Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

S(n)=10150 SY; S(p)=-1267 7; Q(α)=6698 4 2021Wa16

 $\Delta S(n) = 430$ (syst, 2021Wa16).

S(2p)=340 360, Q(\varepsilon p)=10270 300 (syst, 2021Wa16).

Additional information 1.

Although the assignment of γ rays to ¹⁶⁰Re was made by their correlations with characteristic proton and alpha decay of the ¹⁶⁰Re ground state, the exact placement of those γ rays in the level scheme in not unambiguous.

¹⁶⁰Re Levels

Cross Reference (XREF) Flags

 160 Re IT decay (2.8 μ s) A

 164 Ir α decay (70 μ s) 106 Cd(58 Ni,p3n γ) В

С

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0	(4-)	612 µs 7	AB	$\%p=89 I; \%\alpha=11 I$
				% $p,\%\alpha$: from 2011Da12 assuming β decay branch is negligible. Other values: % $p=915, \%\alpha=95$ (1996Pa01).
				J^{π} : tentatively proposed by 2011Da01 (IT decay) from the existence of an
				$E_2 \rightarrow E_1 \rightarrow E_2$ γ cascade (where the fast transition is assumed E_2) from the expected 9 ⁺ isomer in ¹⁶⁰ Re. The final state in this cascade is assumed to be
				the ¹⁶⁰ Re g.s. Previously (2 ⁻) was assumed from proposed configuration, with
				antiparallel coupling of a $d_{3/2}$ proton orbital and an $t_{7/2}$ neutron orbital (1993Li34).
				configuration: possible $\pi d_{3/2} \otimes v f_{7/2}$ or $\pi d_{3/2} \otimes v h_{9/2}$ (2011Da01).
				From comparison of observed and calculated proton-decay half-lives, $2011Da12$ deduce that the proton emission likely takes place from the $d_{3/2}$ orbital.
				$T_{1/2}$: weighted average of 614 μ s 8, p(t), and 597 μ s 20, α (t), both from
				2011Da12. Others: 790 μ s 160, from 860 μ s +230–150, p(t), and 380 μ s +38–13, α (t), all from 1992Pa05.
50 <i>3</i>	(6 ⁻)		AB	J^{π} : (E1) γ from (7 ⁺).
88 4	(7^{+})		AB	J^{π} : (E2) γ from (9 ⁺).
184 4	(9+)	2.8 µs 1	AB	J^{π} : expected from systematics and theoretical arguments. Based on this assignment the lower J^{π} values are assumed.
				$T_{1/2}$: from $38\gamma + 96\gamma(t)$ in 2011Da01.
				configuration: possible $\pi h_{11/2} \otimes v f_{7/2}$ or $\pi h_{11/2} \otimes v h_{9/2}$.
184+x [#]	(10^{+})		С	
1021.4+x [#] 3	(12^{+})		С	
$1647.5 + x^{\#} 6$	(14^{+})		С	
1824.7+x [#] 6	(16^{+})		С	

[†] From E γ data. Level ordering assumed based on systematics of odd-odd N=85 isotones is rather tentative.

[‡] Assigned by 2011Da01 for levels from the (9⁺) isomer to g.s. based on syst and measured or assumed γ ray multipolarities; assigned by 2011Sa59 from systematics of N=85 isomers for levels of the γ sequence. # Band(A): γ sequence based on (10⁺). From ¹⁰⁶Cd(⁵⁸Ni,p3n γ) (2011Sa59); possible configuration= $\pi h_{11/2} \otimes v f_{7/2}^2 \otimes v h_{9/2}$.

Adopted Levels, Gammas (continued)

 $\gamma(^{160}\text{Re})$

Unplaced γ 's in ¹⁰⁶Cd(⁵⁸Ni,p3n γ) dataset.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
50	(6 ⁻)	50 [@] 3	100	0.0	(4 ⁻)	[E2]	90 32	α (L)=68 25; α (M)=17.4 62 α (N)=4.1 15; α (O)=0.58 21; α (P)=5.2×10 ⁻⁴ 14 E _y : weak γ observed in singles spectra but not confirmed by $\gamma\gamma$ coin (2011Da01 IT decay)
88	(7 ⁺)	38 1	100	50	(6 ⁻)	(E1)	1.02 8	$\alpha(L)=0.79 \ 6; \ \alpha(M)=0.184 \ 15$ $\alpha(N)=0.043 \ 4; \ \alpha(O)=0.0062 \ 5; \ \alpha(P)=0.000223 \ 14$ Mult.: from the prompt relationship between 38γ and 96γ and the intensity balance (2011Da01, IT decay).
184	(9 ⁺)	96 <i>1</i>	100	88	(7 ⁺)	(E2)	4.86 23	$\alpha(K)=0.891 \ 18; \ \alpha(L)=3.00 \ 16; \ \alpha(M)=0.76 \ 4$ $\alpha(N)=0.181 \ 10; \ \alpha(O)=0.0258 \ 14; \ \alpha(P)=8.52\times10^{-5} \ 25$ B(E2)(W.u.)=0.082 $\ 6$ Mult.: $\alpha(K)\exp=1.2 \ 4$ deduced from I $\gamma(K \ x \ ray)$ and I $\gamma(96\gamma) \ (\alpha(K)=0.891 \ 18 \ theory)$ (2011Da01. IT decay)
184+x	(10 ⁺)	Х		184	(9+)			E_{γ} : based on Fig. 5 of 2011Sa59 in (⁵⁸ Ni,p3n γ) dataset of the systematics of energy levels built upon 9/2 ⁻ and 10 ⁺ states in N=85 isotones one expects x<81 keV.
1021.4+x	(12+)	837.4 <i>3</i>	100	184+x	(10+)			Observation of x rays, 38-keV, and 96-keV transitions in coin with 837γ indicates that 837 -keV transition populates isomeric state in 160 Re at 184 keV reported in 2011Da01 (160 Re IT decay dataset).
1647.5+x 1824.7+x	(14 ⁺) (16 ⁺)	626.1 <i>5</i> 177.2 <i>2</i>	100 100	1021.4+x 1647.5+x	(12 ⁺) (14 ⁺)			

[†] From ¹⁶⁰Re IT decay for transitions from the (9⁺) isomer and the levels below (with $\Delta E\gamma$ was estimated by evaluator and assumed branchings), and from ¹⁰⁶Cd(⁵⁸Ni,p3n γ) for the other transitions.

Additional information 2.
Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $--- \blacktriangleright \gamma$ Decay (Uncertain)

Legend

¹⁶⁰₇₅Re₈₅

Adopted Levels, Gammas

