ member of the g.s. band. Level energy supports this interpretation, as do the deexciting gammas.
200.405 4	3+ @		AB	D	J^{π} : also, M1 to 2 ⁺ .
222.629 ^g 3	0 ⁺ @		A	d	XREF: d(232). J^{π} : doublet level assigned 0 ⁺ , here the expected head of a $K^{\pi}=0^+$ band, as well as 1 ⁺ , the next level of the band (predicted cross section for J=0, $K^{\pi}=0^+$ is 1/9 that of J=1 state).
232.780 ^g 3	$(1)^{+}$ ^(a)		A	d	XREF: d(232). J^{π} : see comment at the 222.6, 0 ⁺ level, also (E1) transition to (0) ⁻ level.
236.977 ^e 4	3-		AB		J^{π} : large (d,p) cross section agrees well with that expected for the 3 ⁻ member of the band with this configuration. Strong M1,E2 γ to (2) ⁻ state is likely an intraband transition.
244.160 ^{<i>d</i>} 3	(4 ⁻)		A		J^{π} : γ decay only to 2 ⁻ and 3 ⁻ members of $K^{\pi}=1^{-}$ band. From expected band structure.
257.541 ^c 5	(4-)		AB		J ^{π} : transitions to J ^{π} =3 ⁻ ,4 ⁻ ,4 ⁺ ,5 ⁺ members of K ^{π} =3 ⁻ and 4 ⁺ bands. Expected head of a K ^{π} =4 ⁻ band.
265.229 ^{<i>f</i>} 4	4 ⁺ &		A	D	XREF: D(265). J ^{π} : (E2) transition to 3 ⁺ , 4 ⁺ from d σ /d Ω in (t, α) (doublet level).

Adopted Levels, Gammas (continued)

160Tb Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
268.818 ^g 3	2+	A D	XREF: D(265). We E1 transition to (1)= 2 [±] from $d\sigma/d\Omega$ in (t o) (doublet level)
279 ^e 2	(4^{-})	В	J^{π} : from expected hand structure. Measured (d,p) cross section supports assignment.
305 3	(1)	B	
318.357 <mark>8</mark> 4	3+ @	A D	
322.297 ^d 8	(5 ⁻)	AB	J^{π} : from expected band structure. γ decay pattern (only to 3 ⁻ and 4 ⁻ members of the $K^{\pi}=1^{-}$ band) supports this assignment.
354.736 ^c 11	(5 ⁻)	AB	J^{π} : gammas to $(4^{-}),4^{+},5^{+}$ states of bands having K=4 suggest K value is not small. Rotational parameter (A-value) implied by this assignment agrees well with that of the 1 ⁻ band formed from the opposite coupling of these two orbitals.
377.761 ^g 6	4+ @	A D	
381.285 ^h 6	(1 ⁻)	AB	J^{π} : head of $K^{\pi}=1^{-}$ band. Large (d,p) cross sections to and decay patterns of 381 and 421 levels indicate presence of ν 1/2[521]. Rotational bands with $K^{\pi}=1^{-}$ and 2^{-} arise from coupling of this orbital with π 3/2[411], with the K=1 band expected to lie lower.
421.434 ^h 5	(2 ⁻)	AB	J^{π} : 2 ⁻ member of $K^{\pi}=1^{-}$ band. See comment on the 381 level.
426 ^{<i>i</i>} 1 474 2	5 ⁺ @	D D	
478.224 ^j 6	(1 ⁺)	Ab	XREF: b(482). J^{π} : γ decay populates (1) ⁺ ,(2) ⁺ and (3) ⁺ members of $K^{\pi}=1^+$ band at 138 keV. Possible K-2 γ vibration built on this 1 ⁺ band.
478.559 7	$(1^+, 2^+)$	Ab	XREF: b(482). J^{π} : transitions to states with $J^{\pi} = (0^+)$ and $(3)^+$.
480.257 ^h 6	(3 ⁻)	Ab	XREF: $b(482)$.
484.317 9	1,2	Ab	XREF: b(482). I^{π} : d decays to states with I^{π} -1 ⁻ 2 ⁻ (1) ⁺ 2 ⁺
503.543 7	$(1^+, 2, 3^-)$	A	J^{π} : γ' s to $(1)^{-}$ and (3^{+}) levels.
508 ^{&i} 3	$(6^+)^{@}$	D	
511.790 <i>12</i>	2-	A	IT. The lease threads in the (die) and there are the allowed of this encourt. The calculated
515.0* 2	2	AB	(d,p) cross sections indicate that the largest (d,p) cross section expected at low energies in 160 Tb is for the bandhead of the $K^{\pi}=2^{-}$ band with the two-nucleon configuration $(\pi 3/2[411] + \nu 1/2[521])$. This 2 ⁻ bandhead is expected to lie above the $K^{\pi}=1^{-}$ band formed from the opposite coupling of these two orbitals; and the head of this latter band has been located at 381 keV. The evaluator thus identifies the 515 level as this $K^{\pi}=2^{-}$ bandhead.
520.268 ^j 7	(2 ⁺)	A	J^{π} : γ decay to 156 and 236 levels ($J^{\pi}=3^{-}$) and to $J=(2),(3)$ and (4) members of the $K^{\pi}=1^{+}$ band at 138 keV. Similarity of decay pattern to that of the 478 level suggests that this is a member of that band. See comment on the 478.2 level.
523 ^{&k} 2	(6 ⁻) [@]	D	
532.733 9	$(1^{-},2,3^{-})$	AB	J^{π} : γ 's to (1) ⁻ and 3 ⁻ levels.
552.96710	$(2, 5^{+})$	A D	J^{π} : γ transitions to (1) [*] and 4 levels.
558" 2 571 554 14	(4)	AB B	J [*] : energy agrees with expected band structure. I^{π} : α'_{s} to $(0)^{-}(2)^{-}(0^{+})$ and 2^{+} levels
571.55414	(1) $(7^{-})^{@}$	п	$J : \gamma $ s to (0) (2) (0) and 2 revers.
576.925 9	(7)	A	
589.005 11	(1-,2)	A D	J^{π} : γ 's to $(1)^+, (1)^-$ and 3^- levels.
592.741 11		Α	
598.668 <i>11</i>		AB	
620.7^{\ddagger} 2			
637 3		ло D	
642 2		В	

