106 Cd(58 Ni,p3n γ) 2011Sa59

Type Author Citation Literature Cutoff Date

Full Evaluation N. Nica NDS 176, 1 (2021) 1-May-2021

2011Sa59 was compiled for XUNDL database by W. D. Kulp (NNDC, BNL) and edited by B. Singh (McMaster).

E=310 MeV (100 hours of beam time). Reaction products separated using recoil ion transport unit (RITU) gas-filled separator and implanted into DSSDs in the Gamma Recoil Electron Alpha Tagging (GREAT) spectrometer.

Prompt γ transitions identified with JUROGAM gamma-ray spectrometer using recoil decay tagging technique. Measured $E\gamma(\alpha,p)$, $I\gamma(\alpha,p)$, recoil- $\gamma(\alpha,p)$ - γ -t.

Delayed γ ray assignments to 160 Re made using correlations with characteristic proton and alpha decay of the 160 Re ground state. Transition ordering and placement uncertain due to insufficient statistics for γ - γ coincidence analysis.

Level ordering assumed based on systematics of odd-odd N=85 isotones.

- 2011Sa59 observed 39 γ and 96 γ transitions reported in 2011Da01 from the decay of the (9⁺) isomer of 160 Re (see IT decay dataset) that confirm the assignment of the γ rays reported in this dataset to 160 Re.
- 2011Sa59 confirm findings of 2011Da01, but do not present independent E γ , I γ , or gamma-ray placement data. No mention is made of 50-keV γ ray reported in 2011Da01, but may be present in Figure 4(b) of 2011Sa59 as a small peak (most of the intensity of this γ is taken by internal conversion).

¹⁶⁰Re Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
184 4	(9+)	2.8 μs <i>1</i>	E(level), J^{π} , $T_{1/2}$: from Adopted Levels.
184+x [#]	(10^{+})		
1021.4+x [#] 3			
1647.5+x [#] 6			
1824.7+x [#] 6	(16^{+})		

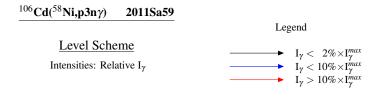
[†] From Eγ data.

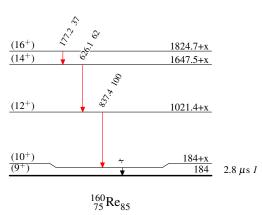
$\gamma(^{160}\text{Re})$

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
X		184+x	(10+)	184	(9+)	E _γ : based on Fig. 5 of 2011Sa59 of the systematics of energy levels built upon 9/2 ⁻ and 10 ⁺ states in N=85 isotones one expects x<81 keV.
^x 135.1 4	17 6					
177.2 2	37 7	1824.7+x	(16^{+})	1647.5 + x	(14^{+})	
x325.9 8	16 5					
^x 334.1 5	20 6					
^x 381.9 7	18 5					
^x 437.7 4	10 4					
^x 444.6 5	17 <i>7</i>					
^x 448.7 8	9 5					
^x 510.5 4	39 8					
x519.8 6	20 6					
^x 557.1 2	9 1					
x560.6 2	8 1					
626.1 5	62 11	1647.5 + x	(14^{+})	1021.4+x	(12^{+})	
837.4 3	100 11	1021.4+x	(12+)	184+x	(10+)	Observation of x rays, 38-keV, and 96-keV transitions in coin with 837γ indicates that 837 -keV transition populates isomeric

[‡] Assigned by 2011Sa59 from systematics of N=85 isomers.

[#] Band(A): γ sequence based on (10⁺). Possible configuration= $\pi h_{11/2} \otimes v f_{7/2}^2 \otimes v h_{9/2}$.


¹⁰⁶Cd(⁵⁸Ni,p3nγ) **2011Sa59** (continued)


$\gamma(^{160}\text{Re})$ (continued)

 E_{γ} E_{i} (level) Comments

state in ¹⁶⁰Re at 184 keV reported in 2011Da01 (¹⁶⁰Re IT decay dataset).


 $^{^{}x}$ γ ray not placed in level scheme.

$\frac{106}{100}$ Cd($\frac{58}{100}$ Ni,p3n γ) 2011Sa59

Band(A): γ sequence based on (10 $^+$)

