¹⁶⁰Er ε decay **1990Go02**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

Parent: ¹⁶⁰Er: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=28.58$ h 9; $Q(\varepsilon)=318$ 29; % ε decay=100.0 ¹⁶⁰Er- $Q(\varepsilon)$: From 2021Wa16.

Additional information 1.

¹⁶⁰Er: from proton-induced spallation of tantalum at E(p)=640 MeV. Chemical separation. Electrostatic electron spectrometers, one set to $\Delta E/E=0.011$ and one operated at $\Delta E=9$ eV; HPGe detector of dimensions 0.30 cm² by 0.6 cm and resolution=200 eV at 6.4 keV. Measured E(ce), Ice, E γ , I γ , I(L x ray).

Others: 2010VaZZ, 2006KaZX, 1982Vy06, 1973A115, 1965Av03.

¹⁶⁰Ho Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0	5+	25.6 min 3	
59.98 <i>3</i>	2^{-}	5.02 h 5	$\%\varepsilon + \%\beta^{+} = 23.8 \ 20; \ \% IT = 76.2 \ 20$
			$\& \varepsilon + \Re \beta^+, $ MT: weighted average of %IT values (measured by almost the same group of authors)
			by varied methods): 73.6 52 (2002Ad34), 73.3 30 (2003KaZR), 77.9 20 (2006KaZX) (the
			smallest measured unc was adopted); other: 65 3 (1974Al28).
			Since this level has $\mathscr{K} \in +\mathscr{K} = 23.8 \ 20$, there is an imbalance in the listed intensities into and out
			of it. Further, this level has $T_{1/2}$ =5.02 h, with the result that the intensity of the radiations
			deexciting it will exhibit a time dependence relative to that of the feeding transition.
67.11 4	1^{+}	28 ns 2	$T_{1/2}$: from 2006KaZX by measuring the retarded KX(Ho)- γ coincidences with respect to the time
			decrease in the 7.1 γ intensity. Other: 30 ns 8 (2005KaZY, obtained by the same group).
175.6? 10	(1^{-})		E(level), J^{π} : level introduced by 2010VaZZ based on γ assumed to decay to 67, 1 ⁺ level with J^{π}
			value postulated by authors: because of the lack of evidence this level is questionable

[†] From Adopted Levels.

[‡] From Adopted Levels unless noted otherwise.

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
$(1.4 \times 10^{2} \ddagger 3)$	175.6?	≈10	≈5.0	ε K=0.68 8; ε L=0.24 6; ε M+=0.078 21
				Because of the lack of evidence on the level and its decaying γ the ε population is also questionable.
				I _{ε} : difference of 100% and the estimated feeding of 67, 1 ⁻ level.
$(2.5 \times 10^2 \ 3)$	67.11	≈90	≈4.7	εK=0.771 13; εL=0.174 9; εM+=0.054 4
				I: from $\alpha(E1)$ and measured L x ray/ γ intensity ratio, 1990Go02 estimate
				$I(\gamma+ce)(7.133 \gamma)$, relative to number of ¹⁶⁰ Er decays, to be 0.9 2, which can be
				consistent with the expectation that all of the ε transitions feed the 67 level but also
				is compatible with $\approx 10\%$ of the feeding to 176 level.

 † Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

¹⁶⁰Er ε decay **1990Go02** (continued)

$\gamma(^{160}\text{Ho})$

 $I(\gamma+ce)$ normalization: Based on deduced absolute intensity of 7.133 γ (from measured I_{γ} and theoretical ICC value) equal to the measured number of ¹⁶⁰Er decays reported by 1990Go02 (the experimental ratio of intensities quoted therein is 0.9 2).

Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	δ^{\ddagger}	α^{\dagger}	$I_{(\gamma+ce)}^{\#}$	Comments
7.133 10	5.43 9	67.11	1+	59.98 2-	E1(+M2)	<0.0006	17.4 3	100	ce(M)/(γ +ce)=0.774 7 ce(N)/(γ +ce)=0.159 3; ce(O)/(γ +ce)=0.0125 3; ce(P)/(γ +ce)=0.000205 5 α (M)=14.27 22 α (N)=2.93 5; α (O)=0.230 4; α (P)=0.00379 8 I $_{\gamma}$: calculated from I(γ +ce)=100 using α (E1)=17.3 3. δ : from 1990Go02 (at the 99% confidence level). α : 1990Go02 report the following measured values of ratios of conversion coefficients for the 7.133 γ : α (M1)exp/ α (M2)exp=0.81 δ ; α (M1)exp/ α (M3)exp= 0.39 4; α (M4)exp/ α (M3)exp= 0.66 δ ; α (M2)exp/ α (M3)exp= 0.71 7; α (N1)exp/ α (N3)exp= 0.71 7; α (N1)exp=0.20 5; α (N6,7)exp/ α (O2,3)exp= 0.29 7.
59.98 3	0.082 11	59.98	2-	0.0 5+	E3(+M4)	<0.017	930 16	76.2 20	ce(K)/(γ +ce)=0.00211 8; ce(L)/(γ +ce)=0.749 9; ce(M)/(γ +ce)=0.198 5 ce(N)/(γ +ce)=0.0450 11; ce(O)/(γ +ce)=0.00510 12; ce(P)/(γ +ce)=3.8×10 ⁻⁶ 7 α (K)=1.97 7; α (L)=698 12; α (M)=184 4 α (N)=41.9 8; α (O)=4.75 9; α (P)=0.0035 7 E _{γ} : from 1966Av03. I _{γ} : calculated from I(γ +ce)=76.2 20 using α (E3)=930 16. (If δ =0, one gets 0.082 10 with α (E3)=923 14) Note that this value of I(γ +ce) is smaller than that of the feeding γ , because of the ϵ + β ⁺ branch from this level. Mult.: from measured subshell ratios (1966Av03). δ : %M4<0.03 (2010VaZZ, from α (K)exp). α (K)exp: 1.83 17 7.

				¹⁶⁰ Er	ε decay	1990Go02	(continued)
					γ (¹⁶⁰ He	o) (continu	ed)
Eγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	$I_{(\gamma+ce)}^{\#}$	Comments
							α (K)exp: from 2010VaZZ, from comparison of Ho K x rays and 59.98 γ intensities in the γ spectrum of ¹⁶⁰ Ho IT decay (5.02 h) (uncertainties are stat and syst in this order).
108.5 [@] 10	175.6?	(1 ⁻)	67.11 1+	[E1,M2]	0.43 18	≈10	ce(K)/(γ+ce)=0.241 74; ce(L)/(γ+ce)=0.048 25; ce(M)/(γ+ce)=0.0109 60 ce(N)/(γ+ce)=0.0025 14; ce(O)/(γ+ce)=3.5×10 ⁻⁴ 20; ce(P)/(γ+ce)=1.62×10 ⁻⁵ 96 α(K)=0.35 14; α(L)=0.069 36; α(M)=0.0157 84 α(N)=0.0036 20; α(O)=5.0×10 ⁻⁴ 28; α(P)=2.3×10 ⁻⁵ 14 E _γ ,I _γ : γ ray postulated by 2010VaZZ as observed in a "fresh" spectrum of ¹⁶⁰ Er source with no evidence, reason for which its existence is questionable (ΔEγ is adopted by evaluator and Iγ follows from the ε feeding of the parent level).

[†] Additional information 2.
[‡] Additional information 3.
[#] Absolute intensity per 100 decays.
[@] Placement of transition in the level scheme is uncertain.

¹⁶⁰Er ε decay 1990Go02

Decay Scheme

¹⁶⁰₆₇Ho₉₃