160Tb Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
656 ^k 1	$(8^{-})^{@}$	D	
660.087 6		Ab	XREF: b(662).
664.669 18	(1 ⁺ ,2 ⁻)	Ab	XREF: $b(662)$. J^{π} : γ 's to $(0)^{-}$ and $(3)^{+}$ levels.
678.2 [‡] 3		A	
684.398 10		Ab	XREF: b(685).
688 2		b D	XREF: 0(085).
692.5 * 3		A	
/12.8+ 10		AB D	the evaluator assumes that the 709-keV (d,p) peak results from population of this (n,γ) state.
729.9+ 6		AB	XREF: B(728).
743 1 763 4 4		A B D	XREF: D(744).
765.471 22		Ab d	XREF: b(767)d(766).
767.967 25		Ab d	XREF: b(767)d(766).
785 1		ΒD	XREF: D(782).
791.1 [‡] 20		Α	
798 2		В	
813.9 ⁺ 3		A	
823.2+ 5		AB D	XREF: B(821)D(822).
834 2 846 2		B	
850.9 [‡] 5		A	
858.8 [‡] 6		Ab	XREF: b(860).
862.9 [‡] 5		Ab D	XREF: b(860)D(865).
880.2 [‡] 10		AB	XREF: B(878).
888 <i>3</i>		D	
905 3		ΒD	XREF: B(903)D(908).
913.9 [‡] 3		AB	XREF: B(915).
938 1		В	
952 8 5		Δ	
956? 2		В	E(level): possibly unresolved peak consisting of the 952.8 and the 960.0 states observed in (n,γ) .
960.0 [‡] 6		Α	
976.1 [‡] 7		AB D	XREF: B(975)D(974).
1001.9 [‡] 5		AB D	XREF: B(1001)D(1004).
1006.8 [‡] 7		A D	XREF: D(1004).
1021.6 [‡] 15		AB	XREF: B(1020).
1028 1		D	
1039.5?+ 15		A	
1051.7 8		AB	XREF: B(1048).
1056.2+ 5		A D	XREF: D(1055).
$1068 1 \stackrel{\ddagger}{=} 1$		Δ	
1075 2		B	
1081 <i>1</i>		D	
1086.0 [‡] 3		AB	XREF: B(1086).
1103.9 [‡] 7		AB	XREF: B(1100).
1115.8 [‡] 4		AB	XREF: B(1114).
1124.8 [‡] 4		Α	

