164 Re α decay (0.85 s) 1996Pa01,1981Ho10,2009Ha42

Type Author Citation Literature Cutoff Date

Full Evaluation N. Nica NDS 176,1 (2021) 1-May-2021

Parent: 164 Re: E=0.0; $T_{1/2}$ =0.85 s +14-11; $Q(\alpha)$ =5926 5; % α decay=?

¹⁶⁴Re-E,T_{1/2},Q(α): 2009Ha42 assumed this state to be the g.s. of ¹⁶⁴Re, and assumed the existence of an undetermined isomeric state as origin of a second α-decay branch.

 164 Re- $T_{1/2}$: Measured in 2009Ha42. Other measurements: 0.38 s 16 (1996Pa01); and 0.88 s 24 (1979Ho10, 1981Ho10).

¹⁶⁴Re-Q(α): From 2021Wa16.

Additional information 1.

2009Ha42 was compiled for XUNDL database by B. Singh (McMaster) and K. Abusaleem (U. of Jordan).

2009Ha42: 164 Re source from 172 Au-> 168 Ir decay chain, 172 Au produced in 96 Ru(78 Kr,pn) at E=342, 348 MeV. Measured: Εγ, Ιγ, $\gamma(\theta)$, Εα, $\alpha\gamma$ coin, (recoil) $\alpha\gamma$ coin, half-lives, α decay branching ratios.

1996Pa01: measured $E\alpha$, $I\alpha$, $T_{1/2}$, α branching ratio (52 decays).

1981Ho10: measured $E\alpha$, $T_{1/2}$, α branching ratio (19 decays).

BR=0.58 calculated by 1979Ho10, based on theoretically derived partial β decay half-life values (1973Ta30) and the measured $T_{1/2}$ value.

¹⁶⁰Ta Levels

The energy of the level populated in the α decay is not known.

 $\frac{E(level)}{\geq 0.0}$

α radiations

Eα E(level) Iα Comments

5782 7 \geq 0.0 100 Eα: weighted average of 5780 10 (2009Ha42), 5784 7 (1996Pa01), and 5778 10 (1979Ho10) is 5781.5 50; the rounded-off value and smallest unc are adopted.