¹⁶⁰Re IT decay (2.8 μs) 2011Da01

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021	

Parent: ¹⁶⁰Re: E=184 4; $J^{\pi}=(9^+)$; $T_{1/2}=2.8 \ \mu s \ l$; %IT decay=?

2011Da01 was compiled for XUNDL database by F.G. Kondev (ANL).

E=290 MeV (68 hours of beam time) and 300 (75 hours of beam time). Reaction products separated by the gas-filled recoil separator RITU, and implanted into double-sided silicon strip detectors (DSSD) of the GREAT spectrometer. Measured $E\gamma(\alpha,p)$, $I\gamma(\alpha,p)$, recoil- $\gamma(\alpha, p)$ - γ -t).

The assignment of delayed γ rays to ¹⁶⁰Re was made by their correlations with characteristics proton and alpha decay of the ¹⁶⁰Re ground state. However, the exact placement of those γ rays in the level scheme in not unambiguous, so the proposed isomer decay scheme in 2011Da01 should be considered as tentative.

¹⁶⁰Re Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments		
0.0	(4 ⁻)	612 μs 7	%p=89 1; $\%\alpha$ =11 1 %p, $\%\alpha$: adopted values, from 2011Da12 assuming β decay branch is negligible. Other values: %p=91 5, $\%\alpha$ =9 5 (1996Pa01).		
			J^{π} : proposed by 2011Da01 from the existence of an E2 \rightarrow E1 \rightarrow E2 γ cascade (where the last transition is assumed E2) from the expected (but previously unobserved) 9 ⁺ isomer in ¹⁶⁰ Re. The final state in this cascade is assumed to be the ¹⁶⁰ Re g.s. Previously (2 ⁻) was assumed from proposed configuration, with antiparallel coupling of a d _{3/2} proton orbital and an f _{7/2} neutron orbital (1993Li34).		
			configuration: possible $\pi d_{3/2} \otimes v f_{7/2}$ or $\pi d_{3/2} \otimes v h_{9/2}$ (2011Da01). T _{1/2} : adopted value, weighted average of 614 μs 8, p(t), and 597 μs 20, α (t), both from 2011Da12. Others: 790 μs 160, from 860 μs +230–150, p(t), and 380 μs +38–13, α (t), all from 1992Pa05.		
50 3	(6^{-})				
88 4 184 4	(7^{+}) (9^{+})	2.8 µs 1	J ^{π} : expected from systematics and theoretical arguments. T _{1/2} : from 38 γ +96 γ (t) in 2011Da01. configuration: possible π h _{11/2} \otimes vf _{7/2} or π h _{11/2} \otimes vh _{9/2} .		

[†] From $E\gamma$ data, same as the adopted values.

[‡] From 2011Da01, unless otherwise stated. Same values are adopted.

$\gamma(^{160}\text{Re})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
38 1	88	(7 ⁺)	50	(6 ⁻)	(E1)	1.02 8	α(L)=0.79 6; α(M)=0.184 15 α(N)=0.043 4; α(O)=0.0062 5; α(P)=0.000223 14 Mult.: from the prompt relationship between 38γ and 96γ and the intensity balance (2011Da01).
50 [#] 3	50	(6 ⁻)	0.0	(4 ⁻)	[E2]	90 32	$\begin{array}{l} \alpha(L)=68\ 25;\ \alpha(M)=17.4\ 62\\ \alpha(N)=4.1\ 15;\ \alpha(O)=0.58\ 21;\ \alpha(P)=5.2\times10^{-4}\ 14\\ E_{\gamma}:\ although a\ \gamma\ ray\ of\ this\ energy\ is\ visible\ in\ the\ singles\ spectra\ (2011Da01,\ Fig.\ 2a),\ no\ evidence\ of\ it\ from\ \gamma\gamma\ coin.\ was\ presented\ by\ the\ authors. \end{array}$
96 1	184	(9+)	88	(7+)	(E2)	4.86 23	$\alpha(\mathbf{K})=0.891 \ I8; \ \alpha(\mathbf{L})=3.00 \ I6; \ \alpha(\mathbf{M})=0.76 \ 4$ $\alpha(\mathbf{N})=0.181 \ I0; \ \alpha(\mathbf{O})=0.0258 \ I4; \ \alpha(\mathbf{P})=8.52\times10^{-5} \ 25$ Mult.: $\alpha(\mathbf{K})$ exp=1.2 4 deduced from I $\gamma(\mathbf{K} \times ray)$ and I $\gamma(96\gamma)$ ($\alpha(\mathbf{K})=0.891 \ I8$ theory). Additional information 1.

Continued on next page (footnotes at end of table)

$^{160}\mathbf{Re}\,\mathbf{IT}\,\mathbf{decay}\,(\mathbf{2.8}\,\mu\mathbf{s})$ 2011Da01 (continued)

$\gamma(^{160}\text{Re})$ (continued)

[†] From 2011Da01, unless otherwise stated. ΔEγ was estimated by evaluator. All values are adopted.
[‡] Additional information 2.
[#] Placement of transition in the level scheme is uncertain.

160 Re IT decay (2.8 μ s) 2011Da01

Legend

Decay Scheme

%IT=?

γ Decay (Uncertain) ----

¹⁶⁰₇₅Re₈₅