¹⁶⁰Tb Levels (continued)

E(level) [†]	XREF	Comments
1129.4 [‡] <i>3</i>	AB	XREF: B(1129).
1136.9 [‡] 3	Α	
1146.5 [‡] 3	Α	
1150.0 [‡] 4	AB	XREF: B(1150).
1155.9 [‡] 5	Α	
1160 <i>3</i>	D	
1166 2	В	
1170.5 [‡] 4	A	
1175.1 [‡] 4	Α	
1184 2	В	
1190.9 [‡] 4	A D	XREF: D(1192).
1198 2	В	
1252 2	D	
1280 2	D	
1294 2	D	
1346 <i>3</i>	D	
1397 2	D	

[†] For levels from datasets with γ rays: from least-squares fit to E γ values; from the respective datasets for the levels from datasets without γ rays.

[‡] Level populated by primary transitions in (n,γ) , but 1974Ke01 do not assign secondary γ rays to its deexcitation.

[#] In addition to the specific arguments given with each level, the listed assignments are based on the fact that this nuclide has a well-developed rotational band structure and utilize some of the features of the various expected rotational bands.

- ^(a) From ¹⁶¹Dy(t, α) dataset (2007Bu29), from angular distributions, DWBA and Nilsson-model calculations which give predicted cross sections for members in a band (so called "fingerprint" method). Other specific arguments can be given with the individual levels.
- [&] The shape of the angular distribution for 508+523 group in ¹⁶¹Dy(t, α) dataset is consistent with J=6, K^{π} =5⁺, but the total measured cross section is about four times larger than the predicted value. Probably there are additional levels in this energy region.
- ^{*a*} Band(A): $K^{\pi}=3^{-}$ band. Configuration=(π 3/2[411] + ν 3/2[521]) A=9.91 keV, B=-3.4 eV (from 3⁻, 4⁻, and 5⁻ levels).
- ^b Band(B): $K^{\pi}=4^+$ band. Configuration= $(\pi 3/2[411] + \nu 5/2[642])$ A=6.2 keV (from 4⁺ and 5⁺ levels).
- ^{*c*} Band(C): $K^{\pi}=4^{-}$ band. Configuration= $(\pi \ 3/2[411] + \nu \ 5/2[523])$ A=9.7 keV (from 4⁻ and 5⁻ levels).
- ^d Band(D): $K^{\pi}=1^{-}$ band. Configuration=(π 3/2[411] ν 5/2[523]) A=9.8 keV, B=-11 eV, A₂=-0.38 keV (from 1⁻, 2⁻, 3⁻, and 4⁻ levels).
- ^{*e*} Band(E): $K^{\pi}=0^{-}$ band. Configuration=(π 3/2[411] ν 3/2[521]) As commonly observed in doubly odd deformed nuclei, the odd-spin band members are shifted relative to the even-spin members ("Newby shift"). Here, the magnitude of this shift is 34 keV and its sign is such that the odd-J states appear shifted upward relative to the even-J states. A(even-J)=10.06 keV (from 0⁻ and 2⁻ levels); A(odd-J)=10.38 keV (from 1⁻ and 3⁻ levels).
- ^{*f*} Band(F): $K^{\pi}=1^{+}$ band. Configuration=(π 3/2[411] ν 5/2[642]) A=6.49 keV, B=+4.3 eV, A₂=-0.37 keV (from 1⁺, 2⁺, 3⁺, and 4⁺ levels).
- ^{*g*} Band(G): $K^{\pi}=0^+$ band. Configuration=(π 5/2[413] ν 5/2[642]) A=7.67 keV, B=+4.2 eV (from 0⁺, 2⁺, and 4⁺ levels). These parameters predict energies for the 1⁺ and 3⁺ band members that differ from the observed values by 3 to 5 keV.
- ^{*h*} Band(H): $K^{\pi}=1^{-}$ band. Configuration=(π 3/2[411] ν 1/2[521]) A=9.7 keV, A₂=-0.15 keV (from 1⁻, 2⁻, and 3⁻ levels).
- ^{*i*} Band(I): $K^{\pi}=5^+$ band. Configuration=($\nu 5/2[642] + \pi 5/2[413]$).
- ^{*j*} Band(J): $K^{\pi}=1^+$ band. Possible K-2 γ -vibration built on the $K^{\pi}=1^+$ band with configuration=(π 3/2[411]- ν 5/2[642]). A=10.5 keV (from 1⁺ and 2⁺ levels).
- ^{*k*} Band(K): $K^{\pi} = (5^{-})$ band.

$\gamma(^{160}\text{Tb})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
63.6856	1-	63.6859 20	100	0.0	3-	E2	14.93	$\alpha(K)=2.74$ 4; $\alpha(L)=9.39$ 14; $\alpha(M)=2.24$ 4 $\alpha(N)=0.501$ 7; $\alpha(O)=0.0637$ 9; $\alpha(P)=0.0001548$ 22
64.1096	4+	64.1097 20	100	0.0	3-	E1	0.976	$ \begin{array}{l} & \overset{-}{\text{B}(\text{E2})(\text{W.u.})=11.0 \ 10} \\ & \alpha(\text{K})=0.805 \ 12; \ \alpha(\text{L})=0.1339 \ 19; \ \alpha(\text{M})=0.0293 \\ & 4 \end{array} $
								α (N)=0.00660 <i>10</i> ; α (O)=0.000927 <i>13</i> ; α (P)=4.20×10 ⁻⁵ 6 B(E1)(W.u.)>0.00022
78.8665	4-	78.8664 15	100	0.0	3-	M1,E2	5.4 11	$\alpha(K)=2.82\ 85;\ \alpha(L)=2.0\ 15;\ \alpha(M)=0.46\ 35$ $\alpha(N)=0.104\ 78;\ \alpha(O)=0.0137\ 96;$ $\alpha(P)=1\ 86\times 10^{-4}\ 88$
79.0925	(0) ⁻	15.413 6	100	63.6856	1-	(M1)	84.8	$\alpha(L) = 6.4 \ 10; \ \alpha(M) = 14.53 \ 21$ $\alpha(N) = 2.26 \ 5; \ \alpha(M) = 0.515 \ 8; \ \alpha(R) = 0.0226 \ 5$
105.5760	2-	41.8903 10	100	63.6856	1-	M1	4.37	$\alpha(N)=0.55$ β , $\alpha(0)=0.515$ β , $\alpha(1)=0.0550$ β $\alpha(L)=3.42$ β ; $\alpha(M)=0.748$ 11 $\alpha(N)=0.1729$ 25 ; $\alpha(O)=0.0266$ 4; $\alpha(P)=0.001739$ 25
126.483	5+	62.370 12	100	64.1096	4+	M1	8.57	$\alpha(K)=7.22 \ 11; \ \alpha(L)=1.063 \ 15; \ \alpha(M)=0.232 \ 4$ $\alpha(N)=0.0537 \ 8; \ \alpha(O)=0.00826 \ 12; \ \alpha(P)=0.000542 \ 8$
133.2213	(1)-	54.1287 10	100	79.0925	(0)-	M1	12.82	$\alpha(K) = 10.77 \ 15; \ \alpha(L) = 1.611 \ 23; \ \alpha(M) = 0.352 \ 5$ $\alpha(N) = 0.0814 \ 12; \ \alpha(O) = 0.01251 \ 18; \ \alpha(P) = 0.00819 \ 12$
138.7350	1+	33.159 <i>1</i>	7.1 3	105.5760	2-	E1	1.084	B(E1)(W.u.)= $3.1 \times 10^{-5} 6$ α (L)= $0.849 12; \alpha$ (M)= $0.187 3$ α (N)= $0.0415 6; \alpha$ (O)= $0.00545 8;$
		59.6430 <i>10</i>	33 7	79.0925	(0)-	E1	1.176	$\begin{array}{l} \alpha(\mathbf{r}) = 0.000199.5 \\ \mathbf{B}(\mathrm{E1})(\mathrm{W.u.}) = 2.5 \times 10^{-5}.7 \\ \alpha(\mathrm{K}) = 0.967.14; \ \alpha(\mathrm{L}) = 0.1640.23; \ \alpha(\mathrm{M}) = 0.0359 \\ 5 \end{array}$
								α (N)=0.00807 <i>12</i> ; α (O)=0.001128 <i>16</i> ; α (P)=5.01×10 ⁻⁵ <i>7</i>
		75.0503 20	100 21	63.6856	1-	E1	0.646	B(E1)(W.u.)= 3.8×10^{-5} 11 α (K)= 0.536 8; α (L)= 0.0860 12; α (M)= 0.0188 3 α (N)= 0.00424 6; α (O)= 0.000603 9; (D) 2.85 $\times 10^{-5}$ 4
139.4741	(2)-	(6.253 3)		133.2213	(1)-			$\alpha(\mathbf{r})=2.85\times10^{-2}4$ E_{γ},I_{γ} : intensity imbalance in (n,γ) at this level indicates the existence of an unobserved depopulating transition, most likely to the 133
		75.7895 15		63.6856	1-	(M1,E2)	6.2 13	level. Eγ is from the level-energy difference. $\alpha(K)=3.13\ 99;\ \alpha(L)=2.4\ 18;\ \alpha(M)=0.56\ 43$ $\alpha(N)=0.125\ 95;\ \alpha(O)=0.016\ 12;\ \alpha(P)=2.1\times10^{-4}$
	2-		100 10	105 55 55	2-		2.45	I_{γ} : since the intensity of the 6-keV γ also deexciting this level is not known, the relative branching associated with this γ is not known. Thus, no relative $I\gamma$ value is shown.
156.4446	3-	50.8687 10	100 19	105.5760	2-	(M1)	2.47	$\alpha(L)=1.93 \ 3; \ \alpha(M)=0.423 \ 6$ $\alpha(N)=0.0976 \ 14; \ \alpha(O)=0.01501 \ 21;$ $\alpha(P)=0.000983 \ 14$
								from $\alpha(L2)$ exp. Placement in the level scheme suggests the latter alternative.
		92.765 10	8.6 24	63.6856	1-			

$\gamma(^{160}\text{Tb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
167.7535	2+	29.025 3	100 4	138.7350	1+	M1	12.94	α (L)=10.13 <i>15</i> ; α (M)=2.21 <i>4</i> α (N)=0.512 <i>8</i> ; α (O)=0.0786 <i>11</i> ; α (P)=0.00514
		104.0651 20	69 8	63.6856	1-			0
176.833	5-	97.967 3	96 18	78.8665	4-			
200.405	3+	176.833 6 32.652 4	100 8 100 5	0.0 167.7535	3^{2^+}	M1	9.13	α (L)=7.15 <i>10</i> ; α (M)=1.563 <i>22</i> α (N)=0.361 <i>5</i> ; α (O)=0.0555 <i>8</i> ; α (P)=0.00363
		94.832 5	42 9	105.5760	2-			5
222.629	0^{+}	83.894 6	42 13	138.7350	1^{+}			
		89.408 2	80 13	133.2213	$(1)^{-}$			
222 780	$(1)^{+}$	158.941 5	100 /	03.0850 130.4741	$(2)^{-}$			
232.780	(1)	95.508 5	41 4 7 1 16	139.4741	(2) 1 ⁺			
		153.685 4	100 10	79.0925	(0)-	(E1)	0.0947	$\alpha(K)=0.0798 \ 12; \ \alpha(L)=0.01166 \ 17; \ \alpha(M)=0.00254 \ 4 \ \alpha(N)=0.000579 \ 9; \ \alpha(O)=8.54\times10^{-5} \ 12; \ \alpha(D)=0.000579 \ 12; \ \alpha$
236.977	3-	97.506 <i>3</i>	100 9	139.4741	(2)-	M1,E2	2.6 3	$\alpha(P)=4.70\times10^{-6} 7$ $\alpha(K)=1.6 4; \ \alpha(L)=0.78 49; \ \alpha(M)=0.18 12$ $\alpha(N)=0.041 27; \ \alpha(O)=0.0055 33;$ $\alpha(P)=1 04\times10^{-4} 45$
		131 399 5	4712	105 5760	2-			$\alpha(P) = 1.04 \times 10$ 45
244.160	(4^{-})	87.7156 10	100 10	156.4446	3-			
		138.545 20	11 4	105.5760	2-			
257.541	(4 ⁻)	131.057 5	13.3 22	126.483	5+			
		178.673 8	9.4 6	78.8665	4-			
		193.434 0	100 8	64.1096	4' 3-			
265.229	4+	64.8237 <i>15</i>	100	200.405	3+ 3+	(E2)	13.90	α (K)=2.70 4; α (L)=8.62 12; α (M)=2.06 3 α (N)=0.460 7; α (O)=0.0586 9; α (P)=0.0001495 21
268.818	2+	68.402 12	10 3	200.405	3+			
		101.066 <i>3</i>	13 <i>3</i>	167.7535	2^{+}			
		112.374 3	20.8 24	156.4446	3-	-	0.1005	
		135.595 4	100 8	133.2213	(1)	EI	0.1325	α (K)=0.1115 <i>16</i> ; α (L)=0.01648 <i>23</i> ; α (M)=0.00359 <i>5</i> α (N)=0.000817 <i>12</i> ; α (O)=0.0001199 <i>17</i> ;
		162 242 5	24.1.70	105 57(0	2-			$\alpha(P) = 6.45 \times 10^{-6} \ 9$
		103.242 5	24.1 19	63 6856	2 1-			
318.357	3+	117.956 5	6.1 20	200.405	3+			
		150.600 5	52 4	167.7535	2+			
		178.876 6	100 9	139.4741	$(2)^{-}$			
322.297	(5 ⁻)	78.140 8	100 5	244.160	(4 ⁻)			
351 736	(5^{-})	165.843 15	48 12	156.4446	$\frac{3}{(4^{-})}$			
554.750	(5)	228.26 3	62 7	126.483	(+) 5 ⁺			
		290.619 20	100 15	64.1096	4+			
377.761	4+	108.940 6	24 7	268.818	2+			
201 205	(1-)	140.795 12	100 8	236.977	$3^{-}_{2^{+}}$			
301.203	(1)	213.31 3 241 812 15	5.00 746	107.7555	$(2)^{-}$			
		242.558 15	4.7 8	138.7350	1^{+}			
		248.052 10	100 5	133.2213	(1)-			

$\gamma(^{160}\text{Tb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
381.285	(1^{-})	275.719 10	41 3	105.5760	2-
		317.604 12	36 <i>3</i>	63.6856	1-
421.434	(2^{-})	184.463 <i>6</i>	45 4	236.977	3-
		221.02 3	5.4 7	200.405	3+
		264.986 12	10.8 9	156.4446	3-
		282.66 4	4.8 10	138.7350	1^{+}
		288.185 15	49 <i>4</i>	133.2213	$(1)^{-}$
		315.853 20	20 3	105.5760	2^{-}
		357.739 12	100 9	63.6856	1-
478.224	(1^{+})	277.837 15	9.5 10	200.405	3+
		310.472 8	42 4	167.7535	2+
		339.492 10	100 8	138.7350	1+
478.559	$(1^+, 2^+)$	209.740 8	41 4	268.818	2+
		255.944 12	40 <i>3</i>	222.629	0^{+}
		278.134 25	19 4	200.405	3+
		310.78 3	15 3	167.7535	2+
		339.82 4	30 5	138.7350	1+
		372.964 25	55 5	105.5760	2-
		414.872 20	100 9	63.6856	1-
480.257	(3 ⁻)	211.420 20	8.4 13	268.818	2+
		215.021 25	9.6 20	265.229	4 ⁺
		236.111 12	18.4 14	244.160	(4 ⁻)
		243.264 15	100 7	236.977	3
		279.79.6	6.6 21	200.405	3
		312.536 25	10.9 13	16/./535	2
		323.802 20	13.6 15	156.4446	3
		340.793 15	50.4	139.4/41	(2)
		347.06 3	12.5 13	133.2213	(1)
101 217	1.2	3/4.002 20	120	103.3700	2 2+
464.517	1,2	213.47 3	3.3 10	200.010	2+
		310.360 20	13.0 11	107.7555	$\binom{2}{(2)^{-}}$
		345 583 25	4.9 10	139.4741	(2) 1 ⁺
		351 005 15	100.0	133 2213	$(1)^{-}$
		378 713 25	88 7	105 5760	2^{-}
		420 645 20	58 5	63 6856	1-
503 543	$(1^+ 2 3^-)$	185 188 8	75 7	318 357	1 3+
505.515	(1,2,5)	234 72 3	15216	268 818	2^{+}
		270.759 12	100.9	232.780	$(1)^{+}$
		370.34 4	19.1.78	133.2213	$(1)^{-}$
511.790		242.977 15	100 8	268.818	2+
		373.03 4	63 5	138.7350	1^{+}
		406.18 4	23 4	105.5760	2-
		448.113 25	46 5	63.6856	1-
520.268	(2^{+})	255.051 15	16.8 <i>14</i>	265.229	4+
		283.275 20	26.5 15	236.977	3-
		319.866 10	88 8	200.405	3+
		352.513 12	100 8	167.7535	2+
		363.805 20	65 6	156.4446	3-
532.733	(1-,2,3-)	295.762 15	40 4	236.977	3-
		364.98 5	6.6 14	167.7535	2^{+}
		399.499 20	57 5	133.2213	$(1)^{-}$
		427.168 15	100 9	105.5760	2-
		532.702 [#] 25	85 [#] 7	0.0	3-
552.967	$(2^-, 3^+)$	284.155 15	72 7	268.818	2+

$\gamma(^{160}\text{Tb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π
552.967	$(2^{-},3^{+})$	287.736 20	22.0 22	265.229	$\frac{4^{+}}{(4^{-})}$
		320.16 [#] 3	13# 3	232 780	$(-1)^+$
		396 40 12	13 3	156 4446	3-
		413.49.3	50.5	139.4741	$(2)^{-}$
		447.387 20	100 9	105.5760	2-
571.554	(1)	302.741 20	84 7	268.818	2+
		348.924 20	100 7	222.629	0^{+}
		403.77 4	31 4	167.7535	2+
		432.10 6	18 4	139.4741	$(2)^{-}$
		492.53 15	32 7	79.0925	$(0)^{-}$
576.925		258.566 12	29.3 23	318.357	3
		308.132.20	56 5 24 6	268.818	2+
		370.49 4 137 112 15	100.8	200.403	$(2)^{-}$
500.005	(1 - 2)	437.442.13	100.8	260 010	(2)
589.005	(1,2)	320.10" 3	12.0" 24	208.818	2 · 2-
		356 233 12	100.8	230.977	$(1)^+$
		455.75 4	22.5.24	133.2213	$(1)^{-}$
592.741		274.368 20	27.3	318.357	3+
		359.956 20	57 5	232.780	$(1)^{+}$
		453.269 25	96 8	139.4741	$(2)^{-}$
		459.536 20	100 8	133.2213	$(1)^{-}$
		529.06 6	74 8	63.6856	1-
598.668		361.711 15	100.0 9	236.977	3-
		398.31 8	25 4	200.405	3+
		430.85 4	23 3	167.7535	2+
		442.205 25	150	130.4440	3 4-
		508 70 8	64 U 53 7	/8.8003	4 3-
660 087		179 830 12	26.3	480 257	(3^{-})
000.007		181.868 6	81 7	478.224	(1^+)
		238.637 15	19 3	421.434	(2^{-})
		278.806 15	70 6	381.285	(1^{-})
		341.709 15	100 7	318.357	3+
		554.58 8	42 7	105.5760	2^{-}
664.669	$(1^+, 2^-)$	464.24 3	100 9	200.405	3+
		496.91 3	20.1 21	167.7535	2+
		525.21 4	34 5	139.4/41	(2)
		520.00 0	27 14	138./330	$(0)^{-}$
684 398		262.00.8	204 619	421 434	(0) (2^{-})
004.390		303 130 20	12710	381 285	(2^{-})
		451.610 12	100.8	232.780	$(1)^+$
		544.95 6	15.2 18	139.4741	$(2)^{-}$
		545.63 6	16.7 20	138.7350	1+
765.471		521.25 6	38 4	244.160	(4 ⁻)
		532.702 [#] 25	100 [#] 8	232.780	$(1)^{+}$
		542.78 8	23 4	222.629	0^{+}
		626.10 20	27 6	139.4741	$(2)^{-}$
		632.34 15	25 6	133.2213	$(1)^{-}$
767.967		530.95 8	17 4	236.977	3-
		600.20 3	100 8	167.7535	2
		011.0U ð	25 5	130.4446	$(1)^{-}$
		034.// 0	54 4	155.2213	(1)

 $\gamma(^{160}\text{Tb})$ (continued)

[†] From (n,γ), except as noted.
[‡] Additional information 2.
[#] Multiply placed with undivided intensity.

 $^{160}_{65}{
m Tb}_{95}$

Adopted Levels, Gammas

¹⁶⁰₆₅Tb₉₅

14

 $^{160}_{65}$ Tb₉₅-14

From ENSDF

 $^{160}_{65}$ Tb₉₅-14

Adopted Levels, Gammas

¹⁶⁰₆₅Tb₉₅

¹⁶⁰₆₅Tb₉₅